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Abstract: A probabilistic method to remove the random telegraph signal (RTS) noise and to
increase the signal level is proposed, and was verified by simulation based on measured real sensor
noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-
semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they
still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes
a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast
and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera,
the RTS noise is removed by the maximum likelihood estimation where noise characteristics are
modeled by the probability density distribution. In the proposed method, the photon shot noise is also
relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures
are considered. An extremely low-light condition that the maximum number of electrons per aperture
was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging
(our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively.
The selective averaging, which can remove RTS noise, was worse than the simple averaging because
it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results
showed that the proposed method provided the best noise reduction performance.

Keywords: semi-photon-counting-level CMOS image sensor; random telegraph signal noise; noise
reduction; multi-aperture camera; maximum likelihood estimation

1. Introduction

Low light imaging is required in various fields, such as astronomical observation [1],
bio-imaging [2], and surveillance [3,4], where high sensitivity cameras are used. Electro-multiplying
charge coupled device (EM-CCD) [5,6], high-gain avalanche rushing amorphous photoconductor
(HARP) [7], and single photon avalanche diode (SPAD) [8] are examples of well-known high sensitivity
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image sensors. However, HARP requires a high voltage of several hundred to thousand volts, and
EM-CCD and SPAD also require several volts to several tens of volts for avalanche multiplication [6].
In recent years, ultra-low-noise complementary-metal-oxide-semiconductor (CMOS) image sensors
(CISs) with a read noise of less than 0.3 e−RMS based on a high conversion gain floating diffusion
have emerged [9–13] and realized semi-photon-counting-level (SPCL) imaging without avalanche
amplification that causes excess noise. Unlike CCD image sensors, the source follower amplifier of
each pixel in the CIS generates noise with different statistical characteristics. The biggest noise source
in the CMOS pixel is random telegraph signal (RTS) noise that is mainly generated by traps of the
source follower transistor [14]. It is known that photodiode dark current [15–17] and transfer gate [18]
also generate RTS noise. RTS noise of the CMOS pixel has become of significant concern because pixels
of a certain ratio suffer from this kind of noise [19–21]. RTS noise of the source follower is caused
by the temporal fluctuation of the threshold voltage ∆Vth due to traps around the channel, and its
magnitude is in the order of mV [22,23]. Capture and emission of carriers at the trap in the Si-SiO2

interface modulates the electric potential of the channel, evoking ∆Vth. This capture and emission
process is probabilistic and has a large time constant. Therefore, RTS noise is hardly reduced by the
correlated double sampling (CDS) [24]. ∆Vth is expressed by.

∆Vth =
q

L·W·Cox
. (1)

q is the amount of the charges captured or released, L and W are the gate length and width of MOS
transistor, respectively. Cox is the capacitance of the gate oxide. In general, in order to reduce the
thermal noise of pixel, it is necessary to reduce L and the gate area (=L ·W) for higher transconductance
and the conversion gain. On the other hand, Equation (1) suggests that RTS noise can become more
serious in the high conversion gain pixels.

In the previous work, we have proposed what we call selective averaging [25,26]. This method
uses a multi-aperture (MA) camera or a cameras array [27–29]. One pixel of a synthesized image is
composed of multiple pixels from different image sensors, and the pixels that generate RTS noise are
adaptively removed based on the amount of the calculated synthetic noise from the noise measured in
the dark condition. Note that the synthetic sensor noise is evaluated pixel by pixel. Application of this
method to color imaging [26] and disparity correction with noisy multi-aperture images [30] has been
studied. Although it has been proven that the selective averaging method effectively removed RTS
noise, the photon shot noise did not decrease efficiently because the number of pixels that were used
in reproduction decreased.

