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Abstract: The design and validation of a continuously stretchable and flexible skin sensor for
collaborative robotic applications is outlined. The skin consists of a PDMS skin doped with
Carbon Nanotubes and the addition of conductive fabric, connected by only five wires to a simple
microcontroller. The accuracy is characterized in position as well as force, and the skin is also tested
under uniaxial stretch. There are also two examples of practical implementations in collaborative
robotic applications. The stationary position estimate has an RMSE of 7.02 mm, and the sensor
error stays within 2.5± 1.5 mm even under stretch. The skin consistently provides an emergency
stop command at only 0.5 N of force and is shown to maintain a collaboration force of 10 N in
a collaborative control experiment.
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1. Introduction

As robotic systems have proliferated in the home, industrial, and medical areas, robots have
worked in progressively closer proximity to the humans around them. In order to safely coexist,
sensors have been utilized to allow robots to avoid dangerous interactions, with varying success [1].
This field is in need of a modular, durable and affordable sensor to provide a sense of touch that can
easily be applied to any robot geometry and can stretch and flex to conform to the geometry without
losing the ability to continuously measure the position and magnitude of a touch like human skin [2].

The skin could allow robots to intuitively learn to control the torque that they are applying [3],
or to learn their inverse dynamics models without a priori knowledge [4]. The sensing skin could
also give robots an improved situational awareness, allow them to interact in a more human-like
manner through nonverbal touch, and collaborate more intuitively on complicated tasks in constrained
environments. For example, to complete a robotic surgery surgeons and nurses communicate only
verbally; however, a tactile sensing skin could allow the robot and surgeon to sense the need for space
by another person in the operating room.

However, the design of a robotic skin is a difficult task [5]. One possible solution to humans
and robots working in close proximity is the ‘soft’ joints of the Baxter Robot (Rethink Robotics,
Boston, MA, USA) where springs are placed between the motors and joints, allowing them to absorb
any collision with a human [6] at the expense of increased complexity in hardware and software.
Other methods from the ROBOSKIN project include using depth sensing or computer vision to track
bodies around the robot for collision avoidance [7]. Vision-based methods can be combined with
tactile sensors [8] and can even be used to calibrate tactile sensors [9], and enable advanced detection
of contact shapes [10]. However, the vision portion is limited to line-of-sight applications and does
not allow intuitive, nonverbal communication by a human pushing on a robot without a tactile sensor
that can stand on its own.
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One method of developing a large skin sensor is to create an array of force sensors, known as
tactile pixels (taxels), which provide knowledge of whether a touch has occurred at that point. In order
to provide flexibility, some skins have utilized a pliable media upon which rigid taxels are mounted,
such as a flexible printed circuit board or polydimethylsiloxane (PDMS) silicone. Force sensors
include standard strain gauges [11], capacitive sensors [12], piezoresistive force sensors [13],
and polyvinylidene fluoride (PVDF) force sensors [14]. However, due to the use of rigid sensors,
the resulting devices are not continuously flexible or stretchable, although some flexibility can be
added to rigid sensor arrays by placing PDMS above a rigid array [15]. Further, the sensor array’s
position resolution is limited to the size of the taxels themselves, leading to a trade-off between
resolution and complexity due to the need to reference each taxel individually. Even if the sensors are
intelligently accessed through modular systems [16], the number of electrodes increases linearly (2n),
thereby increasing the sensor’s area (n× n).

In order to improve upon the rigid arrays of sensors, other groups have created flexible sensor
pads, for example a tactile sensor designed by Choi et al. based on 0.5 mm2 PVDF sensor arrays
which are embedded in polyester film [17]. The small size of the PVDF sensors allow flexibility that
surpasses that of the larger sensor arrays; however, they still require a large number of electrodes,
which complicates their installation and use. A flexible tactile sensor comprised of a polyester sheet skin
embedded with a grid of silver-polymer conductive traces has been developed by Papakostas et al. [18].
Although the grid contacts create a piezoresisitive force sensor and the conductive traces can be
made flexible, the sensor still results in n2 electrodes for an n× n sensor array. A PDMS interlocked
micro-structure skin by Park et al. [19] additionally provides an estimate of the shear forces present by
measuring resistance. A PDMS-based sensor developed by Tomo et al. uses magnetic hall-effect sensors
to detect force with a deformable sensor [20] which can be embedded into robotic components already
using PDMS [21]. A system developed for the SAPHARI project by Cirillo et al. uses photodetectors
to observe deformations of a deformable silicone layer [22] which can then be used to manage
unintentional collisions as well as be used as human-machine interface [23]. Another system developed
by Back et al. uses an array of deformable taxels which are monitored by optical fibers [24] to detect
force, requiring one optical fiber per taxel.

