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Abstract: We introduce current home Internet of Things (IoT) technology and present research on
its various forms and applications in real life. In addition, we describe IoT marketing strategies
as well as specific modeling techniques for improving air quality, a key home IoT service. To this
end, we summarize the latest research on sensor-based home IoT, studies on indoor air quality,
and technical studies on random data generation. In addition, we develop an air quality improvement
model that can be readily applied to the market by acquiring initial analytical data and building
infrastructures using spectrum/density analysis and the natural cubic spline method. Accordingly,
we generate related data based on user behavioral values. We integrate the logic into the existing
home IoT system to enable users to easily access the system through the Web or mobile applications.
We expect that the present introduction of a practical marketing application method will contribute
to enhancing the expansion of the home IoT market.

Keywords: sensor-based home Internet of Things (IoT); indoor air quality; random data generation;
spectrum/density analysis; natural cubic spline; user behavioral value

1. Introduction

The home Internet of Things (IoT) is not entirely new. In the early 2000s, the widespread use of
high-speed Internet and the wired Internet-based home network market rapidly expanded. The recent
introduction of the home IoT is an extension of the existing market fostered by the development of
the wireless Internet environment and machine to machine (M2M) technology [1]. While the existing
home network has limitations in market expansion owing to the prevalent use of the wired network,
the current home IoT can connect more diverse devices on account of the advancement of related
telecommunication technologies. Accordingly, the current home IoT is distinguished from the existing
home network and can be referred to as a new “ecosystem”.

The key features of the home IoT platform technology are summarized in Table 1. Nine core
functions that should characterize a home IoT platform are listed.

In modern society, people spend more time indoors than outdoors. According to a World Health
Organization study, people reside indoors for more than 21 h a day. The degree of indoor pollution
varies by up to three times per individual, depending on the length of residence [7]. Indoor air is
more polluted than outdoor air, which is naturally purified. However, it is not easy to recognize this
condition and properly address it in real life. According to a US Environmental Protection Agency
survey, the concentration of indoor air pollutants is two to five times, or even as much as 100 times,
higher than outdoor air pollutants. It is well known that various kinds of volatile organic compounds
(VOCs) that are harmful to humans are generated in indoor building materials, paints, and adhesives,
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which cause skin diseases and allergies [8]. As a practical example of indoor pollution, the health
problem of “building syndrome” has emerged, with occupants complaining of temporary or chronic
health problems relating to the building. We thus developed a model that can check the pollution of
the indoor air in real time through a project conducted by “company A”. According to the model,
the user is notified of the indoor air status and the appropriate ventilation time when necessary.
The system is implemented to enable control from outside the building in real time by means of the
user’s smartphone.

Table 1. Nine key features of the home IoT platform.

Function Description Prior Studies

Auto Configuration Functions for device installation and easy
configuration processing Spanò et al. [2]

Remote Monitoring Function to monitor human and object behavior
according to space and time

Situation Awareness Function for real-time recognition of natural
environment changes according to the situation

Alirezaie et al. [3]

Sensor-Driven Analytics Function to support human decision-making
through specific analysis and data visualization

Process Optimization Functions related to automatic control in specific
environments, such as factories

Energy Resource
Optimization

Functions related to smart measurement and
energy consumption optimization for energy
(power, water, gas, heating, etc.) consumption

Sung and Chiang [4]

Privacy
Privacy protection function based on the user’s
personal information, life patterns,
and preference trends Sicari et al. [5]

Open API
Support for managing multiple services, linking
with external systems, and developing various
“mashup” services

Security Function to ensure security against physical and
logical intrusions

Autonomous System Functions for autonomous determination or
automatic control of complex conditions Gubbi et al. [6]

In this paper, we introduce the general procedure of the home IoT solution connected to a device
sensor, IoT infrastructure, data processing, and mathematical modeling. We describe a related
marketing strategy for the solution. In addition, we present specific modeling techniques for improving
the air quality, which is a key home IoT service. The relatively sophisticated modeling technique is
presented from an academic perspective. It is expected that the presented research will contribute to
increasing the market integration of this type of solution by practical commercialization of models that
can be readily applied.

The remainder of this paper is organized as follows. In Section 2, we summarize the smart home
IoT system based on the user value and service vision along with research related to indoor air quality
data processing and control systems. In Section 3, we describe our research design, which includes
data collection and generation (scenario 1), and user-behavior settings with various statistical
methodologies (scenario 2). We additionally introduce a marketing strategy for commercialization of
home IoT technology. In Section 4, we conclude the paper and highlight the theoretical and practical
implications of our research.