In this paper, we propose a noise reduction method based on maximum likelihood estimation [31,32]
with an MA camera composed of moderately fast compact imaging lenses and SPCL CISs. To our
knowledge, this is the first proposal to remove the RTS noise of SPCL CISs taking advantage of
redundancy of the MA camera without any prior of the image and sacrificing any information.
The proposed method is applicable to video images because noise reduction is performed frame by
frame. Note that one frame is composed of as many images as the apertures, which are simultaneously
captured. Firstly, sensor noise is modeled by a probability density function when considering Gaussian
noise, RTS noise, and photon shot noise. RTS noise is composed of several discrete levels, and the noise
state hops between those levels randomly with a long time constant. Because the MA camera provides
multiple pixel values for one pixel in a reproduced image, the RTS noise level can be estimated and
the noise is removed. In addition, no pixel value is ignored, unlike the selective averaging method.
Consequently, faster imaging optics is virtually realized by the synthetic aperture, and the F-number
of much less than unity, which is very difficult to realize with a single-aperture lens, becomes possible.
This MA scheme is advantageous in terms of productivity and cost when compared with an expected
single-aperture counterpart.

This paper is organized as follows. In Section 2, the MA camera system is explained briefly. Then,
probabilistic noise reduction, which is a method based on noise modeling of SPCL CISs and maximum
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likelihood estimation is mentioned. In Section 3, the proposed method is verified by simulation
and compared with conventional methods. In Section 4, several issues of the proposed method are
discussed. Finally, Section 5 concludes this paper.

2. Probabilistic RTS Noise Reduction with Multi-Aperture Camera

2.1. Multi-Aperture Camera

Even if CMOS image sensors had no read noise, they still suffer from photon shot noise in
extremely low light conditions because the number of incident photons is often uncontrollable. Charge
amplifying image sensors, such as an EM-CCD, can increase the number of photoelectrons. However,
it cannot increase the signal-to-noise ratio that is determined by the photon shot noise. In order to
reduce the photon shot noise, it is necessary to increase the number of incident photons, which is
possible only by collecting more photons with a faster lens. Although the F-number of most lenses
is around or more than unity, it must be much smaller, for example, 0.5. However, such ultra-fast
lenses could be huge and heavy due to a huge exit pupil and many lens components to correct huge
aberrations [33]. A new scheme that realizes an ultra-fast imaging system with smaller optics is desired.

The multi-aperture camera can be an option for the above purpose, which is composed of M sets
of an imaging lens and an image sensor (Figure 1). The pair of an image sensor and a lens is called
an aperture. In the MA system, each aperture observes the same object to obtain redundant images.
By summing up M images, the signal level becomes M times higher. The synthetic F-number, FM, of
the MA camera is given by the following equation.

FM = F0/
√

M, (2)

where F0 is the F-number of the unit lens. Small FM is achieved with cost-effective, compact,
moderately fast lenses. In the past papers, the functionalities of the MA camera have been explored,
such as three-dimensional shape measurement from disparity [30], digital refocusing after image
acquisition [34], and so on. However, the capability of noise reduction by taking advantage of the
redundancy of the MA camera is pursued in this paper.

Figure 1. Structure of a multi-aperture camera.

We have proposed a selective averaging method, in which the pixels that generate RTS noise are
adaptively excluded by minimizing the synthesized noise based on the standard deviations measured
in darkness before capturing images. The synthesized noise is represented by

m̂ = argmin
m

S2
m, (3)
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S2
m =

1
m2

m

∑
i=1

σ2
i (1 ≤ m ≤ M), (4)

where S2
m is a combination variance, σ2

i is an incrementally sorted variance, m is the number of the
selected apertures, and M is the total number of apertures. Normally, as m increases, S2

m+1 becomes
smaller than S2

m due to the factor of 1/m2. However, if some pixels have RTS noise, S2
m+1 can be greater

than S2
m. Thus, the pixels with RTS noise are automatically removed.

Although the selective averaging is able to remove the RTS noise, the improvement of photon
shot noise is sacrificed because a part of pixel values are ignored in averaging. This problem becomes
significant, especially when only a few photons are incident in a pixel and ultra-low-noise SPCL CISs
whose read noise is almost negligible are utilized.