Conductive liquids have allowed a novel approach for stretchable and flexible sensors. For example,
the use of microchannels containing eutectic gallium-indium within a PDMS substrate [25] can be
arrayed to cover larger areas [26]. This provides skins that are continuously stretchable, unlike the
discretely stretchable skins created by the aforementioned methods; however, the channels correspond
to discrete locations, creating a non-continuous collection of sensing pads. A continuously flexible
and stretchable skin could be applied to robot arms such as the Kuka LBR (KUKA Roboter GmbH,
Augsburg, Germany) or the Baxter, conforming to the arbitrary geometries of the robot and providing
continuous sensing without dead spots. Stretchability is required if the skins are manufactured in mass,
as it avoids the need to create custom three-dimensional sensors for each robot geometry encountered.

A different method of position estimation is to use electrical impedance tomography. This involves
putting a large number of electrodes around the perimeter of the skin and detecting a change
in impedance when the path between two electrodes would pass through the point of contact.
For example Pugach et al. have shown that conductive rubber sheets can be manufactured by adding
carbon into the material prior to curing [27], and Lee et al. have shown that such sheets can be used
for a multi-directional strain mapping [28]. However this method is limited by the requirement that
the object touching the skin be electrically conductive, which may not be the case in human-robot
interaction. Further, the scalability of this method is poor as spatial and temporal resolution are
not maintained when the size of the area is increased. The number of electrodes located around
the perimeter and their corresponding wires scale by 4n for n2 discrete taxels. Finally, the limits of
stretchability for this method are unclear, leaving uncertainty as to whether the method could actually
be applied to arbitrary robot links.
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An interesting method that is fully stretchable is that shown by Lacasse et al. involving a silicone
with carbon black (CB) combined with a conductive fabric [29]. This material is cut into strips to
create a weave of discrete taxels in a similar manner to that of earlier sensors, and the resistance in
each sensor is used to determine a touch. This sensor is truly stretchable; however, it still suffers
from the issue of discrete taxels leading to increased wires or decreased resolution, discussed above.
Another concern with this method is that the visco-elastic properties of silicone may interfere with
the sensing modality and require dynamic calibration to account for it, which would further limit the
ability to customize the skin.

It has been shown that carbon nanotubes (CNT) exhibit a piezoresistive effect when formed into
a film [30] a foam [31] or a yarn [32]. This method however suffers from hysteresis, and does not
inherently provide position information [33].

To date, there exists no continuously stretchable and flexible skin sensor that provides
(1) continuous position sensing without dead spots; (2) a small number of wires that does not
increase with size or accuracy; (3) easy manufacturability with low cost electronics and processing
requirements; and (4) the ability to adapt to the wide range of robot geometries available. We propose
a solution that provides a low-cost, continuously flexible and stretchable smart skin sensor. We exploit
a two-dimensional potentiometer effect by using a PDMS elastomer sheet doped with carbon nanotubes
(CNT). This work builds on preliminary work done by Walz et al. to develop a tissue-tracking
two-dimensional potentiometer for medical training [34], and the addition of a conductive fabric
top layer by Lu et al. [35]. In this paper, we characterize the accuracy, flexibility, and limitations
of this smart skin sensor and provide two examples of practical implementations in collaborative
robotic applications.

An early concept of this work was introduced in [36], where we presented the linear
position method and a cubic force fit, as well as emergency stop and evasive action experiments.
This paper additionally provides an alternative and independent diagonal position method, as well as
an improved neural network model for estimating force including differentiation between low and
high forces. Importantly, this paper also evaluates the quality of the positional sensing over stretches
up to 133% and the piezoresistive effects of stretch on bulk resistance, investigating and substantiating
the claim of skin stretchability that was unsubstantiated in the original work. Finally, this paper shows
a more detailed, confirmatory analysis of the microstructure of the skin and uses Akaike Information
Criterion to rigorously evaluate the polynomial fit order.

2. Methods

The smart skin development consists of four primary components: the physical sensor,
the electronics and algorithms, an optional offline finite element simulation, and the calibration
routine. These components are outlined in the following section.

2.1. Sensor Design

The proposed smart skin sensor consists of three stretchable, flexible layers as shown in Figure 1,
and fully assembled in Figure 2. The upper layer is a nylon fabric made conductive by a silver
coating (Medtex, Statex Productions, Bremen, Germany). The intermediate layer is a perforated cloth
(Powermesh Fabric, 99% polyester, 1% spandex) that provides a non-conductive intermediate layer.
The lower layer, shown in detail in Figure 3, consists of a PDMS substrate that is approximately
1.75 mm thick. This layer also has a 100 µm uniformly bonded CNT-PDMS coating (7-SIGMA Inc.,
Minneapolis, MN, USA) which is oriented towards the intermediate layer. All layers are cut to a square
of the desired pad dimensions, which is 14.7 cm square for the robot interaction experiments and
10.0 cm for the stretch experiments. The layers are bonded around the edges using a non-conductive
adhesive (7-SIGMA).
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Figure 1. Smart skin exploded view with layers: (1) Ag. Nylon (2) Perforated Layer (3) PDMS-CNT
Layer (≈ 50 µm thick) (4) PDMS Substrate (1.5 mm thick) (5) Stretchable Contact (Ag Nylon + CNT-PDMS)
(6) Stretchable Adhesive.

