ﬂ SCNSors m\py

Article
A Resource Service Model in the Industrial IoT
System Based on Transparent Computing

Weimin Li 2, Bin Wang !, Jinfang Sheng 1*, Ke Dong !, Zitong Li 3 and Yixiang Hu !

1 School of Information Science and Engineering, Central South University, Changsha 410083, China;

weiminli@csu.edu.cn (W.L.); wb_csut@csu.edu.cn (B.W.); dongke@csu.edu.cn (K.D.);
huyixiang@csu.edu.cn (Y.H.)

School of Information, Hunan University of Humanities, Science and Technology, Loudi 417000, China
Department of Electrical and Electronic Engineering, The University of Hong Kong,

Hong Kong SAR, China; u3544658@connect.hku.hk

* Correspondence: jfsheng@csu.edu.cn; Tel.: +86-139-731-50713

check for
Received: 4 February 2018; Accepted: 21 March 2018; Published: 26 March 2018 updates

Abstract: The Internet of Things (IoT) has received a lot of attention, especially in industrial
scenarios. One of the typical applications is the intelligent mine, which actually constructs the
Six-Hedge underground systems with IoT platforms. Based on a case study of the Six Systems in
the underground metal mine, this paper summarizes the main challenges of industrial IoT from the
aspects of heterogeneity in devices and resources, security, reliability, deployment and maintenance
costs. Then, a novel resource service model for the industrial IoT applications based on Transparent
Computing (TC) is presented, which supports centralized management of all resources including
operating system (OS), programs and data on the server-side for the IoT devices, thus offering an
effective, reliable, secure and cross-OS IoT service and reducing the costs of IoT system deployment
and maintenance. The model has five layers: sensing layer, aggregation layer, network layer,
service and storage layer and interface and management layer. We also present a detailed analysis
on the system architecture and key technologies of the model. Finally, the efficiency of the model is
shown by an experiment prototype system.

Keywords: Internet of Things; transparent computing; industrial IoT; IoT OS

1. Introduction

As an emerging field of technology, Internet of Things (IoT) has aroused the great concern
of governments, research institutions and enterprises. The term IoT was coined in 1999 by Kevin
Ashton, who aims to connect different things over the networks. Currently, the “Things’ can be Radio
Frequency IDentification (RFID) tags, sensors, actuators, mobile phones, and lightweight wearables,
even virtual entities that can be uniquely identified [1]. Although the definition of ‘“Things’ has changed
as technology evolved, the essential attribute that they are enabled to interact with each other and
cooperate with their neighbors to reach common goals without the aid of human intervention remains
the same. The expected huge number of interconnected things, the interaction between things and
high-performance computing, storage center and increasingly intelligent IoT devices open up new
opportunities to create a smarter environment [2]. The industrial IoT uses IoT technologies in the
industrial systems to gather real-time data, control the manufacturing environment and monitor the
environmental metrics such as noxious gas, temperature, humidity and fire alarms. It can greatly
improve the efficiency of manufacturing and reduce the cost of the enterprise. Hence, there is a growing
interest in using IoT technologies in various industries. A number of industrial IoT projects have
been conducted in areas such as agriculture, manufacturing and processing industry, environmental

Sensors 2018, 18, 981; d0i:10.3390/s18040981 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6514-7554
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/981?type=check_update&version=2
http://dx.doi.org/10.3390/s18040981

Sensors 2018, 18, 981 2 of 22

monitoring, and mine safety monitoring [3,4]. Industrial IoT devices range from tiny environmental
sensors to complex industrial robots, and they are primarily sensors, controllers and special equipment
that can accommodate harsh and complex industrial fields. IoT applications focus on collecting and
processing the sensing and decision data in industrial environments and carrying out a large number
of notifications [5].

However, the limitations of associated devices in the IoT in terms of storage, network and
computing, and the requirements of large-scale data analysis and processing require a technology
like Cloud Computing to supplement this field. Cloud Computing promises high reliability and
scalability to provide ubiquitous access, dynamic resource scheduling and composability required for
the IoT applications [6]. The authors of [7] present a detailed discussion on a novel CloudloT paradigm
where Cloud and IoT are merged together, involving completely new applications, challenges, and
research issues. Due to the benefits from Cloud Computing, IoT’s service capabilities have been greatly
expanded, and there are several projects and strong research efforts in this field. It seems that their
integration is foreseen as an excellent IoT solution focused on by researchers [8].

Transparent Computing (TC) [9], which can be viewed as a special kind of Cloud Computing,
provides a feasible solution to solve the above problems. TC is a new user-centric service mode whose
aim is to provide users with unconscious and transparent services. However, unlike Cloud Computing,
in TC, not only the applications (APPs) and user data, but also the underlying operating systems (OSs)
are stored and managed at the server side, while the client does not store any OSs and APPs locally.
They will be dynamically scheduled from the server to the client for execution in a block-streaming
way according to users’ requests. In such a service mode, users simply just accomplish their tasks on
the device with less CPU power and memory and do not consider the heterogeneous software details,
thus providing across-platform and across-OS service for different kinds of terminals. On the other
hand, TC can reduce the burden of the server and improve the system maintainability and security [10].
Thus, TC has attracted significant attention from both academia and industry and its applications are
increasingly widespread over the past decade.

IoT being characterized by a very high heterogeneity of devices, protocols and Cloud platforms
as well as widespread application of IoT OS [11] in the near future, it provides great opportunities
to exploit TC to build more efficient, scalable and secure IoT service mode. First of all, TC can
enable services to be executed on heterogeneous IoT devices from the remote server by decoupling
the software stack from various devices, thus eliminating the dependency of the hardware and
software on the industrial IoT device. Moreover, heterogeneous resources (including OSs, hlIAPPs
and private data) of various industrial IoT devices can also be stored and managed in a centralized
way with TC. Therefore, TC improves the manageability, scalability and reliability of various types of
industrial IoT devices and their resources. Finally, with the growing popularity of IoT, more and more
information processing and decision-making tasks need to be executed on the IoT terminal device.
Thus, they require greater intelligence processing capacity, which provides a favorable condition for
the local execution scheme of transparent computing. On the other hand, the industrial IoT application
environments also bring new challenges for applying TC into them, e.g., how to design an efficient
and scalable solution to implement TC on the heterogeneous (including hardware and software) and
resource-constrained IoT devices.

Our research group is conducting some important research issues about the integration of TC and
industrial IoT. This paper proposes a novel paradigm for the industrial IoT where TC are integrated
by means of a case study about Six-Hedge underground systems (referred to as Six Systems) [12].
The Six Systems is actually a comprehensive IoT platform in the underground mine, which includes:
(1) a personnel regional positioning system; (2) a monitoring and supervision system; (3) an emergency
refuge system; (4) a compressed air self-help system; (5) a water rescue system; and (6) a communication
system. All six of the systems mentioned above are based on pervasive sensing, sensor data collection,
data analysis and processing, and prevent accidents by locating the position of the underground staff
and detecting hazardous gases. Therefore, the construction of Six Systems in underground mines is

Sensors 2018, 18, 981 30f 22

enforced by the government [13]. Based on the case study, we try to extend the idea of transparent
computing to the industrial IoT and provide a novel and feasible solution for its resource services.
The service model aims to provide unified and centralized storage, management and remote access
service for the various heterogeneous resources of industrial IoT devices, especially operating system
resources. We give a detailed description and analysis on the architecture of the model, and implement
a prototype system for the new paradigm, and finally evaluate the performance. The experimental
results show that the proposed model can provide efficient, scalable and reliable resource services for
a wide variety of industrial IoT devices, while maintaining the comparatively ideal performance.

The rest of the paper is organized as follows. Section 2 explains the related work on some network
computing applications in the IoT and transparent computing. In Section 3, the architecture of the
resource service model for future industrial IoT based on TC and its characteristics are introduced.
Section 4 presents key technologies of the model. Section 5 gives the experimental performance
analysis of the specific key technologies in the model, and explains qualitative analysis of the effect on
the future industry IoT. Finally, Section 6 includes conclusions and our future work.