2. Background

2.1. IoT and User Behavior Value

IoT is a system in which intelligent objects are connected in a physical or virtual space,
and a network is formed between people and objects, or between objects and objects [9]. IoT can
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also be defined as a global infrastructure that provides intelligent services by combining knowledge
based on context awareness. Implementation of an IoT requires an embedded system represented by
things, a bi-directional communication environment, including the Internet, and commercial software
to process the data.

IoT was initiated with the ability to remotely control lighting, thermostats, and security devices in
everyday life [10]. This ability can be viewed as a function that satisfies user’s behavioral values (UBVs)
of management, promptness, and information [11]. From that time, IoT has evolved into a means of
exchanging information between objects and objects, and the “If This Then That” (IFTTT) concept
has become universal, satisfying the value of scalability and automation. IFTTT represents a service
for linking various programs and applications on the Internet with a computer through a command
“recipe” [12]. In recent years, IoT in daily life has shown a tendency to expand its service centering
on home IoT, which is fused with an artificial intelligence (AI) client. This enables users to manage
multiple Internet devices more conveniently with voice commands.

In particular, a report summarizes existing high-level techniques in gas sensing and IoT-related
papers published within the last five years. The research was tested in a kitchen environment
that contained several objects monitored by different sensors [13]. The authors of the report
introduced a representational and reasoning model for the interpretation of a gas sensor situated in
the sensor network. The interpretation process includes inferring high-level explanations for changes
detected over the gas signals. Inspired from the Semantic Sensor Network (SSN), the ontology used
in this work provides an adaptive way of modeling the domain-related knowledge. Furthermore,
exploiting Answer Set Programming (ASP) enables a declarative and automatic way of rule definition.
Converting the ontology concepts and relations into ASP logic programs, the interpretation process
defines a logic program whose answer sets are considered as eventual explanations for the detected
changes in the gas sensor signals [14].

As the home IoT has become more convenient, it has become more widely used in everyday life.
However, with this greater prevalence, users have become increasingly concerned about related
privacy, security, and safety issues of home IoT devices. This concern is particularly the case with
respect to the numerous sensors and communication devices involved. From the UBV perspective,
IoT is demonstrating that the value placed on safety has recently increased along with universal UBV,
such as manageability, speed, and scalability [11]. We derived 28 items on UBV based on the previous
six years of IoT-related studies and theories of change. We redefine the three UBVs, as shown in Table 2,
by incorporating the overlapping or similar concepts.

Table 2. Types of user behavioral value (UBV).

Redefined
Factors of UBV Operational Definition Initial Factors of UBV Prior Studies

Interactivity
Value in relation to the
interaction with
IoT devices

Objectivity, Completeness, Achievement,
Logicality, Conductance, Accuracy,
Satisfiability, Sociality, Expectancy,
Relationship

Atzori et al. [15],
Mennicken et al. [16]

Stability
Value for the
manageability of
IoT devices

Manageability, Simplicity, Safety, Security,
Equity, Reliability, Transparency, Identity,
Sustainability

Sicari, Rizzardi,
Grieco and
Coen-Porisini [5],
Lee and Lee [11]

Functionality Value for reliable
operation of IoT devices

Convenience, Diversity, Compatibility,
Scalability, Promptness, Efficiency,
Informativeness, Automaticity, Usability

Kelly et al. [17],
Vlacheas et al. [18]

The theory of change emerged from the field of program theory and program evaluation in
the mid-1990s as a new means of analyzing theories motivating programs and initiatives toward
social and political change [19]. The theory of change generates knowledge about whether a program
is effective, while explaining what methods the program can employ to be effective. In the early
days of the theory of change, Kubisch established three quality control criteria to combine theory
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with traditional manufacturing, environmental psychology, organizational psychology, sociology,
and political science [20]. The three criteria are plausibility, feasibility, and testability. Since the
three criteria have been gradually extended to research on the theoretical background of system
maintenance and software upgrades in information and communication technology, they have been
used in various terms and as different values [21].

First, plausibility refers to the “logic of outcomes” pathway. In other words, it is the user’s
expectation of or satisfaction with the accuracy and logic of the new technology in terms of UBV.
Plausibility has been replaced by the meaning of relationship, sociality, and convenience in later
studies. We redefine plausibility as interactivity by grasping the accuracy of the technique and the
satisfaction of users accordingly. Second, feasibility refers to whether the initiative can realistically
achieve its long-term outcomes and impacts. This has been handled in research in terms of the
manageability of technologies to solve psychological problems related to the user’s reticent relation to
the given technology.