In each of the four corners there is an electrode. The electrodes are a quarter-circle cut from the
same silver conductive fabric with a 1 cm-radius from the upper layer. The fabric is infused with the
CNT-PDMS resin material from the coating of the lower layer and heat-cured onto the bottom layer as
shown in Figure 4. A single electrical wire is then soldered to each electrode to provide an electrically
conductive connection. The contact resistance of the corner electrode is approximately 500 Ω, and the
flexible and stretchable properties of the skin are maintained at the electrode locations.

Figure 2. The assembled smart skin with bonded zippers for easier attachment.

Figure 3. A close-up of the PDMS substrate with CNT stripes to indicate stretch.

The CNT-PDMS layer is used as a bulk resistive sheet for position at a given stretch level, and force
estimation is derived from the contact resistance between the CNT-PDMS layer and the conductive
fabric layer, through the holes in the perforated layer. The piezoresistive effect of CNT-PDMS composite
is used to estimate the current stretch level of the skin; however, this has a time behavior with hysteresis,
which was not studied here as it is assumed that the skin will not be rapidly stretching. If the skin is
only to be stretched once, for example upon installation, and calibration is done in the stretched state,
the piezoresistive effect of the CNT-PDMS material may be ignored.
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Figure 4. A close-up of CNT PDMS conductive cloth contact detail.

The CNT-PDMS was imaged with an SU8230 ultra-high resolution cold field emission Scanning
Electron Microscope (SEM) (Hitachi Ltd., Tokyo, Japan) to evaluate the consistency and protrusion
of the CNTs within the CNT-PDMS sheet. A small sample was prepared for the SEM that exhibited
a mechanically torn-off and sheared-off region to investigate both cross-sectional and surface
distributions. No observable differences were noted between cross-sectional regions obtained by
tearing (shown, Figure 5) or shearing (not shown). An overview image was first taken of the transition
region between the surface and cross-sectional edge achieved via tearing, Figure 6 (left), and a close-up
of the edge (right). A typical region of interest on both the torn edge and sheet surface was identified
for enhanced magnification to detail the CNT behavior at the sheet surface (Figure 5a) and within the
edge (Figure 5b). Note that the higher voltage used in Figure 5a should provide more penetration
further beyond the surface boundary to reveal deeper structures. From Figure 5a, it appears that
exposed CNT fibers occur within a typical spacing of roughly 10 µm. The fact that the CNT protrudes
in a hairlike fashion from the surface allows the contact resistance to vary sufficiently for forces
estimation, as shown later.

To allow repeatable tests of human interaction with the skin while recording forces, a synthetic
index finger was created as a replica of the index finger of an adult male. This synthetic finger was
cast out of silicone rubber with A35 durometer (PlatSil 71-35, Polytek Development, Easton, PA, USA).
To provide more realistic rigidity of a skeletal structure and allow a fixture point for a load cell,
a wooden dowel of 6.5 mm diameter was placed in the mold of the finger.

Exposed CNTEmbedded CNT

(a) (b)

Figure 5. (a) SEM detail image of sheet surface region showing carbon nanotube matrix embedded
within silicone and exposed CNT ends protruding from surface (15.0 kV × 10.0 k magnification
in 5.1 mm SE(U) mode); (b) SEM detail image of nanotubes embedded within torn edge confirms
significantly higher CNT density within the CNT-PDMS material than that expressed near the sheet
surface (0.6 kV × 13.0 k magnification in 2 mm LA0(U) mode).
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Figure 6. SEM overview of carbon nantoube-doped silicone skin sample (left) with a torn edge at
0.6 kV × 450 k magnification in 1.9 mm LM(UL) mode. The detail image (right) shows a close-up
view of the torn edge with an apparent higher concentration of nanotube ends visible there than at the
sheet surface at 0.6 kV × 3.50 k magnification in 2.0 mm LA0(U) mode; the yellow boxes indicate the
approximate region shown in the detail images immediately below.

2.2. Electronics and Algorithm Design

The electronics consist of four wires attached to each of the corner nodes and one wire connected
to the the conductive cloth upper layer. These five wires were attached directly to the GPIO pins
of a microcontroller (ATmega328, Atmel Corporation, San Jose, California). The GPIO pins were
programmable to be set either as an analog input, ground, Vdd or high impedance (set as an input,
but not read).

This allows 45 permutations of which many are not useful (for example, all pins set to ground).
To estimate the position of a touch, the permutations shown in Table 1 are used. This utilizes the top
fabric node as the analog input, and applies Vdd and ground to the four corners in different patterns to
allow estimation of the position of the touch. For example, see the node values in Figure 7a and the
top two rows in Table 1, which provide an estimate of the horizontal and vertical locations.

In order to estimate forces, an estimate of the contact resistance was used, where higher contact
resistances correspond to lower forces. This is presumed to be due to the perforated nature of the
intermediate layer, where increased force causes additional connections to be made through more of
the holes, increasing the area of contact. The contact resistance was measured by calculating the ratio
of the contact resistance to the bulk resistance of the pad. Since the bulk resistance of the pad should
stay constant for different interaction forces, this allows a measurement of the contact resistance and
therefore the force. The fabric node was set to either ground or Vdd and at least one corner node was
set to the opposite, either Vdd or ground. Then a different corner node was used as an analog-to-digital
converter to read the contact resistance ratio. This yields up to 16 different permutations with eight
each being the opposite of the other eight that could be used to estimate force. The eight used are
shown in Table 2.