2. Related Works

Internet of Things, which explains how many objects that surround us can be associated with
the Internet and provide intelligent services for end users, has provided a promising opportunity
to build powerful industrial systems and applications. With the advances in high-speed wireless
communication, smart phones, wearable devices and network technologies, more and more networked
things or smart objects are involved in IoT [2,3]. In order to provide high-quality services to end users
and dominate the market, IoT’s technology depends on two key aspects in terms of standardization
and the data storage and processing. On the one hand, the lack of standards is actually considered
a big issue by most IoT researchers. Standardization of protocols, architectures and Application
Programming Interfaces (APIs), which provides interconnection, interoperability and compatibility
among heterogeneous smart objects, play a pivotal role in solving this problem [14,15]. On the
other hand, IoT systems can generate massive heterogeneous data rapidly so that the data must
be stored efficiently and processed with a high throughput [16]. Cloud Computing can provide an
environment to enable resources to share in terms of infrastructure, data storage and analysis and
software development platforms. Thus, Cloud based storage and processing solutions are becoming
increasingly popular in the IoT systems. The integration of Cloud Computing and IoT solves such
problems such as IoT’s limitations, data access, computing and data analysis, and can create new
paradigms like Thing as a Service [17] and Sensor as a Service [18], which enable the Cloud to
ubiquitously manage the remote sensors and smart things. The key issues and their respective
potential solutions about IoT and Cloud Computing integration, known as Cloud of Things, were
highlighted in [8]. The integration of agents and Cloud computing was proposed in [19], in order
to implement a smart objects-oriented IoT architecture. The authors of Diaz et al. [6,7] provided a
literature survey on the integration of Cloud and IoT, which involves completely new applications,
challenges and research issues.

There are also some other computing paradigms that were integrated with IoT. A new platform,
called Fog Computing, extends the Cloud Computing to the edge of the network and brings it closer
to IoT devices, thus supporting IoT applications characterized by latency constraints, mobility and
geo-distribution [20]. Context-aware computing, which can help IoT middleware to better understand
sensor data and decide what data needs to be processed, has been identified as an important IoT
research area by the European Union [21]. However, the integration of Cloud Computing and IoT is
used most widely. Meanwhile, we note that IoT OS and the Cloud platform are bounded together.
In other words, the devices run an IoT OS can only access the specified Cloud platform. Such a sealing
property caused that IoT users can not access cross-OS and cross-platform services.

A client/server or SOA (Service-Oriented Architecture) architecture with ESB (Enterprise Service
Bus) is powerful and efficient enough for massive sensing applications [22,23]. However, we also

Sensors 2018, 18, 981 4 of 22

note that various IoT operating systems have been emerging over the last two years, including ARM
(Advanced RISC Machines)’s mbed [24], a friendly Operating System for IoT-RIOT [25], Microsoft’s
Windows 10 (Redmond, WA, USA) IoT [26], Google’s Brillo (Mountain View, CA, USA) [27] and Linux
Foundation’s (San Francisco, CA, USA) Zephyr [28], etc. These IoT OS aim to run on low-end IoT
devices, which are too resource-constrained to run traditional OS. Thus, the crucial requirements
for an IoT OS are to support heterogeneity in hardware architectures, lightweight design, APIs and
communication technologies. Furthermore, IoT OS facilitates IoT devices to connect with the Cloud
platform and use its services. In fact, IoT OS vendors have also provided Cloud integration capabilities
for users, which will drive the integration of Cloud and IoT innovation in the near future. Thanks
to the promotion of major corporations and organizations, IoT OS is expected to be quickly applied
to IoT applications in the near future. Nevertheless, this also caused some problems. Firstly, Cloud
Computing is concerned about the data storage Cloudization, while lacking the effective management
and maintenance for software resources under the large-scale heterogeneous IoT devices, especially
for the diversified and fragmentary IoT OS resources. Secondly, in the current mode, IoT users can
not access a cross-platform and cross-OS service due to the strong customization between IoT OS and
their Cloud platform. Thirdly, Cloud Computing has excellent performance in terms of reliability and
security on the server side while the performance is not good enough in the IoT node. It is true that
the security and reliability of IoT nodes can be effectively improved based on the IoT OS. Meanwhile,
as the IoT OS kernel crashes or is attacked, the Cloud server can not fix it well.

Transparent computing was proposed as a new pervasive computing paradigm to provide
end-users with transparent services [29]. The kernel ideas of TC include: (1) separation of computation,
storage, and management; (2) users are able to freely access the across-platform services on networks
across different kinds of heterogeneous terminals; and (3) the service is completely transparent to
users, and services are scheduled to the client and performed in a block-streaming way on demand.
The detailed illustration of TC architecture is shown in Figure 1.

cowm &1 E

Q
—
g Thin
3 !
o Client PC Notebook '\;;:rlllee Pad
e N
User Data
&
3 Linux Windows Android
] APPs APPs APPs
Linux Windows Android
N J

Figure 1. Transparent computing architecture.

As shown in Figure 1, a TC based system mainly consists of the transparent server and client.
Transparent client is a device with only BIOS (Basic Input Output System) and a small fraction
of protocol and management programs, which is not proposed to have any operating system or
application software on it. Such a paradigm enables the client terminal to be diverse, secure, light
weight, and easy to manage and maintain. Numerous OSs, applications and user data are stored on
the transparent server, and loaded to the client terminal via a transparent network in a block streaming

Sensors 2018, 18, 981 5o0f 22

way. Therefore, the computation, storage and management are spatio-temporally separated. Users can
access the services through cross-terminal and cross-OS operations.

The concept of TC was proposed in 2004, and the authors in [30] provided the concept, architecture
and an example of transparent computing. From then on, based on the theory of TC, researchers
proposed some representative architecture and developed demonstration applications. The authors
in [31] proposed a transparent computing architecture 4VP+, and developed the corresponding client
terminal. Users only need to buy a bare computer with a Meta operating system (Meta OS), which is a
control platform located on both TC server-side and user-side. It is not only responsible for OS booting,
remote accessing, and executing required APPs on the user-side, but also in charge of providing storage
and management services for resources (including OSs, APPs and user data), and communication
with users. TransOS [32] was proposed on the basis of transparent computing theory, which is defined
as a system where clients provide services for users and all traditional operating system codes and
applications are centrally stored on network servers. A full-featured, high performance simulation
framework for TC named TranSim was proposed in [33]. Using TranSim, the system designer can
quickly evaluate the effectiveness of cache schemes along with the system performance. The authors
in [34] presented a separating computation and storage strategy. An Intel Corporation (Santa Clara,
CA, USA) research team combined a new-generation BIOS named UEFI (Unified Extensible Firmware
Interface) with TC architecture [35]. The authors of [36] constructed an optimized algorithm for
dependent file fetch middleware in TC platform.

As can be seen from the above surveys, IoT has been combined with some computing paradigms,
such as Cloud computing, fog computing and context-aware computing. In addition, a transparent
computing system has been implemented on PCs and multiple mobile devices. However, to the best
of our knowledge, the explorations and research on integration of IoT and Transparent Computing is
at an initial stage. The authors of [37] study an implementation of edge computing, which exploits
transparent computing to build scalable IoT platforms. Furthermore, their characteristics are often
complementary. IoT can benefit from the TC’s centralized storage and management of resources
(OSs, APPs and user data) as well as stream execution on the client side by remotely loading. TC can
offer an effective, reliable, secure and cross-OS solution for IoT resource services, and reduce the costs
of IoT system deployment and maintenance. On the other hand, TC can benefit from IoT by extending
its scope to deal with real world things in a more dynamic and distributed manner. This paper tries
to explore a feasible solution for the integration of TC and IoT, and propose a novel industrial IoT
architecture based on TC, and present its key technology and evaluation results.