2.2. Noise Modeling of Semi-Photon-Counting-Level Low Noise CMOS Image Sensors

To overcome the above problem, we propose a noise reduction method using maximum likelihood
estimation with an MA camera and SPCL CISs [35]. This method is suitable for movies because noise
reduction is performed frame by frame. In addition, no prior of the image is assumed. Only modeling
of the statistical noise characteristics of the image sensor is necessary. The basic idea is based on the fact
that the number of the RTS noise states is limited, for example, 2–5, and those states are measurable
before image capturing. If the state of the RTS noise was deducible, the RTS noise could be removed
by subtracting its premeasured noise level. Note that, in the MA system, M pixel values are used to
reproduce one pixel value in a synthesized image. This redundancy provides the capability to deduce
the RTS noise level with a probabilistic estimation method.

Maximum likelihood estimation (MLE) is a classical statistical estimation method, which estimates
λ from the probability density function p(x(1), . . . , x(M)|λ). In the proposed method, the average
number of incident photons, λ, for one pixel in the reproduced image is estimated by MLE from M
pixel values

{
x(j)
}

that are obtained by the MA camera. MLE is performed in two steps. Step-1:
sensor noise for each pixel is modeled as a conditional probability density distribution p(x|λ) . Step-2:
For every pixel in the reproduced image, the likelihood function L(λ) is calculated and the optimal λ,
denoted by λ̂ that gives the maximum likelihood is sought. Here, the likelihood function L(λ) is the
product of probability density functions (PDFs), i.e., p(x(1)|λ) · · · p(x(M)|λ).

L(λ) =
M

∏
j=1

p
(

x(j)
∣∣∣λ), (5)

λ̂ = argmax
λ

L(λ). (6)

Let us consider the stochastic variables, nG, nRTS, and Ne, that correspond to the following noise
sources: (1) thermal noise, 1/f noise; and (2) RTS noise of the read circuits; and (3) electron shot noise
that was caused by the photogenerated electrons, respectively (Figure 2). The pixel value, x, which is
also a stochastic variable, is referred to the number of electrons in the floating diffusion of a pixel and
denoted by

x = nG + nRTS + Ne. (7)

Note that nG and nRTS are signed real numbers and Ne is an integer number (≥0). The PDF
of nG is modeled by a Gaussian distribution. The PDF of nRTS becomes weighted one or multiple
delta functions, which depict the amount and frequency of RTS noise. Typically, Ne obeys a Poisson
distribution. Because these stochastic variables are independent and linearly combined, a conditional
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PDF, p
(

x(j)|λ
)

, in terms of the measured pixel value x(j) of an aperture-j for an average number
electrons, λ (≥0), is given by the convolution of the three PDFs, as follows:

p
(

x(j)
∣∣∣λ) =

N

∑
n=1

K

∑
k=0

αn
(j)·λ

k

k!
exp(−λ)· 1√

2πσ(j)
exp

−
(

x(j) − k− rn
(j)
)2

(2σ(j))
2

. (8)

Here, n and k are integer numbers, and λ is a non-negative real number. The standard deviation
of the Gaussian distribution is σ(j). RTS noise is composed of one or multiple discrete levels. rn

(j)

and αn
(j) are the amount and ratio of the n-th RTS noise level in electron, and

{
α
(j)
n

∣∣∣n = 1, · · · , N
}

satisfies ∑N
n=1 α

(j)
n = 1 for each j. N is the maximum number of the RTS noise levels. The maximum

number of electrons considered is K. Note that Equation (8) satisfies the requirements for the PDF,∫ ∞
−∞ p

(
x(j)
∣∣∣λ)dx(j) = 1 for any λ (≥0).

Figure 2. Convolution of three noise components.