The permutations outlined in Tables 1 and 2 require the pins to be set differently so that each
permutation used must be set up and read in sequence. The ability of pins to change between the four
states used here is inherent to many microcontrollers, so additional circuitry is not needed. This allows
a minimum setup that can be very small: for example, if an ATTiny85 (Atmel Corporation, San Jose,
California) were to be utilized, the setup shown in Figure 7b would be sufficient, with only five wires
and one microprocessor. Because the pins are set electronically, the process of setting the pins and
reading the value takes approximately 1 ms on the hardware used here, so a tradeoff must be made
between reading many permutations and receiving a fast update rate.
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Figure 7. Smart skin electronic node schematic (a) and minimal smart skin setup requires supporting
interface electronics between microcontroller and skin pad (b).

Table 1. Permutations used for position. Top four rows use linear method, bottom four rows use
diagonal method.

Node # 1 2 3 4 Fabric

Vvert Gnd Gnd Vdd Vdd ADC
Vhoriz Gnd Vdd Vdd Gnd ADC

Vdd −Vvert Vdd Vdd Gnd Gnd ADC
Vdd −Vhoriz Vdd Gnd Gnd Vdd ADC

Vdiag1 Gnd HiZ Vdd HiZ ADC
Vdiag2 HiZ Gnd HiZ Vdd ADC

Vdd −Vdiag1 Vdd HiZ Gnd HiZ ADC
Vdd −Vdiag2 HiZ Vdd HiZ Gnd ADC

Table 2. Permutations used for force.

Node # 1 2 3 4 Fabric

Vf 1 Gnd Gnd ADC HiZ Vdd
Vf 2 Gnd Gnd HiZ ADC Vdd
Vf 3 ADC HiZ Gnd Gnd Vdd
Vf 4 HiZ ADC Gnd Gnd Vdd

Vdd −Vf 1 Vdd Vdd ADC HiZ Gnd
Vdd −Vf 2 Vdd Vdd HiZ ADC Gnd
Vdd −Vf 3 ADC HiZ Vdd Vdd Gnd
Vdd −Vf 4 HiZ ADC Vdd Vdd Gnd

As the system was found to be accurately described by a third order polynomial in Section 2.3,
it was assumed that the inverse mapping, where the voltages measured were used to predict the
position, was also assumed to be third order. Therefore a two-by-three order polynomial with
cross-terms was used to evaluate the position of the touch. The third order direction was in the
direction that the voltage sweep went along: for example, the Vhoriz was used as the third order term
when calculating X. An example of the fit used can be seen in Equation (1).

X =
[
V3

h V2
h Vv VhV2

v V2
h V2

v Vh Vv 1
]
·[

a7 a6 a5 a4 a3 a2 a1 a0

]T (1)

The calibration data was used to create coefficients utilizing this equation, and those coefficients
were programmed on the microcontroller, enabling the acquisition of real-time position data. This data
was then leveraged by the robot controller in the collaborative interaction experiment.
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The relation between node voltages and applied force was not found to have parametric model.
Instead, we utilized a Neural Network (NN) regression to relate the node voltage to the applied force.
For this approach we used the eight permutations found in Table 2. Using a known applied force,
we then fit the NN regression weights in a three-layer NN setup. Hidden layer 1 consisted of ten nodes,
hidden layer 2 consisted of five nodes, and the output consisted of one node. The two hidden layers
utilized a sigmoid activation function while the output node used a pure linear activation function.
The calibration data for force was collected and used in a standard back-propagation scheme to train
the model. The feedforward model was then implemented in the microcontroller.

In many robotic cases, estimation of continuous force values is not necessary. Instead, it is often
preferable to provide alerts when force values exceed a threshold or assume certain discrete force
levels. Here, the force estimation from the NN regression was used to estimate three discrete force
levels: Low Force (2.5 N < F < 7.5 N), High Force (12.5 N < F < 17.5 N), and No Force (F < 0.5 N).

For the most basic force use, any force information above a certain threshold is assumed to be
contact. This ensures that the signal could be sent directly to the emergency stop circuit of the robot if
contact is to be avoided, or could validate that position data is corresponding to an actual touch.