3. Architecture for the Resource Service Model of Industrial IoT Based on TC

From the technology perspective, the design of an IoT architecture needs to consider
the extensibility, maintainability, modularity, and interoperability among heterogeneous devices.
The number of layers of the IoT architecture depends on the application context. In general, the IoT
architecture is divided into three layers or four layers. A generic three layers consist of application,
transport, and sensing [38]. Michele Nitti et al. [39] proposed a specific architecture for the sustainable
tourism application, which foresees a four-level architecture: application, service, virtualization and the
real-world layer. The authors of [40] presented an architecture based on IoT and cyber-physical system
focused on industrial 4.0, which was divided into four layers: sensors and actuators, communication,
entities and services, and the application layer. To realize that transparent computing integrates with
industrial IoT, we divide the industrial IoT architecture into four layers: sensing layer, network layer,
service and storage layer, and monitoring and management layer. Prior to the presentation of the
architecture, our motivation is illustrated through a case study.

3.1. A Case Study of Six Systems

The Six Systems is a typical industrial IoT project that is used to ensure the safety of mine
production [12]. In the Six Systems, many sensor nodes and collection devices are connected via

Sensors 2018, 18, 981 6 of 22

an industrial Ethernet underground. The sensor node is responsible for receiving signals (like heat,
pressure, light or motion, etc.). The sensing data are collected by collection devices and transferred to
the ground control center, in order to locate the position of the mine staff and detect hazardous gases.

Since 2013, our research team has been responsible for the design, deployment and maintenance
of Six Systems of Fankou Lead-Zinc Mine Company (located in Shaoguan, China), which is based
on the four-layer architecture as mentioned before. We tracked and analyzed the challenge of the
industrial IoT system during one year’s work of deployment from 2014 to 2015 and another year’s
work of maintenance from 2015 to 2016. Table 1 shows the devices deployed in the underground
environment including 102 collection devices and 762 sensor nodes, excluding 2000 RFID identification
cards for workers. Based on our experience, the challenges of industrial IoT are summarized as follows:

1. Widespread heterogeneity in devices and resources. Various sensor nodes and collection devices
(also called aggregation devices) are used in industrial IoT applications. All of the industrial
IoT applications have specific characteristics: heterogeneous and diverse devices and protocols;
constrained computing and storage capability; and difficulty in data exchange and sharing.
In addition, with the in-depth utilization of IoT, its applications become increasingly rich. All of
these elements bring serious challenges to the resource management, interconnectivity and
collaboration of IoT devices.

2. The security and reliability of industrial IoT terminal devices is not sufficient for practical
application. The current industrial IoT device is almost a bare metal where only a small number of
applications are deployed without enough security strategy. On the other hand, a scheme that uses
Cloud computing to connect and manage industrial IoT devices and its resources is widely used.
However, due to the heterogeneous quality of the device and protocol, the reliability of the Cloud
platform connecting to and managing industrial IoT device resources is far from satisfactory.

3. High deployment and maintenance costs for the large-scale sensor nodes and collection devices.
IoT application involves many sensor nodes and collection devices. These devices are featured
with huge quantities, various types, and scattered locations, which cause high deployment
and maintenance costs of an IoT system. Figure 2 shows the labor costs (man-day) of each
month in Six Systems deployment and maintenance cycle. As shown in Figure 2, the labor costs
of deployment are very high because lots of devices including sensor nodes and collection
devices need to be deployed in distributed underground space, and the cost per month is
decreasing in the later months during the deployment period. On the other hand, the labor costs
of maintenance increase fast after the system gets online. The maintenance costs mainly focused
on the collection devices due to their complex functions, high probability of failure and great
difficulty of debugging. The sensing device is relatively simple, reliable and cheap. However,
the advance of sensing devices, which includes the improvement of computing capabilities,
the application of the IoT OS and the increasingly rich functions, also increases the difficulty of
management and maintenance.

Sensors 2018, 18, 981 7 of 22

Table 1. Devices used in the Fankou Six System.

Device Type Device Name Number

Aggregation Collection substation 52
layer device in personnel regional
positioning system

Collection substation 50
in monitoring and
supervision system

Sensor layer Card reader 301
device Wind speed sensor 138
Wind pressure sensor 6
H2S sensor 24
S0O2 sensor 24
On-off sensor 69
200
= B System deployment
> .
3 150 System maintenance
&
£
» 100 -
?
8
5 %07
Qo
O !

1st 2nd 3rd 4th S5th 6th 7th 8th Sth 10th 11th 12th
Project progress (month)

Figure 2. The labor costs of deployment and maintenance in “Six Systems” of Fankou.

For the previous two challenges, it is worth mentioning that the birth and development of IoT
OS is expected to solve these issues, and our team is concentrating on the application of IoT OS
for the industrial IoT. However, the IoT OS also brings new challenges for the IoT system. Firstly,
in general, an IoT OS is limited by a vendor that can only connect and access a particular Cloud service.
A multiple heterogeneous environment will impact future industrial IoT application development,
where information processing, transmission and sharing will become more difficult. Secondly, Cloud
computing is concerned with the computing and storage Cloudization, instead of the operating system
and software Cloudization. This leads to failing in effective and centralized management for the IoT
OS and its application software with Cloud platforms. Finally, the current Cloud platform ensures the
IoT users’ reliability and security in this aspect endeavor as using its service, but for the IoT devices’
own reliability and security, the Cloud platform appears to be powerless.

It is true that the problems mentioned above should be tackled in the future industrial IoT system.
Unfortunately, most existing works mainly concentrated on the structure of future network, standards
of IoT technology and the network protocol, but very few studies have been focused on the challenges
mentioned above. Therefore, a new solution that integrates transparent computing into industrial IoT
is explored in this paper.

3.2. The Architecture

This paper proposes a novel system architecture for the industrial IoT application based on
transparent computing. Figure 3 shows this architecture consists of sensing layer, aggregation layer,
network layer, service and storage layer, and interface and management layer. The network layer is
similar to the traditional four-layer IoT application architecture, which is mainly composed of a variety
of network communication methods and different industrial fields networking modes. The other four
layers of the architecture are described below.

Sensors 2018, 18, 981

Sensor Data Stream

Upload Data

Upload Data

/App block stream\ﬁ /) \4
Control Signal Control Signals /Control Slgnal\

Sensor Device

Sensor Device

Sensor Device

Sensor Devi

NE—

|
|
|
I
|
|
|
|
|

|
| (* Intranet

|

|

|

I

|

} Collection m

} Device Internet
|

I

|

ﬁ LRI ﬁ

Sensor Data
Server

Control Server
—

£

<L

Server

System

o Je

Monitoring and

I I
| |
| |
I I — Administrator
| | |
| | |
Collection | I I
Device } } }

|

|

}AEEEEE“’""" | Network Layer | Service&Storage Layer | |nvorfacegManagement Layer
I layer ‘ [

Management Center

Sensing Layer

Figure 3. The architecture of industrial IoT based on TC.

3.2.1. Sensing Layer and Aggregation Layer

The sensing layer is integrated with existing hardware (RFID, intelligent sensors, actuators, etc.)
to sense/control the industrial world and acquire data. The aggregation layer, which is responsible for
collecting and simply processing the information, and then sends information to the service and storage
layer via network layer, is composed of various collection devices and plant floor network module
devices. Typically, the sensor is a resource-constrained device that can only run a dedicated IoT OS, and
the collection device needs a full-fledged OS such as Linux or BSD (Berkeley Software Distribution).
In order to support the separation between software and hardware, and achieve the purpose of OSs
and APPs centralized management, the characteristics of devices in the sensing layer are as follows:
(1) there is no OS resident on the sensing and aggregation devices, and only a lightweight Pre-OS that
is similar to a bootstrap program with a network protocol stack is required to support multiple OS
remote booting on demand via network; (2) supporting streaming loading and streaming execution,
that is, OSs and APPs are stored on the server side, which are centralized installed, upgraded, assigned
and managed; and (3) the data generated by sensing devices are stored in server to ensure the security
of the data.

As Figure 4 shows, both the sensing and aggregation device are divided into three sub
layers. The hardware layer provides an interface for sensors, collection devices, display and other
peripherals; the resident software layer mainly provides network protocol stacks and Pre-OS that can
drive hardware and remotely boot various OS kernels; and the nonresident software layer realizes
OS loading and program execution in a streaming-block way.