Thus, we contend that people using home IoT products or services can relinquish their technical
reticence and gain psychological flexibility through certain values. We redefine all of these values
as stabilities. Finally, testability refers chiefly to the indicator that measures the importance of users’
behavioral values. In other words, it is a type of instrumental utility that quantitatively measures
thought flow and change. Recently, information and communication technologies (ICT) research has
replaced testability with a kind of functionality. In this study, we redefine it as the comprehensive
meaning of UBVs, such as scalability, compatibility, and promptness.

2.2. Studies on Improvement of Indoor Air Quality

A pleasant indoor environment is determined by the comprehensive action of various indoor
environmental factors. In recent years, there has been a growing interest in indoor environmental
factors that directly affect the degree of comfort for people who reside indoors, including temperature
and humidity. In addition, there is a continuing need to manage indoor air quality factors, such as fine
dust and carbon dioxide, which are closely related to human health [22].

According to US Environmental Protection Agency research, the causes of indoor hazardous
substances are carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3),
fine dust, heavy metal, asbestos, volatile organic compounds (VOCs), formaldehyde (H-CHO),
microbial substances, and radon (Rn). Various gas measurement sensors for indoor air pollution
sources have been developed and employed. Moreover, studies and development are currently
underway on technologies that quickly detect flammable or toxic gases and respond accordingly [23].

Research on indoor air quality sensing has been conducted for various public places of everyday
life, such as subways, schools, department stores, and offices. Paulos et al. [24] developed a system for
measuring and monitoring office air quality through research on the office indoor air environment and
work efficiency. As a result of controlling the system through a wireless sensor network linked to mobile
devices, the overall work efficiency of the employees increased. Kanjo [25], Lohani and Acharya [26]
developed their own environmental information monitoring system that applies precautions, such
as indoor fine dust reduction, by using a mobile wireless LAN. The author showed that employee
satisfaction with the work environment increased. Hwang and Yoe [27] monitored and analyzed
indoor environment information through closed-circuit television (CCTV) and public environment
information using an application programming interface (API). In addition, they developed an indoor
environmental control system based on automatic situation recognition. Wang et al. [28] and
Pötsch et al. [29] developed a wireless-sensor-based indoor environmental monitoring system for green
buildings and the LoRaWAN stack, respectively. The system visualizes collected indoor environment
data and measurement position data, and it distributes the temperature sensor to various locations in
the target space. Moreover, it communicates the temperature in each space using a step color chart.
Specifically, the authors calculated the distance from a window and installed sensors at three levels
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above the horizontal point. Their system visualizes the collected data as a three-dimensional space
chart according to the spatial distribution.

In a study on an indoor air quality monitoring system, researchers divided the measurement
values of the fine dust concentration on the floor plan of the space into multiple spaces and expressed
them in two or three dimensions [30]. The system has a simple structure for intuitively grasping the
indoor environmental condition, thus enabling a comparison of the dust concentration according
to the space. Meanwhile, the studies of Salamone et al. [31] utilize more simple self-developed
experimental tools. They installed the open-source Smart Lamp in a real office environment and tested
the reliability of IoT equipment. Salamone et al. [32] conducted a ventilation efficiency evaluation
according to the ventilation method of an indoor space using a computational fluid dynamics
(CFD) technique. To this end, they developed a system for measuring toluene concentrations and
visualizing them in three-dimensional (3D) charts, which were applied to the field and contributed
significantly to lowering the average toluene concentration.

Moreover, another paper presents a very important reference point on how to sense different
kinds of gases. According to this study, the method of sensing various types of gas is described in detail.
Additionally, the sensitivity (the minimum value of the target gas volume concentration when the gases
could be detected) and the selectivity (the ability of gas sensors to identify a specific gas among a gas
mixture) are regarded as very important measures for evaluating stability in gas sensing. In addition,
it was explained that response time (the period from the time when gas concentration reaches
a specific value to that when the sensor generates a warning signal), energy consumption, reversibility
(whether the sensing materials could return to their original state after detection), adsorptive capacity,
and fabrication cost are important factors.