3. Verification by Simulation

The effectiveness of the proposed method was verified by simulation on MATLAB based on
measured real noise data. A 3 × 3-aperture camera with an SPCL CIS [12] was assumed. This CIS has
a high conversion gain of 220 µV/e−. In combination with correlated multiple sampling (CMS) [36],
extremely low read noise of 0.27 e−RMS was realized. Because the sensor output has a sign bit, negative
values that are due to the Gaussian noise and RTS noise of the read circuits are expressed. The sensor
was cooled at −10 degree Celsius to suppress dark current shot noise. The measured noise histogram
is shown in Figure 3, where RTS and RTS-like noises are included. In order to observe the RTS noise
more accurately, the histogram was formed from 5000 dark images. The noise histogram of each
pixel was also investigated. The percentage of the pixels without RTS noise, that gave a single peak
histogram, was 80.0%. Those for bimodal, trimodal, and tetramodal RTS noise were 18.75%, 1.22%,
and 0.03%, respectively. The number of peaks in the histogram was counted when the percentage of
the peak exceeded 1% of the primary peak in the evaluation.
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Figure 3. Measured noise histogram of semi-photon-counting-level CMOS image sensor.

Figure 4 shows a simulation flow of the proposed method, in which measured sensor noise (except
electron shot noise caused by dark current and photogenerated electrons) is used. The flow is composed
of two stages: (1) noise parameter extraction with dark images and (2) noise reduction of a captured
multi-aperture image. The number of effective pixels of the sensor was 31(horizontal) × 510(vertical).
Those pixels were reshaped to emulate 3 × 3 apertures, each of which was composed of 40 × 40 pixels.
In Step-1, we captured 5000 dark images, which included all kinds of image sensor noise, except for
photon shot noise and dark current shot noise. If there are dark current shot noise, multiple peaks
whose pitch is equal to one electron is observed. We confirmed that there were no such peaks, which
means that no dark current was observed. Because the RTS noise is much larger than one electron,
the RTS noise and dark current shot noise are distinguishable. After noise histogram was formed for
every pixel, it was fitted to Equation (8). Then, noise parameters, σ(j), { αn

(j), rn
(j)
}

were obtained for
each pixel. In Step-2, firstly, a set of M noisy images for a ground truth image was generated when
considering photon shot noise for the given maximum number of photons, which was generated
by MATLAB’s imnoise function, and the noise measured in Step-1. In this simulation, the quantum
efficiency was assumed to be 100%, namely, the number of incident photons was equal to that of the
photogenerated electrons. For every pixel in the reproduced image, M corresponding pixel values in
the generated images were picked up as

{
x(j)
}

(j = 1, ..., M). Then, λ̂ was found by MLE. The search of

λ̂ was performed by nonlinear optimization by a sequential quadratic programming method that was
prepared in MATLAB. An initial value was given by selective averaging. Figure 5 shows an example
of a fitted histogram for a trimodal pixel. Root mean square error (RMSE) was 0.004 e−RMS. The mean
value of RMSE for all of the pixels was 0.012 e−RMS, and peak to peak error was 0.063 e−RMS. Fitted
histograms sufficiently matched the measured noise histograms.

Firstly, the proposed method was applied to dark images where the true value of λ should
be 0. Figure 6a is an example of the likelihood function for pixels without RTS noise. In this case,
the estimated values by both MLE and simple averaging became very close to the true value. On the
other hand, the likelihood function for the pixels with RTS noise is shown in Figure 6b. In the
simple averaging, the estimated value significantly deviated from the true value. However, in MLE,
the estimated value was little affected by RTS noise.
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Figure 4. Simulation flow.

Figure 5. Comparison of fitted and measured noise histograms.

Figure 6. Examples of likelihood functions and estimated pixel values for cases: (a) without and (b)
with random telegraph signal (RTS) noise.
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Noise histograms for 5000 dark images are compared in Figure 7, and examples of the processed
images are shown in Figure 8. The pixel value is shown by pseudocolor to represent negative
values. Those results show that the proposed method is the best noise reduction scheme. In Figure 7,
the histogram of a single aperture, which is a reference without any noise reduction, shows the
largest peak noise and a long tail caused by RTS noise. Although the peak noise is reduced with the
simple averaging, RTS noise still exists. With the selective averaging, RTS noise is effectively removed.
However, only 5.94 apertures were selected in the selective averaging because quite a few pixels with
the RTS noise were excluded. Therefore, it is expected that photon shot noise is less reduced than in
the simple averaging, in which nine apertures are fully utilized. This problem will be discussed later.