Most tasks of the Pre-OS involve initializing hardware and establishing the appropriate network
environment with the network protocol stack. Then, the sensing and collection device select an
OS kernel according to the end-user requirements and server configuration, and send requests to the
server side for remotely loading the OS kernel and the appropriate file system via the network. Finally,
the OS and application files are loaded from the server to nonresident software layer for streaming
execution. It should be noted that the IoT OS and APPs of sensing devices are stored and managed
in the aggregation device as its private data, and the data generated by sensing devices are first
transferred to the aggregation layer with the network protocols supported by the IoT OS, and then
stored into the service and storage layer through the data remote storage mechanism.

For these reasons, the requirement of computation and storage capacity of sensing and collection
devices is greatly reduced in TC architecture, and the device can be securely and easily managed and
maintained. On the other hand, the Pre-OS separates hardware with the operating system, and shields
the specific details in the hardware on the bottom layer. Accordingly, multiple different operating
systems can be run on the IoT devices.

Sensors 2018, 18, 981 9 of 22

Operating Systems(0Ss)
Applications(APPs)

. Nonresident [~— — —))
?;:\:le:::ent b/OSS\ APPS\ Software :’ltiTApszI 055° pPPs. ‘lj m l““‘“&
=
Layer |
Layer g L oT05s |
p Private data
AP Remote boot i \
05s 055 s equest &
Residnt Resident Y, =
Software I protocol Software I protocol dﬂ(e =
Lagr precs yer | Pes | \.,8
Hardware Layer Hardware Layer

ServicebStorage

Sensing Device Collection Device
Layer

Figure 4. The architecture of the sensing and aggregation layer.

3.2.2. Service and Storage Layer

On the one hand, the OS images, APPs and private data are stored and managed in the service

and storage layer in a centralized way. On the other hand, in this layer, a streamed data access service

is required for the multiple OSs and APPs remote loading and execution of the aggregation layer

devices. As shown in Figure 5, by means of providing basic services such as authentication, user
management, image management and system monitoring, the service and storage layer shields the
software resource loading, application configuration and other details for the aggregation layer users,

so users only need to pay attention to their own service needs.

1.

Resource storage. The resources are classified into three types: OS resource, application resource
and personalization data from the aggregation layer devices. All of the resources are stored and
uniformly managed in the service and storage layer. Due to the massive and rapid industrial IoT
data, an efficient and low redundancy data storage model must be taken into account.

Image management. On the service and storage layer, the image as an effective form of resources
is easy to be stored and effectively managed. The data access request from the sensing terminal
is eventually redirected to the server’s virtual disk images. The image is also the carrier of the
end-user data resources, and there is a one-to-one correspondence between the end-user system
and virtual disk images. In the face of massive sensing layer devices, how to efficiently create,
backup, and upgrade images for sensing layer users is a challenge.

Data access. The operating system, applications and personalized data that users need are
dynamically obtained from the service and storage layer through the network, while the user’s
modifications to these resources can be written in real time to the layer. When numerous sensing
devices are connected to the IoT system, the service and storage layer can process the data request
quickly and reliably. Because the resources are stored in the server, the data request of aggregation
devices is retransmitted to the service and storage layer via networks, then the requests are parsed,
and finally it is determined how to handle them.

User management and identity authentication. Due to the diversity of industrial IoT devices,
users of the device with common attributes often have the same user configuration, and they need
to be divided into multiple dimensions. On the other hand, before accessing the TC platform,
each user of the aggregation layer must be authenticated, and then enjoy the cross-terminal and
seamless personalized service.

Sensors 2018, 18, 981 10 of 22

Sensing and collection devices

To==

Networks

Service&storage Layer

g 7\

(Authentication) (User management) (Imuge management)
\(Storage) <System mom'tor> < Data access)

= B 5 ;.I nifras I‘llC ure
i = o

\ - Storage
Server Cluster Networks Cluster

Figure 5. The architecture of the service and storage layer.

When the Pre-OS in the device of aggregation layer is started, it will encapsulate the instruction
that boots the operating system needed, then transmits it to the service and storage layer via networks.
The service and storage layer responds to and processes the request, and loads the corresponding image
resources to the aggregation layer device for execution in a block-stream way. After the operating
system is started, the resource service request sent by the aggregation layer device is redirected to
the service and storage layer by the Vdisk driver, so that the device can access the corresponding
instructions and data, which are subsequently scheduled to the device and performed with the remote
resource access protocol.

3.2.3. Interface & Management Layer

The interface and management layer is used to describe the specifications between applications
and services. There is also a necessity for an interface and management layer to simplify the
management and interconnection of things. It can be seen as a set of services that support interaction
with the entire system. This layer can use the data of service and storage layer for analyzing and
displaying momentarily after a certain user privilege certification. As a result, the system can analyze
and monitor the indexes of industrial environment all the time, and implement real-time monitoring of
the working status of sensing layer devices. The update and maintenance of system software resources
mainly depend on the resource scheduling service of the service and storage layer. The system
administrators only need to assign the tasks, and then wait and confirm the returning execution results.
The specific operation of software resources is processed by the resource scheduling service.

4. Key Technologies of the Resource Service Model

The resource service model based on TC focuses on providing the unified resources storage,
management and access service for various heterogeneous industrial IoT devices. Generally, all of
the resources in the service and storage layer are organized and stored in the form of virtual disk.
Then, the collection and sensing devices utilize appropriate methods to access these remote resources.
Therefore, the key technologies include virtual disk storage model, structure and data access method.

4.1. The Virtual Disk Storage Model in the Service & Storage Layer

The ubiquitous sensors, collection, and other devices involved in the industrial IoT systems can
generate data rapidly so that the volume of the data is very large and can increase rapidly. In addition,
various operating systems of sensors and collection devices need to be stored and managed at the
service and storage layer. Thus, a data storage model with the ability of efficiently storing and

Sensors 2018, 18, 981 11 of 22

managing massive industrial IoT data is required in the layer. In the TC pattern, all the resources are
organized and stored on the service and storage layer in the form of virtual disk (Vdisk) data. Thus,
a multi-layer and chained model for Vdisk storage is achieved. Based on the level of sharing degree,
data resources in Vdisk are divided into three categories:

1. System shared resources. This type contains the data that belong to or are related to the operating
system, including various supporting software and managing tools, which owns the highest
sharing degree and is available for all users. The image constructed with this type of resource is
called system virtual disk image (S_VDI).

2. Application-group resources. All the data related to the application software is categorized as this
type. Applications with similar properties would be classified as the same group. Those data are
shared by users of the same group and the corresponding image is called a group virtual disk
image (G_VDI).

3. User-customized resources. This mainly means that the data belong to a certain user, which
normally includes user private files and preference information of application. The data sharing
degree is the lowest and are only accessible for the owner. The corresponding image is called a
user virtual disk image (U_VDI).

As Figure 6 shows, the top level of the tree is the system virtual disk. It is the highest sharing
level, where the data are available for each terminal user. The group virtual disk is the second level of
the tree, where the data are shared in the same user group. The bottom of the tree is the user virtual
disk, where little allocated storage space is required for upper level data editing, and the remaining

e T gy

space is for users’ private data.

| cl:emn + client $ clientk
Write block 9 |
Read bIDck 8,9 | |
A I j ' I
ROW combine Data service middleware combine

L .
Read block 9 | [

u_vDI vuwvow luvor

[o] ol N Lzl os[ool [o of]~
el el tel ol :

Bitmap:010110101000 \ Bitmap:100110011000 Bitmap:01000011011
G_VDI ™., 5 " G_VDI

L |b| Idnazm\ |f|gslhg| e

Aq B C3 Dy Es Fe

Gy Hg) J0 Ky ho

S_VDI

Figure 6. The Vdisk storage model and accessing mechanism.

In such a Vdisk data storage model, the entire data storage and access mechanisms are transparent
to the user. From the user’s point of view, they own the "local disk" in an exclusive way, which contains
the operating system, applications and private data. Actually, the "local disk" is divided into multiple
parts on the server side. S_VDI and G_VDI are multi-user sharing images, while only U_VDI stores
the exclusive private data for users.