As shown by the above research examples, most studies related to indoor air quality improvement
involved developing a system that is suitable for a specific environment. This approach is difficult to
apply to all environments of a given workplace using a standardized sensor device. Moreover, it cannot
achieve the ultimate result needed for the actual user in the workplace, which is the reduction of
harmful indoor components. In view of recent trends in the previous research, it can be observed that
constructing the system environment that we planned, and creating the data through the distribution
of the sample data, which is the methodology that is appropriate for it, is a very effective methodology.
In other words, just as many experimental studies create experimental environments that can control
variables themselves, we cannot only set specific situations, but we can also scientifically carry out all
experimental steps consisting of system design, instrument connection, data communication control,
sample data distribution analysis, and function estimation and verification. Many customized studies
have been conducted through these actual system building processes [25,28–32], and the results are
reflected very successfully in practice. From the researcher viewpoint, it is more effective to develop
a system suitable for the environment and apply it to identifying problems and finding solutions.
According to these trends, we intend to develop an air quality improvement system that can be applied
to the apartment, the most common Korean housing type.

2.3. Technique of Random Data Generation

There are several ways in which we can amplify data within a given error-term. In particular,
many previous studies on random number generation have been conducted based on the following
three trends. First, in the information technology (IT) field, random number generation and its
statistical evaluation have been mainly performed in the research of cryptography and system security.
Second, prior research on random number generation in the financial sector has been predominantly
focused on predicting how stock and bond values will change in response to changes in interest
rates and other macroeconomic variables. Finally, another area that heavily uses random number
generation is the traditional use of statistical tests to generate test data in areas where mathematical
proofs are required.
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Xiao et al. [33] argued that the most important point in generating test data is finding an efficient
optimization algorithm. They generated test data using a genetic algorithm (GA), simulated annealing
(SA), and genetic simulated annealing (GSA), and they concluded that GA is the best optimization
algorithm for generating test data. Several studies were conducted to improve the efficiency of test
data generation by improving existing optimization algorithms. Alba and Chicano [34] applied parallel
GA to test data generation, and Mousa et al. [35] suggested application of a memetic algorithm that
combines GA and local optimization algorithms. Watkins and Hufnagel [36] compared the fitness
evaluation functions used to generate the test data. The results showed that the most efficient fitness
evaluation functions for generating test data are BP1, BP2, and IPP.

Monte Carlo simulation (MCS) has been considered the most effective technique for random
number generation for complex financial products. MCS is a common method that involves numerical
integration based on random sampling. However, since random sampling is inherently a brute force
method (BFM), many trials are required to maintain a high accuracy and minimum error rate, which is
also time consuming. To solve this problem, Mallat [37] used the random number generation scheme
(RNGS) to investigate bond values. This method stratifies sampling of interest rate data through
a uniform distribution, applies an inverse-transform technique, and then obtains a random variable of
an inverse function. The study of random sampling in the financial sector has centered on the interest
rate structure; however, it has supplemented various alternative financial models, such as the standard
Wiener process (SWP) [38]. In other words, a cumulative (or spectral or density) distribution function
of the actual sampling data was converted into rich interest rate data and eventually the distribution
function of the random data was generated through natural cubic spline (NCS) interpolation.

In this study, we employ Gerald and Wheatley’s random number generation method. We create
a density distribution function based on the actual home IoT data, such as the indoor air quality
concentration from apartment complexes and the API data provided by a meteorological office, and we
extract the basic data. Based on these data, we generate a random number function for the last year of
data through NCS interpolation.

3. Design

3.1. Sensor-Based Modeling Framework

The model framework design for our study is divided into total three stages. First, as a preprocessing
step, we select information, generate sample data, and pack it according to the time variable. The second
step is the process of creating the model by building logic for the data. In this case, we proceed through
two processes. First, we construct the model with the static data completed in the preprocessing process.
Second, we construct the model through the variable data, such as the user behavior data. In the final step,
post-processing, we evaluate the accuracy of the actual data with a continuous test, and we connect the
constructed model to the existing interface. This sequence of steps is shown in Figure 1.

As mentioned earlier, we employ in this study the random number generation method presented
in a previous study. We conduct a spectrum analysis based on the actual home IoT data and the public
API data, and achieve a prototype of the sample data. We also apply the NCS interpolation method to the
prototype data to generate a random number function for the last year of data.

Figure 1. Modeling framework.



Sensors 2018, 18, 959 7 of 13

3.2. Infrastructure

We design the mobile application to transmit the information of each situation to the server so
that users can collect IoT status information according to their situation. At this time, the managerial
server that receives the user information simultaneously requests the status information of all the
user’s home IoT devices, and it also structures and stores all the received information.

Figure 2. AWS-based home IoT platform.