2.3. Finite Element Modeling and Simulation

The position-sensing algorithm was based on a finite element model of conduction diffusion.
The methods outlined in [34] were modified to include a 14.7 cm square with external Neumann
boundaries and four pads in each corner that were quarter circles of 1 cm radius with Dirichlet
boundaries. This was numerically solved using MATLAB’s (MathWorks, Natick, MA, USA) Partial
Differential Equation toolbox solving an n = 10, 417 node steady-state diffused conduction system:
−∇ · (σ∇(V)) = q, E = ∇(V), with V = 5 volts. The results of the simulated diffusion can be seen in
Figure 8a, showing one of the linear permutations of corner electrode voltages, and in Figure 8b for a
single diagonal permutation.
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Figure 8. Finite element simulation with (a) linear and (b) diagonal sweep. Inverse mapping of
(c) linear and (d) diagonal voltages to position (white area does not map to workspace, i.e., it indicates
voltage combinations that were never observed).
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A two-dimensional polynomial fit was used to predict the voltage mapping. This polynomial
was fit to the data using least squares regression with bisquare robustness correction. This allows
a microprocessor to evaluate in real-time due to the minimum number of floating point operations
needed. The simulated voltages display even and odd symmetry, which is what led us to use quadratic
and cubic terms. As these terms were the minimum required to account for the curvature observed in
Figure 8a,b, the order of the polynomial model mapping voltage to position was set to the same degree.

While a fit of the predicted voltage at a given point, as [34] showed, is useful, for the skin
application the inverse solution was required so that a position estimate could be given for a given
observed voltage. This was achieved by simply fitting the X and Y dimensions each to a third-order
polynomial of the voltages V1 and V2, which are explained further in Table 1. The fitting of the
polynomial for X is shown in Figure 8c, where the white area represents voltage combinations not
present in the simulation.

To evaluate the level of overfitting, we ran an Akaike Information Criterion (AIC) analysis.
This determined which terms from the full third-order polynomial with cross-terms were required
and which were extraneous (Equation (2)). We used the residual sum of squares (RSS) to evaluate
a model’s maximum likelihood estimate. Figure 9a shows the diminishing returns beyond eight terms,
corresponding to a third-order by second-order polynomial with cross-terms.

AIC = 2k + n ln(
RSS

n
) (2)

In addition to the linear sweep method from [34], we found that a diagonal sweep, holding the
other two corners at high impedance, provided a similar level of quality to the linear method with the
same polynomial order.
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Figure 9. Akaike information criterion (AIC) of best inverse mapping polynomial fit to (a) linear and
(b) diagonal FEM.

We again evaluated the level of overfitting by running an AIC analysis to determine which terms
from the polynomial were required and which were extraneous. Figure 9b shows the diminishing
returns beyond nine terms, corresponding to a third-order by second-order polynomial with
cross-terms.

These two methods can also be combined into a single least-squares fit, which provides a very
small benefit in simulation but can be used in the physical system to reduce Gaussian error by using
four separate readings instead of just two.

2.4. Experimental Design

The proposed smart skin was evaluated through a series of experiments to validate our inverse
kinematic model and to assess utility with regards to collaborative robotics. A variety of calibration
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routines were required to validate this inverse model. The first calibration routine was performed for
the two-dimensional position of force application. The second calibration routine fit the parameters for
the force magnitude. The third calibration routine validated the inverse kinematic model with the skin
in multiple stretched states.

2.4.1. Experiment 1

The position-sensing of the skin was tested using a calibration routine involving a fixed force
applied in a regular two-dimensional grid with 1 cm spacing. This regular grid was achieved by the
use of the Complete Operating Room Robot for Virtually Unassisted Surgery (CORVUS) [37], a robot
arm that allowed precise positioning of the touches. To provide accurate simulation of a human touch,
a molded finger made of silicone was used as shown in Figure 10 and outlined in Section 2.1. The
force was continuously monitored through the use of a load cell, and the robot applied a constant force
through the use of a controlled compression distance. These X−Y positions were combined with the
voltages measured for each of the permutations in Table 1. This data was then used in MATLAB to find
the coefficients for the third-order polynomial as outlined in Section 2.2.

Figure 10. A custom robotic arm was used to calibrate position sensing in typical human tactile
interactions by applying known forces in a known two-dimensional grid via a human finger replica.

2.4.2. Experiment 2

The calibration of force was achieved through the same synthetic finger and force-detecting load
cell as in Experiment 1. Both the measured force and the voltage permutations from Table 2 were
recorded simultaneously at 30 Hz throughout the touch event. The force data was collected at a single
location in the pad’s center.

This data was then used to train the Neural Network regression model, where the input variables
consisted of the voltage permutations from Table 2 and detailed in Section 2.2.

2.4.3. Experiment 3

To evaluate accuracy in a stretched state, the skin was placed under an XYZ linear stage shown
in Figure 11a that automatically actuated forces in a regular grid. The skin sample was placed in a
micrometer stage on a stationary table. On the Z stage, a conductive end-effector followed a downward
trajectory onto the skin. The skin was stretched by bracing the left and right 5 mm strips in a vice
clamp attached to a micrometer. The calibration grid was set to a constant 5 mm spacing in X and
Y for each stretch state shown in Figure 11b. The grid location and sensor data for each touch was
logged for one second with an average taken for each node permutation. The skin was tested at a
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neutral 100% stretch state (90 mm between clamps), a 106% stretch state (95 mm between clamps), a
111% stretch state (100 mm between clamps), a 122% stretch state (110 mm between clamps), and a
133% stretch state (120 mm between clamps). The skin was tested without a top fabric layer in order to
avoid extraneous contact artifacts between clamped layers. Instead, the force-actuating end effector on
the Z stage was covered with the conductive fabric node. The true position and conductance data was
then fit to the proposed polynomial surface model for each stretch level to assess the degree to which
the polynomial fit method works across a range of stretch levels.