As the core component of the service and storage layer, the data service middleware is mainly
responsible for receiving and processing I/O requests from the collection device, and calling the
underlying distributed virtual file system interface to help end-users achieve the actual data access.
Itis composed of the receiving and classifying requests, authenticating, scheduling, hierarchical
caching, coding/decoding, and data response modules. Among them, the receiving and classifying
requests module is in charge of receiving data requests from the terminal and dividing them into

Sensors 2018, 18, 981 12 of 22

different scheduling queues; the authenticating module is mainly used to determine the legitimacy of
the access connection and request method that is to be sent to the server; the scheduling module needs
to ensure the reliability of the service when many terminals are connected to the platform at the same
time; the primary responsibility of the hierarchical caching module is to place the data blocks that are
accessed frequently in the server cache, thus speeding up data access; the coding/decoding module
takes charge of unifying the data format, while ensuring the security of data transmission; and the
data response module is responsible for responding to all data requests from terminals.

4.2. Virtual Disk Structure for the Service & Storage Layer

Although the Vdisk storage model in transparent computing could solve the problem of
consistency of multi-user Vdisk shared data, a certain suitable Vdisk storage structure is necessary
to support the model to achieve high efficiency of accessing and sharing in this computing system.
This paper presents a bitmap-based [41] Vdisk structure technique to reach relatively high accessing
efficiency with low granularity for users.

This structure consists of Header, Bitmap, Q_table and data. The Header, Bitmap and Q_table
construct the metadata file, while the Data part constructs the data file. The metadata and data file
are able to store continuously or separately. In order to achieve faster location, based on the different
granularity, two types of sequences could be obtained.

Definition 1. Block Sequence (BS): BS = {B1, B2, ..., Bn}, it is constructed by continuous blocks with the
same size. The size of each block is B_unit. BS is the granularity of sharing and editing on the virtual disk.

Definition 2. Chunk Sequence (CS): CS = {C1,C2,...,Cn}, similar to BS, the CS consists of continuous
chunk with the same size and each chunk is a BS with the fixed length, C; = {B1,B2,...,Bn}. Dividing
granularity of CS is C_unit, which is the basic unit of data searching.

The virtual disk storage structure is shown as Figure 7. The header is located at the start of
the virtual disk, which records the fundamental information of the whole virtual disk. Its member
variables and description are shown in Table 2.

TveE

i F_PRT

{ SIZE

| M OFFSET
i Q OFFSET
| D_OFFSET

//,,,,—""7 B UNIT
/\ Header i

| CUNIT

Header

Bitmap Bitmap 4< 000. .. 01001000000000. . . 00001

Qtable Q_table

Data.

Data

{2 68 74 31 D3 D2 A 5C €9 ;
{43 59 B8 48 38 95 B4 FF BA (3 |

Figure 7. The Vdisk storage structure.

Sensors 2018, 18, 981 13 of 22

Table 2. The member variables of the header.

Member Description

TYPE 64-bit integer to uniquely identify a certain
virtual disk node to distinguish with others

F_PTR A pointer to the father node image, when
pointing to the father node, this node could
share data in the father image and only stores
the editing part of the father node image.
This property of system type node is null.

SIZE It indicates size of image node, which is equal
to the total size that the bitmap could cover.
The unit is bytes.

M_OFFSET It represents the offset of Bitmap region from
the start position, the Bitmap follows the Head,
while the size of Head is fixed; hence, this value
should also be fixed.

Q_OFFSET It records the offset of Q_table part from
image start, which could help to locate the
Q_table faster.

D_OFFSET It indicates the offset of Data part from the
image start.

B_UNIT The basic unit of dividing Block in BS.

C_UNIT The basic unit of dividing Chunk in CS,
C_unit = n X B_unit .

The Bitmap is used to record the location of edited blocks. When initializing the image node,
a space with size of Bitmap_size that can be calculated by Equation (1) would be allocated and
cleared as 0. Every bit in bitmap is corresponding to every block in the BS. After initialization, the
corresponding bit would be set to 1 if the father node block sequence is rewritten:

Bitmap_size = SIZE / B_unit. 1

Query table (Q_table) makes the index of the chunk map to the offset of the chunk in Data part,
so that the query speed is enhanced. The size of the table is changeable and adjusted dynamically
according to the quantity of rewritten data. Only rewritten chunks are recorded in the table. The data
part is utilized to store the edited data that are in its father node. Then, the edited with shared data can
be distinguished with those in the father node. The sequence of storage in the Data region of a certain
node should be the same with the sequence in the terminal virtual disk view.

4.3. The Data Access Method in the Sensing Layer and Aggregation layer

In our TC-based industrial IoT system model, there are two layers. One is the aggregation layer,
and the other is the sensing layer. From the perspective of an aggregation layer user, there is no
difference between Vdisks and local hard disks. However, Vdisk is just a virtualized logical disk
device in the collection terminal, and its actual data reside at the service and storage layer. Data in
Vdisk are fetched to the local for execution on demand. First, the aggregation layer devices need to
establish a network environment to connect with the transparent server in the service and storage layer.
Second, since there is no local operating system when the aggregation layer device is started, in order
to remotely start an OS from the TC server, and read the OS instructions from the Vdisk images, a set of
protocols are needed, termed as MRBP (Multi-OS Remote Booting Protocol). It extends the traditional
BIOS function by integrating a network driver. Finally, when the client OS runs after starting, the OS

Sensors 2018, 18, 981 14 of 22

can access the data (read or write) from the Vdisk as from a normal hard disk with the NSAP (Network
Service Access Protocol) [42].

Here, an example is given to illustrate the data access process of the aggregation layer user from
Vdisk images. In Figure 6, when user i tries to write data block 9, the request will be redirected to
U_VDI that is corresponding to the user by the data service middleware, and the bitmap index marks
the corresponding bit that has been changed. After this editing, once user i attempted to change data in
block 9, original data in block would be replaced directly and it is not necessary to change the bitmap.
Furthermore, when terminal user i requests data block 8 and 9 because the edited block 9 is stored
in U_VDI, the request will be redirected to corresponding U_VDI. Data block 8 is not marked in the
bitmaps of U_VDI and G_VDI, so the request is directed to S_VDI. Finally, all the required data blocks
would be recombined and returned to users.

To give more details, we give the Algorithm 1 to illustrate the process that read access to Vdisk
image from the aggregation layer. First of all, it is necessary to calculate the Block_index (the block
number), Chunk_index (the chunk number) and Start_no (the start number of the block in the owning
chunk) of the request data block according to the offset and length. They can be calculated by the
following equations:

Block_index = |of fset/B_unit]|, ()

Chunk_index = |of fset/C_unit|, 3)
_ of fset%C_unit

Start_no = L—B_unit | 4

Secondly, querying the bitmap of the user node to determine whether the block to be read is rewritten
by the user. If it has been rewritten, try to achieve this access through the caching mechanism. If the
block has not been rewritten, query the bitmap of its parent node. If the block to be read is rewritten in
the parent node, read the block from the data area. Otherwise, read the block from the data area of
top-level node. Finally, if the data block requested this time has been read completely, then merge the
content that has been read.

Sensors 2018, 18, 981 15 of 22

Algorithm 1: Algorithm for reading blocks of Vdisk at aggregation layer.

Input

Vdisk Id: vid;

Block offset to read: of f;

Block length to read: len;
Output:

The data to be read: D{0..n —1};

1 initialize D{0..n — 1};
2 fori = 0tolen do
3 Calculate the Block_index and Chunk_index of Block‘;{ l{ set according to the offset and
length;
4 Calculate the Start_no of Blockfér L{ 5S¢+ in the associated chunk;
5 Query the bitmap of the user;
if the block to be read is rewritten then
Look up for the block in local cache;
if find in the cache then
D[i] = BlockZ{L{SEHI;
else
Fetch Block from the remote server;
Update the local cache;
else
for each parent node of the current access node do
Query the bitmap of the parent node;
if the block to be read is rewritten in the parent node then
Read the block from the Data area;
break;
end
end
if the data has all been read then
Merge the content of read;
else
goto the step 3;

6 end

On the other hand, for the sensing layer devices data access, the IoT OS and its APPs that they
need are stored as the private data at the aggregation layer. Therefore, an MRBP protocol is needed
to be integrated into the bootstrap of the IoT OS. However, unlike the aggregation layer devices,
the sensing layer devices are responsible for sensing and gathering information, and then transmitting
them to the aggregation layer through the IoT network protocol. Fortunately, the information can
be transferred to the aggregation layer with the lightweight network protocol that IoT supports, and
then stored into the service and storage layer through the Vdisk remote storage mechanism of the
aggregation layer.