The overall infrastructure is comprised of several components. First, the front-end receives the
user’s status information from the mobile application and it helps the server structure and store
data through its embedded business logic. Second, the client, acting as a data receiver, retrieves the
change information of the user’s home IoT devices through the broker instance built into the system.
It structures the data through the server’s business logic. Third, the IoT managerial connector, a module
for communicating with the external server, manages the home IoT device information for each user.
It also receives IoT device information and stores data at specific time intervals. Finally, the data
formatter structures the state information of the user and the device proceeds through each module.
This infrastructure is shown in Figure 2.

Each log data is structured and stored in Hadoop (Hortonworks), a data distribution storage
processing framework. The document type can be divided into general data entered in the API, real
user context data, and other data from connected home IoT devices. All of the IoT log collection servers
that comprise this system are built in an Amazon Web Services (AWS) environment. Each component
server constituting the system is composed as follows. First, we configure the log collecting Web
server as an instant type (four CPUs, 8 GB memory, respectively). Second, in the case of the broker
instance that transmits information of the IoT device, we construct an instance system by additionally
connecting a 200-GB hard disk drive (HDD) to enable stable data transmission. Finally, in the case of
Hadoop, which stores all user information, a 1-TB HDD is additionally connected to accommodate
instantaneously changing data.

3.3. Preprocessing

After reviewing and evaluating as much information as possible about the air quality at the
stage of variable selection, we identify the source of the relevant data, consider the possibility of
analyzing the data, and finally select the variables. The selected variables are 21 in total. Among these,
12 outdoor data are retrieved via a public API, and indoor data are obtained from existing home
IoT data. The results are shown in Table 3. In this study, statistical software packages such as SAS 9.4
(SAS Institute Inc., Cary, NC, USA), SAS Enterprise Miner v.13.1 (SAS Institute Inc., Cary, NC, USA)
are applied to analyze the sensor data.
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Table 3. List of variables.

Variable Name

Outdoor Information

Fine Dust (µg/m3), Relative Humidity (%), Ultrafine Dust (µg/m3), Nitrogen
Dioxide (ppm), Precipitation (mm), Ozone Concentration (ppm), Carbon Dioxide
(ppm), Carbon Monoxide (ppm), Sulfur Dioxide (ppm), Nitrogen Oxides (ppm),
Wind Direction (8 dummy directions), Wind Velocity (m/s)

Indoor Information

Indoor Carbon Monoxide (ppm), Indoor Carbon Dioxide (ppm), Indoor Fine
Dust (µg/m3), Indoor Ultrafine Dust (µg/m3), Indoor Relative Humidity (%),
Indoor Noise (dB), Indoor Sulfur Dioxide (ppm), Indoor Volatile Substances
(ppm), Indoor Nitrogen Oxide (ppm)

As mentioned earlier, we visually check the temporal and seasonal flow of each variable and then
apply the NCS interpolation method to each variable. In other words, we perform random number
generation to fill each sample period consecutively in seconds for one year. This process is shown
in Figure 3.

Figure 3. Random number generation.

In the next step, we replace the existing linear flow with a probability distribution function to
make each variable value more fluid and objective. To this end, we use a cumulative distribution
analysis (or density and spectrum analysis) method. We take an inverse function to express the
probability function thus created as a variable coefficient value of one or less. Finally, we create a final
data set for analysis by sorting the values of each variable into time variables in seconds and grouping
them together. This process is shown in Figure 4.

Figure 4. Cumulative distribution analysis.



Sensors 2018, 18, 959 9 of 13

3.4. First-Round Analysis

In the first round of the study, we strive to mathematically estimate and derive optimal indoor
ventilation times to ensure the uncontaminated air quality. As a preliminary step, we estimate the
environmental factors correlated with indoor air pollution, and we develop a model to derive air
ventilation (Vq) and ventilation time (Vt) for optimal indoor air quality.

The specific process is as outlined as follows. First, variables measured through the sensor
are monitored to set an alarm when a certain threshold (pollution degree: 80%) of air pollution
is exceeded. Secondly, we analyze pollutant variables that have the greatest impact on air pollution
through correlation analysis of various air quality variables when an alarm occurs. Third, we compare
indoor–outdoor observations of pollutant variables to determine whether indoor air is clean. Fourth,
we predict the ventilation rate (Vq) by estimating the amount of the pollution factor. In this case,
the amount of ventilation can be derived from the air pollution concentration minus the allowable
pollution concentration as the denominator and the pollutant generation amount as the numerator.
Finally, the optimal ventilation time (Vt) is estimated through the ventilation amount (Vq). This process
is shown in Figure 5.