(a)

Clamp

133% Stretch

Calibration Grid (Stationary) Micrometer

100% Stretch

(b)

Figure 11. Stretch evaluation setup is shown in (a) while a schematic of the stretch evaluation setup is
shown in (b).

Additionally, during the stretch test the bulk resistance of the pad was measured by adding
a shunt resistor to each node and calculating the voltage differential across the resistor to estimate the
current flow into or out of the pad. This sensing modality requires yet another permutation, where the
fabric and two nodes are high impedance, with one node grounded and one node at Vdd. This was
logged for each touch at each stretch level. This additional circuitry would only be necessary in practice
if the skin was to be stretched or unstretched actively during use.

2.4.4. Experiment 4

Multiple experiments were conducted to assess the utility of the smart skin in a collaborative
robotic setting. The first experiment was designed to evaluate the skin’s use as an emergency
stop detector on an industrial robot. The skin was applied to the surface of the distal link of
a custom-made industrial robot (CORVUS). The robot’s emergency stop circuitry was then attached to
the microcontroller of the smart skin via a solid-state relay. The skin was set to react to any non-zero
force as an emergency stop event, and the microcontroller was sampling at 150 Hz. The CORVUS
robot proceeded on a trajectory at 3 mm/s towards the synthetic finger, which was mounted on a load
cell in order to measure the force that the robot applied to the finger as shown in Figure 12. In addition
to the force data, the state of the emergency stop circuit was recorded for every timestep. To evaluate
repeatability of the emergency stop functionality, the experiment was run 20 times.
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Figure 12. Known forces were applied to the skin mounted on a link via the silicone-cast finger attached
to a load cell.

In order to further evaluate the emergency stop functionality of the smart skin, the test was
run with the synthetic finger replaced by a human test subject’s arm (Figure 13a). The skin was
programmed to trigger an emergency stop in a similar manner to the above experiment, and again the
robot was commanded to take an unsafe trajectory that intercepted the human. The experiment was
repeated 20 times to test for repeatability.

(a) (b)

(c) (d)

Figure 13. The skin is shown with: (a) An arm placed in the path of the robot; (b) A finger placed in the
path of the robot; (c) Evidence of physical stretching near 150% and (d) An example collaborative use case.

2.4.5. Experiment 5

The second functionality experiment was designed to evaluate the smart skin’s use in
a human-robot interaction. The skin was placed on the CORVUS robot in the same manner as
in Experiment 4; however, in this case the skin was programmed to detect the location of a touch and
to forward that information to the robot, which was programmed to move in the opposite direction
at a speed proportional to the estimated force. The direction was assumed to be from the point of
contact towards the central axis of the robot link, which essentially made the direction anti-normal to
the skin surface so that the robot would move directly away from the finger. The finger used was the
same load-cell mounted synthetic finger as the above experiments, allowing the force to be monitored



Sensors 2018, 18, 953 13 of 22

continuously during the interaction. The synthetic finger was moved manually towards the skin and
the robot was either programmed to remain still (control) or take evasive action.

3. Results

The skin used in the experiments met the requirements of stretchability and flexibility, with Figure 13c
showing stretch to approximately 150% of rest size without tearing. The skin also proved resilient to the
repeated application of stress, exhibiting no change in electrical properties.

The application of the skin attached to the CORVUS arm’s irregular surface was successful,
with the skin still functioning as expected, and is shown in Figure 13b.

An overall outline of the results concerning model validation and collaborative experiments can
be found in Table 3.

Table 3. Summary Overview of Experimental Results.

Experiment Primary Result

1 Stationary Calibration RMSE = 7.02 mm
2 Force Calibration R2 = 0.875
3 Stretch Calibration RMSE = 2.5± 1.5 mm
4 Emergency Stop Threshold = 0.5 N
5 Collaborative Control Collaboration Force = 10 N

3.1. Experiment 1

The calibration of the skin’s position estimation was used to determine the polynomial coefficients
with R2 values of 0.9934 for the fit in the X direction and 0.9978 for the fit in the Y direction. The position
accuracy had a mean absolute error of 3.32 mm and the root mean square error was 7.02 mm.
The corners and boundaries showed the highest error rates, and 90% of all position error was below
5.7 mm. Figure 14 shows the three-dimensional polynomial fit of the X direction, and Figure 15 shows
the three-dimensional polynomial fit of the X direction.

Figure 14. Polynomial fit in X (R2 = 0.993).
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Figure 15. Polynomial fit in Y (R2 = 0.998).

3.2. Experiment 2

The results of 144 different touch incidents at the same central location of the skin are plotted
in Figure 16. A Neural Network (NN) regression model relating node voltage to true load-cell force
showed an R2 value of 0.875.
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Figure 16. Neural Network model relating node voltage to force (R2 = 0.875).