According to the above idea, we also proposed a general solution for the remote booting and
management of the lightweight IoT OS correspondingly. The IoT OS images are distributed on remote
servers, while the bootloader of the IoT terminal device specifies the initial URI (Uniform Resource
Identifier) with the corresponding OSs image loading information. After the network configuration is
initialized, the bootloader obtains the corresponding remote server IP address according to the initial
URI domain name resolution, establishes a TCP connection with the remote server, and then sends a

Sensors 2018, 18, 981 16 of 22

network service request (such as HTTP, HTTPS, FTTP, etc.) to load the OS image. If the desired image
does not exist on the server, the service request is redirected to the nearest server node, and so on, until
the image is found. Finally, the initial URI in the boot program is replaced by the URI specified by the
latest redirected message.

5. Implementation and Experimental Evaluation

We constructed a prototype system that implements the TC-based resource service model for
industrial IoT. For simplicity, it is named TCIIoT. We first give the qualitative evaluation for the
proposed resource service model. Compared with the general Cloud-based IoT platform, our model
has some advantages in the following aspects. Firstly, the model not only focuses on data Cloudization,
but also emphasizes the Cloudization of software resources, especially the operating system resources.
Hence, it improves the manageability of the software resources for the various IoT devices. Secondly,
benefiting from the decoupling between physical device and OSs, heterogeneous IoT devices can
support the execution of a variety of OSs, thus the scalability of IoT devices are enhanced. Thirdly,
due to the separation of storage and computing, there is no need to install any OSs and APPs on IoT
devices, so a large number of system deployment and maintenance costs are reduced. Finally, owing to
the stream execution of the program on the IoT device, it is difficult for the malicious program to reside
on the device, even if the system collapses, it can be quickly restored. As a result, the reliability and
security of the IoT device are greatly improved. Next, we will introduce the details of implementation
procedure hierarchically, and evaluate the system performance and compare it to the others simply
with several experiments. We also analyze and discuss the evaluation results and their impact on the
future industrial IoT in detail.

5.1. IoT OS Remote Booting in the Sensing Layer

In this section, we focus on the remotely booting IoT OS that is designed for low-power
and resource-constrained loT devices and applications from the aggregation layer for streaming
execution. The IoT OS we adopted is Zephyr [28], which is an open source IoT real-time operation
system developed by the Linux Foundation. The Zephyr kernel only requires at least 8 KB memory
and provides micro-kernels, even nano-kernel mechanisms. More importantly, Zephyr provides
connectivity protocols optimized for low powered, small memory footprint devices, where Bluetooth
and WiFi as well as 802.15.4 has been supported. In the future, more standards like 6Lowpan, CoAP,
IPv6 and NFC (Near Field Communication) will be supported.

The hardware platform applied here is an x86 mobile device, Minnow Board Max integrating an
Intel Atom E3800 processor, which is used to simulate an intelligent terminal node of the industrial
IoT. The network bandwidth of the experimental environment is 100 Mbps. The size of the Zephyr
microkernel after the compilation is 18 KB. Zephyr can be locally booted by grub2, but grub2 can not be
run on such a mobile platform and support remote booting. Therefore, we first build a HTTP server in
the OS of aggregation layer devices, where the Zephyr kernel and APPs are stored. Then, a new entry
is set up in the grub2, where essential remote booting configurations and method code are written.
Finally, we compile the new grub2 to UEFI boot file. We tested the performance of Zephyr remote boot
performance with our method, including the booting time and the consumption of bandwidth. Each
test was repeated five times, and these averages were finally obtained. The results are shown in Table 3.
The results indicate that the remote booting time of the Zephyr is similar to the local launch, and the
bandwidth consumption is also at a lower level, and approaches linear growth with the increase in the
number of devices. Furthermore, such a solution that can remotely boot and load the IoT OS using a
transparent computing idea makes the manageability, security and reliability of IoT terminal devices
effectively improved.

Sensors 2018, 18, 981 17 of 22

Table 3. Zephyr remote booting performance.

Booting Peak Average

Time Bandwidth Bandwidth
One client 1.26s 717 KB/s 364 KB/s
Three clients 1.30s 1432 KB/s 748 KB/s
Five clients 1.34s 2043 KB/s 1345 KB/s

5.2. The Implementation and Performance of the Aggregation Layer

The aggregation layer supports both Windows 7 and CentOS 6.5. In our implementation,
the MRBP is based on the Intel gPXE protocol for sending remote booting requests. We specifically
designed and developed the wireless network driver for the mobile Internet application environment,
making the mobile collection devices also remotely load resources. The implementation of NSAP
is based on the iSCSI (Internet Small Computer System Interface) protocol. Two different Vdisk
drivers for the Windows and Linux are implemented as an iSCSI port device driver at the block
level, respectively.

In order to test the performance of the aggregation layer, we try to load the CentOS and Windows 7
in succession to the collection devices, and take the user experience (latency) as a measure. Without loss
of generality, we use PC and PAD as an aggregation layer device in this experiment. The PC is an Intel
Pentium 2.93 GHz machine, each with 2 GB DDR2 and a 1000 Mbps onboard network card. The PAD
is an Intel Bay Trail SoC (System on Chip) machine, each with 2 GB DDR2 and 1000 Mbps onboard
network card. Their hardware configuration is very similar to the collection device in industrial IoT.

Figure 8 shows that we are able to load and boot Linux (9.8 GB) and Windows (15.5 GB) in the
aggregation layer. Furthermore, we compared the OS booting time of local boot and remote boot under
both the wired and wireless networks. Under the wired connection is close to that of local boot with
the time of 49.6 s (Linux) and 68.4 s (Windows). While being under wireless conditions, the latency
is more than two times the wired connection with the time of 101.9 s (Linux) and 139.5 s (Windows),
yet still acceptable. However, it is worth mentioning that all of these tests are in the absence of any
cache, and the results are the average of five trials. We also tested the performance with the same
devices that added a cache mechanism. The results show that both the Linux and Windows of booting
time are between 70 and 80 s, which is a user experience similar to an interaction with a local machine.
Actually, most of the collection devices in industrial IoT have some cache functions.

150

100

Latency (s)

Boot Linux Boot Windows
Local boot

[0 Remote boot(wired connection)

[0 Remote boot(wireless connection)

Figure 8. Multi-OS remote booting on-demand in aggregation layer.

Table 4 illustrates the performance of executing some applications or operations in Linux and
Windows, respectively. We compared the latency of a local device and collection device in our proposed
model under the wired environment in the following three aspects: file coping, file downloading, and
application launching. The file copying is carried out among different logical disks under the same user
view. Files can be downloaded from a FTP server in the LAN. As for the application launching, it is

Sensors 2018, 18, 981 18 of 22

processed by loading applications from the server to the terminal device, so that users can execute the
applications on the terminals. The results show that the response time of the two devices as executing
the operation or application that required data is relatively small. However, if the amount of data that
the operation or application required is larger, then the response time of the collection device is not
that ideal, but it is still acceptable. This is because the response time mainly depends on the network
condition in such a scenario. The network conditions are not a bottleneck for data transmission in the
case of a small amount of data requests, such as copying a 10 MB file and launching a Web browser.
Consequently, the performance is determined by the disk throughput. In general, the throughput of
the collection device is greater than that of the local device, so the performance on the collection device
is also better.

Table 4. Operation latency in Linux and Windows (s).

Overation Local Device Collection Device
p Linux Windows Linux Windows
Copy a file
10M 1.21 1.76 0.94 1.21
50 M 2.33 2.95 2.79 3.97
Download a file
10 M 9.34 10.03 10.22 11.20
50 M 53.17 58.36 62.36 68.89
Launch an APP
Web browser 1.89 1.93 1.65 1.71
Disk detection tool 2.78 3.14 2.97 457

5.3. The Performance Analysis for the Service & the Storage Layer

The primary function of the service and storage layer is to store and manage virtual disk data for
each user. The virtual disk storage model is implemented in the Java language and deployed in the
Linux of the server. The reading and writing performance of the virtual disk is an important index to
measure the performance of the service and storage layer.