Figure 7. Noise histograms in dark condition.

Figure 8. Reproduced dark images by (a) the proposed method; (b) selective averaging; and (c) simple
averaging; (d) Single aperture image (raw image without noise reduction).

In Figure 6a, the estimated pixel values for MLE and the simple averaging are 0 and 0.01 electrons,
respectively, in which the true value is 0 electrons. Thus, MLE gives exactly the same as the true
value, namely the error is zero, while it is known that simple averaging gives the same variation as
MLE if there is only Gaussian noise. It can be because a non-negative constraint for λ is assumed in
Equation (8). The pixel value was not allowed to be negative. Therefore, it could have been forced to
converge to zero. To verify this speculation, we added small shot noise, for example, 0.1 electrons in
average. In such a situation, the standard deviations of the estimated pixel values for both MLE and
the simple averaging became almost the same, which met the knowledge of statistics mentioned above.

Secondly, an extremely low-light condition, where huge photon shot noise existed, was simulated.
The maximum number of electrons of the ground truth image was set to 2e− per aperture. The input
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MA images were created, as shown in Figure 9. Noisy images that include only Poisson noise were
generated. Then, measured sensor noise, including Gaussian noise and RTS noise, were added to them.

Figure 9. Generating a noisy image from measured read noise and photon shot noise. The signed gray
level is represented by pseudocolor. See the scale bar in Figure 10.

Figure 10. Reconstructed and reference images: (a) photon shot noise limited; (b) proposed method;
(c) selective averaging; (d) selective averaging (non-negative values); (e) simple averaging; (f) single
aperture; (g) single aperture (120 × 120 pixels); (h) single aperture (40 × 40 pixels binned from 120 ×
120 pixels); and (i) ground truth.

Figure 10 shows examples of (a) a photon shot noise limited image, (b–e) the reconstructed images,
(f–h) several kinds of raw (single-aperture) image, and (i) the ground truth. The image in Figure 10a
includes only photon shot noise without any sensor noise, and the maximum number of electrons is
18e− (=2e− × 9), which should be the best achievable image after noise reduction because the purpose
of this paper is the removal of only image sensor noise. The maximum number of photons is rescaled
to 2e− in Figure 10a for comparison. Average peak signal-to-noise ratios (PSNRs) and RMSEs of the
above images for 100 frames are compared in Table 1.
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Table 1. Peak signal-to-noise ratios (PSNR) [dB] and root mean square error (RMSE) [e−RMS] of the
resultant images for each method.

PSNR [dB] RMSE [e−RMS]

Shot-noise limited 14.52 0.36
MLE (proposed) 13.14 0.42

Selective averaging 11.61 0.51
Selective averaging (non-negative values) 11.76 0.49

Simple averaging 11.92 0.49
Single aperture 2.37 1.36

Single aperture (120 × 120 pixels) 2.20 1.54
Single aperture (40 × 40 pixels binned from 120 × 120 pixels) 11.76 0.49

In the simple averaging, photon shot noise is reduced. However, RTS noise is very visible,
especially on the cameraman in a black cloth. Although RTS noise is significantly reduced with the
selective averaging, some pixels with RTS noise still exist. This is because the selective averaging
minimizes the synthesized sensor noise. If many pixels for a pixel in the reproduced image have RTS
noise, they are averaged instead of ignoring them. As shown in Table 1, the proposed method shows
the highest PSNR among three noise reduction methods, and close to the PSNR for the photon shot
noise limited case. The remaining difference about 1.4 dB between the proposed method and the
photon shot noise limited case can be due to a small Gaussian noise of the SPCL CIS. It is notable that
the PSNR for the selective averaging is smaller than that for the simple averaging. Because a part of
pixel values was ignored in the selective averaging, in this simulation, the penalty for less improvement
of photon shot noise was more significant than the benefit by ignoring the RTS noise pixels. Figure 10d
was obtained by replacing the negative pixel values in Figure 10c by zero. The improvement was
almost negligible. For comparison, a 120× 120-pixel image with the same number of the total electrons
as that of the MA image was generated (Figure 10g). In this case, the sensor noise became relatively
large because the signal level became 1/M for each pixel. Note that the resolution of the ground truth
image is 120 × 120 pixels, which is different from that for the other cases. Therefore, PSNR and RMSE
were a little worse than those of the single aperture. This image was resized to 40 × 40 pixels with
3 × 3-pixel binning (Figure 10h). Due to the averaging effect, the PSNR and RMSE were improved.
However, they were comparable to those of the selective averaging. Consequently, it is shown that the
proposed method can remove RTS noise, while photon shot noise becomes close to the photon shot
noise limit.