Additionally, a force magnitude classification was performed using the NN regression wherein
the true force was used to segment the data into two categories: Low Force (2.5 N < F < 7.5 N) and
High Force (12.5 N < F < 17.5 N). Using the voltage data from these two categories, the output of the
NN regression was plotted against the two ranges of force magnitude (Figure 17). The results indicate
clear separation between the low and high force ranges.
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Figure 17. Estimated force versus force magnitude category.

3.3. Experiment 3

The stretched skin provided good polynomial fits in X and Y (Figure 18), with no systemic
differences between the unstretched and 133% stretch cases.

The results of the stretch test show that the error does not increase as the skin is stretched
(Figure 19), staying at approximately 2.5 mm with a standard deviation of 1.5 mm. This allows the
skin to be calibrated at any number of stretch levels.

The results of the stretch test also show that the bulk resistance of the pad (as measured between
electrode pairs along the top and bottom of the pad using shunt resistor current) varies with stretch
(Figure 20). Each stretch level is more than two standard deviations from the next, allowing estimation
of stretch level online by measuring the current. A calibration for that stretch level could then be
loaded to provide adaptable stretch functionality.
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Figure 18. The skin (a) unstretched and (b) at 133% stretch, with the actual point pressed represented
by blue circles and the red line signaling the point estimated by the inverse mapping polynomials to
indicate error.
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Figure 19. Accuracy of position estimation over various stretch levels. Error bars show (+/−) one
standard deviation.

100 110 120 130
Skin Stretch [%]

800

900

1000

1100

1200

1300

B
ul

k 
R

es
is

ta
nc

e 
[+

] Top of Pad
Bottom of Pad

Figure 20. Bulk resistance of the pad between electrode pairs along the top and bottom of the pad for
various stretch levels. Error bars show (+/−) one standard deviation.

3.4. Experiment 4

The results of the finger touch triggering an emergency stop can be seen in Figure 21.
The horizontal green line demarcates a force that the skin will register as a touch, which was
0.5 N. The vertical line shows the time at which the skin detected a touch and sent an emergency
stop command to the robot. The robot took approximately 100 milliseconds to come to a stop,
and oscillations continue as the robot’s entire mass dissipates the kinetic energy. The 20 iterations that
were run all resulted in successful detection of touch and triggering of the emergency stop of the robot.

In the second emergency stop experiment involving a human subject, the interaction force was
not measured quantitatively; however, no significant force on or movement of the human arm was
observed or reported during the tests. The 20 iterations that were run all resulted in successful detection
of the touch and triggering of the robot’s emergency stop function.
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Figure 21. Force on finger with emergency stop.

3.5. Experiment 5

The results of the collaborative control experiment can be seen in Figure 22. The version of the
experiment where the robot was not programmed to take evasive action (control) shows a rapidly
increasing force to the limit of the load cell, without decreasing due to the fact that the target is never
reached. The collaborative control version of the experiment, however, shows that the interaction
force remains below the example critical force of 12.5 N, staying at approximately 11 N until the finger
reaches the target position and stops moving.
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Figure 22. Force on finger with evasive action.

4. Discussion

The X and Y calibration provided an accuracy of below one centimeter, which is often sufficient
for many bulk sensing applications, such as those performed by human skin. This would provide
sufficient accuracy to allow situational awareness to a robot with a soft and durable continuous
skin. A limitation of this specific experiment, however, is that multitouch was not tested, and robust
multitouch does not seem possible with the specific methods described here. Future work should
investigate using node currents as well as node voltages to detect that a multitouch is occurring and
possibly estimate the multiple touch locations.

The force measurement provided the ability to differentiate between low and high forces,
but discrete force estimates do not provide enough repeatability to allow continuous force measurements.
The continuous force estimate had an R2 value below 0.9 and therefore may not provide sufficient
accuracy for some applications. A limitation of the experiment is that the force measurement was
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performed with a synthetic finger (effective area on the order of 1 cm2), and due to the contact-resistance
estimation method the force estimate is highly dependent upon the geometry and hardness of the
contacting object. The soft human-like object used here was chosen in order to provide the most
similarity to a real-world human-robot interaction. Also, the softer object was considered the more
important object to detect from a safety perspective, and is similarly used in the emergency stop
experiment. Additionally, the experiment was only performed at one location and one stretch level.
Therefore, future work should focus on further characterizing the force estimation, especially contacting
objects specific to the desired use case or a series of objects with defined sharp and a known stiffness,
for instance, a series of plastic cylinders with known surface area and Young’s modulus.