In this test, through the collection device to read and write the virtual disk file data with different
request sizes, get their throughput, and compared with the local disk under the same experimental
conditions. The server machine is configured with an Intel Xeon(R) 2.5 GHz CPU, 64 GB Dual DDR?,
15,000 rpm SATA hard disk, and 1 GB onboard network card. The collection device is Lenovo E49AL
(Beijing, China) with 4800 rpm hard disk and CentOS. There is no use of PAD to do the test because we
found that under the environment of wireless network PAD network is not stable, it will become the
bottleneck of the virtual disk read and write speed, thus affecting the real virtual disk read and write
speed results.

CrystalDiskMark tool is used in the test, and test data size is 500 M. The results shown in Figure 9
are the average of five trials. Because the standard deviations are small (less than 5 %), they are not
plotted here. We also compared the throughput with that of a regular PC’s local hard disk. As seen
from Figure 9a, for read access, the Vdisk throughput in our model increases with request size and
is higher than the local disk, but decreasing when the request size is large than 64 KB, which is the
maximum size delivered by one Vdisk driver. In addition, when the request size is larger, the network
communication dominates the latency, for that a large request size will cause several servicerequests.
Meanwhile, the cache module in our system is disabled in this experiment, but the caching of the
operating system on the server side can not be disabled. Because the operating system cache is a
memory cache, and its size is small, it plays a more important role when there is a small amount of
request data. As a result, the Vdisk performance is higher than the local disk when the request size
is small. The write access shown in Figure 9b is similar to that of the read access, but decreasing at
the size of 32 KB, which is also the maximum size that can be delivered. It should be noted that the

Sensors 2018, 18, 981 19 of 22

random write throughput was better than random read throughput when the request size was greater
than 8 KB, and this may benefit from the write-behind mechanism that can return the request response
immediately without carrying the real disk operations.

—o—Vdisk local disk —8—Vdisk local disk
35 5
45
3
225 L35 / N\
[-)) N
g, 2 3 rd \
2 225 / A—gﬁ—
®15 R rd
o
£ 1 g 15 -
05
05 - -
0 ; ‘ ‘ ‘ ‘ ‘ ‘) 0 : : : : ‘
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Request Size(KB) Request Size(KB)
(a) Random read throughput (b) Random write throughput

Figure 9. The performance results on random read throughput (a) and write throughput (b) of the
service and storage layer.

On the other hand, the disk usage on TCIIoT and the local disk were evaluated and analyzed,
respectively. In this experiment, we used the CentOS image with the size of 9.8 G, which includes
office and entertainment groups, and added five users to each group. With the increase of terminals,
the results of disk usage are shown in Table 5. The occupancy space on the local disk almost linearly
grows as the number of terminals increases, while the disk space of TCIIoT increases very slowly due
to the sharing of operating systems and applications of groups by multiple terminals. Meanwhile,
we used five mobile terminals and PC to test the data reading/writing performance of the service
and storage layer. By reading and writing files to the service and storage layer with different sizes,
we tested the speed of data reading and writing under different terminal types with the CentOS’s
own disk tool dd, and compared it with the data access method using sockets. The average of the
five experiments is shown in Table 6. Overall, the performance of the access method with sockets
is a little better than that of ITCIIoT, but the difference is very small. The performance of the PC
terminal is better than the mobile terminal because of better network conditions. In addition, in all
cases, the speed of writing is higher than that of reading due to the write-behind mechanism. However,
as the amount of written data increases, the writing speed decreases obviously. The reason is that there
are not enough caching spaces and the writing request can not be responded in time.

Table 5. The disk usage comparison with the increasing of terminals (GB).

Storage Method One Terminal Two Terminals Three Terminals Five Terminals Ten Terminals

TCIloT 12.5 14.1 16.2 19.8 253
Local disk 9.8 22.6 334 57.2 116.3

Table 6. The speed of reading and writing results (MB/S).

50 M 500 M 1000 M
Read Write Read Write Read Write

Mobile terminal 7.2 13.0 7.0 12.2 5.8 8.2
PC terminal 10.3 20.1 13.0 18.4 12.3 13.6
Mobile terminal 7.6 13.8 7.8 129 6.3 9.4
PC terminal 115 214 13.6 19.2 13.1 14.3

Request Method Terminal Type

TCIloT

Socket

Sensors 2018, 18, 981 20 of 22

6. Conclusions

As exploratory research, this paper introduced a new system model for the future industrial IoT
application based on transparent computing. In this model, sensing devices had no need to store novel
IoT OS, and they can boot multiple OSs and applications on demand by the decoupling hardware and
OSs. The aggregation layer provided centralized management for OSs, applications, and the sensing
data, and transferred them to the service and storage layer for storing, which gave a new view to
addressing the challenges faced by the IoT development.

Aimed to support numerous devices under the new system model, the model took a centralized
resource management method to manage and maintain all resources of the collection devices;
in addition, a distributed architecture was used to store these resources. As the number of devices
increases, the system could increase the number of servers in a linear manner to support the expected
scale of IoT applications. As from the experimental results, the network bandwidth is the major factor
limiting the number of devices mounted to one server. This paper discussed the maintenance cost
of collection devices with regard to the number devices mounted on the server. We also compared
the cost to the average expense of each single collection device in the case of the Fankou Six system.
We demonstrated the advantage of the new system model of the industrial IoT in saving the expenses
as well as concentrating the resources. However, when integrating the transparent computing into
industrial IoT, we are still facing several new challenges caused by the network environment and
resource-constrained terminal devices. Firstly, frequent data requests and transmissions between
the client and server make TC very sensitive to the network environment, while the IoT wireless
communication is unstable, speed-limited and costly. Thus, it could have significantly adverse impacts
in terms of guaranteeing the user experience. Furthermore, TC suffers from inadequate capacity of
data analysis and processing. Finally, because the computation task is performed on the IoT terminal
device, it is likely to be more energy-consuming. To this end, future work includes building a suitable
caching mechanism for our system model, try to apply big data analysis and processing technology of
Cloud computing into TC for industrial IoT and partition the computation tasks on the IoT devices
and edge servers to save the energy of IoT devices.

Acknowledgments: This work was supported by the International Science and Technology Cooperation Program
of China under Grant No. 2013DFB10070, the Fundamental Research Funds for the Central Universities of Central
South University under Grant No. 2016zzts059, National Major Projects of China under Grant 2017Z2X06002005,
and the Scientific research project of Hunan University of Humanities, Science and Technology No. 2016QN19.

Author Contributions: The study was carried out in collaboration between all authors. Weimin Li, Bin Wang and
Jinfang Sheng designed the research topic and helped with the technical aspects of system design. Weimin Li,
Ke Dong, Zitong Li and Yixiang Hu carried out the implementation, collected, managed and ran different analyses
on the related data, and wrote the manuscript and examined the experimental data. All authors agreed to
submission of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun.
2014, 54, 1-31.

2. Gubbij, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,

and future directions. Future Gener. Comput. Syst. 2013, 29, 1645-1660.

3. Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014,
10, 2233-2243.

4. Fortino, G.; Savaglio, C.; Zhou, M. Toward opportunistic services for the industrial Internet of Things.
In Proceedings of the 2017 13th IEEE Conference on Automation Science and Engineering, Xi’an, China,
20-23 August 2017; pp. 825-830.

5. Dou, R.; Nan, G. Optimizing Sensor Network Coverage and Regional Connectivity in Industrial
IoT Systems. IEEE Syst. J. 2017, 11, 1-10.

Sensors 2018, 18, 981 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Diaz, M.; Martin, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of
things and Cloud computing. J. Netw. Comput. Appl. 2016, 67, 99-117.

Botta, A.; de Donato, W.; Persico, V.; Pescape, A. Integration of Cloud computing and Internet of Things:
A survey. Future Gener. Comput. Syst. 2016, 56, 684—700.