Figure 5. Analysis process in the first-round study.

3.5. Second-Round Analysis

We create the UBV model by adding user-customized data in the second-round study, while
creating the model for the existing fixed data in the first-round study. In other words, we add seven
additional user variables to the existing 21 data items to estimate the optimal indoor ventilation time.
This enables creation of a more subjective dataset with a range of predictions. Table 4 summarizes
seven variables, which are classified into three categories: data from home IoT devices (4), data
classified by a person’s characteristics (2), and three levels of place sizes (1).

Table 4. Additional user-customized data.

Additional Data Description

Device Data from IoT devices

Gas Valve Sensor (2 Levels, on/off)
Ventilation Sensor (2 Levels, on/off)
Air Cleaner Sensor (5 Levels, 0 for off and 1 to 4 for on)
Movement Sensor (2 Levels, on/Off)

User Data
Dust Sensitivity (for Vertical Axis)
Daily Residence Time (for Transverse Axis)

Space Size 3 Levels (60, 90, 120 Square Meters)

As shown in Figure 6, we obtain data in minutes from three sources. The first source is the home
IoT device data stacked on the server. The second is a custom value we randomly group into four types.



Sensors 2018, 18, 959 10 of 13

The last data source is the size of the place divided into three types. We create a new user-centric
model by adding these three additional data items to the existing model. In other words, we intend
to provide customized services for individual users. We thus design the set values into groups and
develop a flexible logic according to the users. Technically, we construct new personal data for a total
of 200 individuals, each consisting of 50 individuals in each of the four areas. The vertical axis denotes
the residence time; the horizontal axis represents the user’s sensitivity to dust. Accordingly, we finally
obtain a relational function model based on UBV.

Figure 6. Four-dimensional clusters and variable distributions.

3.6. Post-Processing

The most important goals of post-processing are summarized in the following two points. First,
as shown in Figure 7, we realign and advance the logic through posterior conformance testing,
which is a repeated visual plotting test of personalized data. Because our logic is automatic, regular,
and dynamically generated for random numbers at specific locations and points in time, as well as for
specific users, we believe it is necessary to stabilize them. Therefore, it is necessary to continuously
check whether the value is within the error range under a certain condition while continuously visually
confirming based on the newly generated random number.

Figure 7. Model plotting test.
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The second is to integrate all the created logic into the existing interface to enable users of the
home IoT system via an existing PC or mobile device to actually observe the logic working. To this
end, we used SAS Event Stream Processing (ESP; SAS Institute Inc., Cary, NC, USA), which provides
streaming data of operations, transactions, sensors, and IoT devices in real time and visually presents
them to the user. This process is depicted in Figure 8.

Figure 8. Connection to the user interface system by SAS ESP.

3.7. Marketing Prospects

Depending on the use of the developed model in the business domain, we expect a notable adoption
expansion in several markets. First, the model can be immediately applied to existing buildings as well
as new buildings. This applied model will help to increase the market value of the building. That is,
it can increase the value of existing products without requiring additional hardware or system changes.
It is thus effective in terms of profit increases. In addition, the developed logic can be sold not only in
the business-to-business market, but also as a business-to-consumer-specific product, by specializing it
in a user-customized model. Second, by applying the latest data analysis model, we can expand brand
awareness in the construction market. In maintaining the recent trend of the fourth industrial revolution,
applying the latest IoT technology to the construction field can be expected to enhance the brand image
in the home IoT market. In addition, we can expect to gain market dominance by supplying additional
hardware and systems by selling artificially intelligent home IoT products, such as noise detectors and
motion detectors, in line with rising brand awareness.

4. Conclusions

Recently, IoT has been used in a wide range of industries, including the smart home, health
care, automobile, and energy industries. Many home IoT devices have already been integrated in
our daily lives. In addition, IT-oriented companies and telecom companies that are leading IoT are
expanding their market by developing technology-oriented products and services, while attempting
to build a user-centered home IoT environment. Therefore, in this study, we conducted a literature
survey on the user value of IoT based on the theme of air quality improvement among the IoT service
examples. We focused on the user value that can be satisfied through related products and services.
We also introduced random number generation as a method for reasonably amplifying analytical
data, and created user-based analysis models through various data from smart home devices and
public APIs. Moreover, we linked them to existing infrastructures. Finally, we described the use of the
developed model for marketing purposes.
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