The stretch calibration showed that accuracy does not diminish as the skin is stretched,
although the change in calibration for each stretch level did not seem to follow an expected pattern.
Therefore, a separate calibration should be done for each stretch level expected for the desired use
case. If the use case requires the skin to be in a rigid state, such as stretching and permanently
affixing to a rigid robot link, the calibration should be done in place to provide maximum accuracy
while automatically calibrating to a functional coordinate frame. Calibration can be completed with
approximately 25 known locations in a relatively simple procedure. If the use case involves dynamic
motion, such as stretching the skin around an elbow of a robotic joint, the skin should be calibrated
to the full range of stretches expected, and the bulk resistance of the pad should be measured in real
time to determine the stretch level and appropriate calibration. A limitation of this experiment is that
the full skin was not tested and the fabric layer was substituted with a fabric-covered tip while the
perforated layer was omitted. This could have provided better contact than is realized when the entire
skin is used, which could explain why the position results for the stretch test outperformed those
for the whole skin in Experiment 1. Further work should determine the effect of repeated stretch on
functionality, compare the fabric-covered tip to the whole skin, and evaluate stretching modalities
other than the uniaxial mode shown here.

The emergency stop experiment showed the usefulness of this sensor in a robotic system.
The low-threshold force of just half a Newton is roughly equivalent to the weight of a tennis ball,
and the test was performed with a human arm and finger without causing any discomfort. A limitation
of this experiment was that it was performed in a high-speed mode, where the position calculations
were not performed and only emergency stop decisions were made.

While the force experiment showed that discrete force estimations are quite noisy, the collaborative
control experiment showed that the force could be used in a feedback loop to roughly maintain
an interaction force. The quality of the interaction will be dependent both upon the robot used and
the contacting object in a collaborative environment with humans. This could be acceptable as larger
contact objects would correspond to faster reactions, which would likely be appropriate.

Qualitative analysis was performed on the SEM scans of the skin material. The roughly 10 µm
spacing of carbon nanotubes protruding at the surface for viable contact places a theoretical lower
bound on the positional resolution accuracy achievable with this method of doping PDMS with CNT.
However, given the relatively low expression of CNTs near the surface of the sheet when compared to
those within the bulk body as shown in Figure 5, it is likely that the effective electrical contact area of
the nanotubes can be increased. It should also be noted that due to electrical constraints in practice
(such as quantization in analog-to-digital conversion), the effective resolution is practically bounded
and lower than what the CNT technology could potentially provide.

In order to enable advanced human-robot interactions in a safe and reliable manner, a robot
needs the ability to sense contact not just at the end effector, but on any point on the body. This paper
presented a stretchable, flexible skin sensor capable of discerning between discrete force values while
providing a typical positional accuracy of 5.7 mm. The two-dimensional potentiometer method
of position estimation shown here can provide two independent estimations of position for any
rectangular skin shape while also providing a crude force estimation. The ratiometric nature of the
skin surface allows continuous measurement and scaling up or down either dimension of the skin.
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Although skins were not tested far beyond the 10 cm size, theoretically the skin could be scaled from
approximately 1 cm to 1 m utilizing the manufacturing methods outlined here.

A significant limitation of the skin as shown in this paper is that the outer surface is a conductive
node, and therefore if it is contacted by anything electrically active the sensor could be damaged.
Future work should address this by investigating the use of another PDMS sheet with CNT as the
top layer, potentially with a different loading of CNT or a more conductive material such as silver
nanowire doped PDMS [38], while leaving a waterproof PDMS layer exposed on the outside of the
sensor. This top layer could also have four nodes, leading to a full eight nodes, with many more
permutations available for features such as multitouch.

During the experimentation, repeated stretching of the sensor did not seem to influence the
accuracy of the localization of touches, and the PDMS substrate that makes up the bottom layer is
inherently durable and stretchable. The stiffness of the skin is heavily influenced by the thickness
of the bottom layer, allowing different stretchability levels. The size of the holes in the middle mesh
layer could be tuned to allow different threshold forces, which would be beneficial if using the skin as
an emergency stop sensor as in Experiment 4. The layered functionality could also allow for multiple
sets of the layers outlined in this paper to be sandwiched together. This could allow different triggering
forces for different layers, or provide redundant readings for increased accuracy and safety.

This skin allows a lighter force threshold than commercial robots with torque sensors or estimators
in their joints, such as the UR5 or KUKA robots. The skin could work in concert with these robots’
sensors to increase the safe operating range or provide additional redundant force sensing for safe
human robot collaboration in close proximity.

This paper outlined two possible implementations where the skin could be used either as
an emergency stop detection sensor or to enable collaborative use in an interactive environment.
However, the skin presented here is not limited to industrial robotics. It could also be used in other
fields such as medicine, where the highly constrained surgical environment could benefit from robots
having an increased awareness of their surroundings as shown in Figure 13d. Another medical
application is prosthetics, which lack a skin-like touchability [11]. Localized touch sensations could be
transmitted from this skin through a neural interface method such as in [39], but with the benefit of
reduced cost compared to current sensors in use.

The skin outlined here provides a sense of touch to robots with an electrically simple design
through the use of affordable but durable materials that allow stretching and flexing without losing
the ability to provide sub-centimeter positional accuracy and an estimate of the force range.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of Open Access Journals
PDMS Polydimethylsiloxane
CNT Carbon NanoTube
CNT-PDMS Carbon Nanotube Doped Polydimethylsiloxane
CORVUS Complete Operating Room Robot for Virtually Unassisted Surgery
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NN Neural Network
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