Aazam, M.; Khan, L; Alsaffar, A.A.; Huh, E.N. Cloud of Things: Integrating Internet of Things and Cloud
computing and the issues involved. In Proceedings of the 2014 11th International Bhurban Conference on
Applied Sciences and Technology, Islamabad, Pakistan, 14-18 January 2014; pp. 414-419.

Zhang, Y.; Zhou, Y. Transparent Computing: A New Paradigm for Pervasive Computing. In Proceedings
of the International Conference on Ubiquitous Intelligence and Computing, Banff, Canada,
2—4 September 2006; pp. 1-11.

Zhang, Y.; Guo, K.; Ren, J.; Zhou, Y.; Wang, J.; Chen,]J. Transparent Computing: A Promising Network
Computing Paradigm. Comput. Sci. Eng. 2017, 19, 7-20.

Hahm, O.; Baccelli, E.; Petersen, H.; Tsiftes, N. Operating Systems for Low-End Devices in the Internet of
Things: A Survey. IEEE Internet Things . 2016, 3, 720-734.

Frederix, I. Internet of Things and radio frequency identification in care taking, facts and privacy challenges.
In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology,
Information Theory and Aerospace & Electronic Systems Technology, Aalborg, Denmark, 17-20 May 2009;
pp- 319-323.

Chen, S.; Xu, H.; Liu, D.; Hu, B. A Vision of IoT: Applications, Challenges, and Opportunities with China
Perspective. IEEE Internet Things]. 2014, 1, 349-359.

Keoh, S.L.; Kumar, S.S.; Tschofenig, H. Securing the Internet of Things: A Standardization Perspective.
IEEE Internet Things]. 2014, 1, 265-275.

Kafle, V.P.; Fukushima, Y.; Harai, H. Internet of things standardization in ITU and prospective networking
technologies. IEEE Commun. Mag. 2016, 54, 43-49.

Jiang, L.; Xu, L.D.; Cai, H,; Jiang, Z.; Bu, F; Xu, B. An IoT-Oriented Data Storage Framework in Cloud
Computing Platform. IEEE Trans. Ind. Inform. 2014, 10, 1443-1451.

Christophe, B.; Boussard, M.; Lu, M.; Pastor, A.; Toubiana, V. The web of things vision: Things as a service
and interaction patterns. Bell Labs Tech. |. 2011, 16, 55-61.

Zaslavsky, A.B.; Perera, C.; Georgakopoulos, D. Sensing as a Service and Big Data. In Proceedings of the
International Conference on Advances in Cloud Computing (ACC), Bangalore, India, 26-28 July 2012.
Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Integration of agent-based and Cloud Computing for the
smart objects-oriented IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21-23 May 2014; pp. 493-498.
Bonomi, F; Milito, R.A.; Zhu,]J.; Addepalli, S. Fog computing and its role in the internet of things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; pp. 13-16.

Perera, C.; Zaslavsky, A.B.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of
Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 414-454.

Moramora, H.; Gilartiglesias, V.; Gil, D.; Sirventllamas, A. A Computational Architecture Based on RFID
Sensors for Traceability in Smart Cities. Sensors 2015, 15, 13591-13626.

Mora, H.; Gilartiglesias, V.; Pérezdel, HR.; Andtjarmontoya, M.D. A Comprehensive System for
Monitoring Urban Accessibility in Smart Cities. Sensors 2017, 17, 1834.

ARM. ARM mbed Developer. Available online: https:/ /developer.mbed.org/ (accessed on 20 June 2017).
Baccelli, E.; Hahm, O.; Gues, M.; Wahlisch, M.; Schmidt, T. RIOT OS: Towards an OS for the Internet of
Things. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops, Turin,
Italy, 14-19 April 2013; pp. 79-80.

Microsoft. Windows 10 for the Internet of Your Things. Available online: https://www.microsoft.com/en-
us/WindowsForBusiness/windows-iot (accessed on 20 June 2017).

Google. Project Brillo. Available online: https://developers.google.com/brillo/ (accessed on 20 June 2017).
Foundation, L. Zephyr. Available online: https:/ /www.zephyrproject.org/ (accessed on 20 June 2017).
Zhang, Y.; Zhou, Y. Transparent computing: Spatio-temporal extension on von Neumann architecture for
Cloud services. Tsinghua Sci. Technol. 2013, 18, 10-21.

Zhang, Y. Transparence computing: Concept, architecture and example. Acta Electron. Sin. 2004, 32, 169-174.

https://developer.mbed.org/
https://www.microsoft.com/en-us/WindowsForBusiness/windows-iot
https://www.microsoft.com/en-us/WindowsForBusiness/windows-iot
https://developers.google.com/brillo/
https://www.zephyrproject.org/

Sensors 2018, 18, 981 22 of 22

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Zhang, Y.; Zhou, Y. 4VP: A Novel Meta OS Approach for Streaming Programs in Ubiquitous Computing.
In Proceedings of the 21st International Conference on Advanced Information Networking and
Applications, Niagara Falls, Canada, 21-23 May 2007; pp. 394—403.

Zhang, Y.; Zhou, Y. TransOS: a transparent computing-based operating system for the Cloud. Int. J.
Cloud Comput. 2012, 1, 287-301.

Liu, J.; Zhou, Y.; Zhang, D. TranSim: A Simulation Framework for Cache-Enabled Transparent Computing
Systems. IEEE Trans. Comput. 2016, 65, 3171-3183.

Zhou, Y.;; Zhang, Y.; Liu, H.; Xiong, N.; Vasilakos, A.V. A Bare-Metal and Asymmetric Partitioning
Approach to Client Virtualization. IEEE Trans. Serv. Comput. 2014, 7, 40-53.

Ming, W. Analysis and a case study of transparent computing implementation with UEFL Int.]. Cloud Comput.
2012, 1, 312-328.

Guo, K;; Tang, Y.; Ma, J.; Zhang, Y. Optimized dependent file fetch middleware in transparent computing
platform. Future Gener. Comput. Syst. 2017, 74, 199-207.

Ren, J.; Guo, H.; Xu, C.; Zhang, Y. Serving at the Edge: A Scalable IoT Architecture Based on Transparent
Computing. IEEE Netw. 2017, 31, 96-105.

Yaqoob, I.; Ahmed, E.; Hashem, LA.T.; Gani, A.; Imran, M.; Guizani, M. Internet of Things Architecture:
Recent Advances, Taxonomy, Requirements, and Open Challenges. IEEE Wirel. Commun. 2017, 24, 10-16.
Nitti, M.; Pilloni, V.; Giusto, D.D.; Popescu, V. IoT Architecture for a Sustainable Tourism Application in a
Smart City Environment. Mob. Inf. Syst. 2017, 2017, 9201640.

Pisching, M.A.; Junqueira, F.; dos Santos Filho, D.].; Miyagi, PE. An architecture based on IoT and CPS to
organize and locate services. In Proceedings of the 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation, Berlin, Germany, 6-9 September 2016; pp. 1-4.

Ayres,].; Flannick, J.; Gehrke, J.; Yiu, T. Sequential PAttern mining using a bitmap representation.
In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Edmonton, Canada, 23-26 July 2002; pp. 429-435.

Li, S; Zhou, Y; Zhang, Y. NSAP+: Supporting Transparent Computing Applications with a
Service-Oriented Protocol. Comput. Sci. Eng. 2017, 19, 21-28.

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Architecture for the Resource Service Model of Industrial IoT Based on TC
	A Case Study of Six Systems
	The Architecture
	Sensing Layer and Aggregation Layer
	Service and Storage Layer
	Interface & Management Layer

	Key Technologies of the Resource Service Model
	The Virtual Disk Storage Model in the Service & Storage Layer
	Virtual Disk Structure for the Service & Storage Layer
	The Data Access Method in the Sensing Layer and Aggregation layer

	Implementation and Experimental Evaluation
	IoT OS Remote Booting in the Sensing Layer
	The Implementation and Performance of the Aggregation Layer
	The Performance Analysis for the Service & the Storage Layer

	Conclusions
	References