4. Discussions

One of the issues of the proposed camera is the removal of disparity. Because multi-aperture
images include disparities depending on the lens position and the distance of a subject, they should be
removed in the image synthesis. For this purpose, a probabilistic method based on a belief propagation,
which is immune to noise, has been studied [30]. However, the signal level that is considered in this
paper is extremely low. In such a case, the estimated disparity can be inaccurate, so that the denoised
image can become blurry. In future work, this issue should be studied quantitatively.

Although the computation cost was not discussed in this paper, it is very important to implement
the proposed method on a commercial camera, in which real-time processing is required. For example,
it took 0.78 s and 123.14 s to perform the selective averaging to obtain an initial denoised image
and MLE, respectively. In the simulation, MATLAB (R2013a) was run on a workstation (DELL™
PowerEdge T630 Server, Intel Xeon® E5-2698 v3 3.2 GHz × 2, 128 GB memory). A multi-aperture
camera with nine apertures and a single-aperture image with 40 × 40 pixels were assumed. At least,
the proposed method can be applied to offline or cloud-based post-processing. For real-time processing
on a standalone camera, acceleration by parallel hardware should be studied.
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The noise parameters of the read circuits are dependent on the temperature [37]. However, they
are basically stable in the long term at a moderate temperature. There are two options: one is to keep
the sensor temperature constant with a Peltier cooler; the other option is to make a complete table of
the noise parameter for different temperatures in the range of possible operating temperature. In this
case, the temperature is measured by a thermometer that is embedded in the image sensor during the
image capturing.

In the simulation, the variation of transmittance of the imaging lenses was not considered.
However, the lenses have a little variation in reality. Furthermore, the transmittance is dependent on
the image height due to vignetting, especially in fast lenses, which becomes a problem if the disparity
is not negligible. These variations deteriorate our assumption that the incident light intensity is equal
for all of the apertures. To compensate these variations, the lens parameters should be measured
beforehand and incorporated in the processing.

The proposed method is very flexible because any noise is modeled by PDF. However, in this
paper, classical Gaussian distribution and Poisson distribution are used to formulate the PDF of the
image sensor noise. This formulation was suitable for an SPCL image sensor used in this paper.
However, for other image sensors, equations that match their noise histogram should be selected,
for example, an asymmetric Gaussian, a higher-order Gaussian, and so on.

5. Conclusions

In this paper, we simulated noise reduction performance by the maximum likelihood estimation
that was applied to a multi-aperture camera using semi-photon-counting-level CMOS image sensors.
We modeled the noise characteristics by conditional probability density distributions and confirmed
the effectiveness to remove the RTS noise and to reduce the photon shot noise closely to the shot
noise limit. In the simulation, a 3 × 3 multi-aperture camera was assumed, and real measured
sensor noise, including RTS, was used. We confirmed that the maximum likelihood estimation has
the best noise reduction capability when compared with other methods, such as simple averaging
and selective averaging. PSNRs (RMSEs) for the single-aperture image, simple averaging, selective
averaging, and the proposed method were 2.37 dB (1.36 e−RMS), 11.92 dB (0.49 e−RMS), 11.61 dB
(0.51 e−RMS), and 13.14 dB (0.42 e−RMS), respectively. The proposed method showed the best noise
reduction performance that was close to the shot-noise limited one.
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