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Abstract: Underwater acoustic target recognition based on ship-radiated noise belongs to the
small-sample-size recognition problems. A competitive deep-belief network is proposed to learn
features with more discriminative information from labeled and unlabeled samples. The proposed
model consists of four stages: (1) A standard restricted Boltzmann machine is pretrained using a large
number of unlabeled data to initialize its parameters; (2) the hidden units are grouped according
to categories, which provides an initial clustering model for competitive learning; (3) competitive
training and back-propagation algorithms are used to update the parameters to accomplish the
task of clustering; (4) by applying layer-wise training and supervised fine-tuning, a deep neural
network is built to obtain features. Experimental results show that the proposed method can achieve
classification accuracy of 90.89%, which is 8.95% higher than the accuracy obtained by the compared
methods. In addition, the highest accuracy of our method is obtained with fewer features than
other methods.

Keywords: underwater acoustics; machine learning; deep learning; hydrophone

1. Introduction

A passive sonar system is the main equipment for identifying underwater or surface targets
through their radiated noise. Ship-radiated noise signals are produced by ships during operation,
and they are acquired by hydrophones. Because of the convolution effect between underwater channels,
the processing of received underwater acoustic signals is extremely complex. Hence, underwater
acoustic target recognition still depends on the decision of well-trained sonarmen, which can be
highly inaccurate due to the need of continuous monitoring, and at times much affected by weather
conditions. In addition, such manual monitoring usually is affected by mood, environment and the
physical condition of human beings.

To solve these problems, considerable work has been devoted to the development of underwater
acoustic target automatic recognition systems. Most of the efforts focus on extracting relevant features
and developing nonlinear classifiers using these features. The extracted underwater acoustic target
features mainly include waveform features, wavelet features and auditory features. In the field of
time-domain waveform analysis, zero-crossing features and peak-to-peak amplitude features were
presented to describe rotation of a propeller by Meng [1,2]. However, their performance was greatly
reduced under noisy environments. Azimi-Sadjadi [3] studied features extracted based on wavelet
packets. Wei [4] classified underwater acoustic targets by combining wavelet features and principle
component analysis (PCA). In there, it was found that generally there is difficulty in determining
decomposition series of wavelets due to lack of prior knowledge. In recent years, an auditory
model was proposed to extract features using the human hearing system as a reference. Auditory
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features based on dissimilarity evaluation were put forward by Yang [5]. In [6], Zhang utilized
Mel-frequency cepstral coefficients (MFCCs) to describe underwater acoustic targets. However, their
frequency resolution was too low to describe details of the spectrum. Tuma [7] discussed the fusion
of multi-domain features and joint optimization of classifiers. Yang [8] presented an integrated
recognition system using feature fusion, feature selection and a support vector machine (SVM).
A common shortcoming of all these traditional approaches discussed above is that they used shallow
classifiers on top of hand-engineered features. This requires a considerable amount of engineering
skill, domain expertise and prior knowledge to extract good features. However, it is very difficult
to obtain enough prior knowledge of underwater acoustic targets in complex ocean environments.
The performance of these traditional methods is not satisfactory. Due to the complexity of this task,
automatic recognition of passive sonar signals is still a difficult task at present.

In recent years, deep-learning approaches have been studied as a way of building hierarchical
representations from original data. The key advantage of deep learning is that it can learn features
automatically using a general-purpose learning procedure without prior knowledge. Supervised
learning methods, instead of unsupervised pretraining methods, have gradually become the focus of
research in the fields of image recognition and speech recognition with the increase of labeled datasets.
However, large amounts of labeled data are required by supervised deep-learning models, while it is
very difficult to obtain labeled data in the field of underwater acoustic target recognition. Underwater
target recognition can be considered as a problem of small sample size. By contrast, as mentioned in [9],
unsupervised pretraining models such as deep-belief networks (DBNs) can make use of unlabeled data,
and only a small amount of labeled data is required. Therefore, DBNs are more suitable for underwater
acoustic target recognition. Unlabeled underwater acoustic data, such as ocean ambient noise and
ship-radiated noise, can be obtained much more easily compared with labeled data. DBNs can learn
basic concepts of underwater acoustic signals with a large amount of unlabeled data, and then improve
the classification performance of learned deep features with a small amount of labeled data.

Several underwater acoustic target-recognition methods based on DBN have been proposed in our
previous papers. In [10], unsupervised pretraining and group sparse punitive functions were integrated
as a hyper-regularization method to initialize the network parameters. In [11], an unsupervised
grouping method based on mutual information between features learned from ship-radiated noise was
proposed to improve the classification ability of features. However, both grouping methods in [10,11]
did not directly consider the relationship between deep features and categories.

In this paper, we propose a new DBN method called competitive deep-belief networks (CDBNs)
for underwater acoustic target recognition. The main idea of the proposed method is: (1) pretraining
the DBN with a large amount of unlabeled data in an unsupervised manner to learn basic concepts of
underwater acoustic signals; (2) grouping deep features according to their relevance with categories;
(3) using competitive learning to enhance discriminating information of deep features among groups;
(4) fine-tuning the CDBN with a small number of labeled data.

The contributions of this paper are briefly summarized as follows:

1. The proposed CDBN method integrates a new competitive learning mechanism into
deep-belief networks to learn more robust and discriminative features for underwater acoustic
target recognition.

2. The proposed CDBN method can make use of unlabeled samples to solve the small-sample-size
problem of underwater acoustic target recognition.

3. Compared with traditional hand-engineered feature-extraction methods, the proposed method
can learn features from datasets automatically, and does not require prior knowledge.

4. The experimental results demonstrated that the proposed CDBN method is effective for
underwater acoustic target recognition. It can significantly reduce the random noise and enhance
the line-spectrum characteristics of ship noises, and the CDBN features have better classification
performance than other hand-engineered features.
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This paper is organized as follows. A brief description of the proposed CDBN is given in Section 2
first. Relevant issues about the design of the CDBN system are discussed in Section 3. Section 4 shows
the experiment results and relevant discussions, followed by the conclusions in Section 5.

2. Competitive Deep-Belief Networks

The framework of the CDBN is shown in Figure 1. The training procedure is described as
follows. Firstly, an RBM is pretrained with a large amount of unlabeled data and a small number
of labeled data in an unsupervised learning way, which provides initialized parameters for further
optimization. Secondly, for the hidden layer, this architecture groups its hidden units based on
their scores corresponding to different categories. Thirdly, a competitive layer with a mechanism
of intragroup enhancement and intergroup inhibition is constructed by adding a lateral connection
among the grouped hidden units. A gradient algorithm is applied to update parameters of RBM to
build the competitive restricted Boltzmann machine (CRBM). Finally, the CDBN is constructed by
fitting a stack of the designed CRBM, and the whole model is then discriminatively fine-tuned to
maximize its probability of predicting the underwater acoustic targets.
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Hidden Layer

Hidden Layer

Hidden Layer

Labels

Input Layer

Hidden Layer

Competitive 
Layer

Back Propagation

··
·

Group Group

Competitive Learning
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Figure 1. The structure of CDBN.

3. Competitive Deep-Belief Network Design

3.1. Restricted Boltzmann Machine

RBM is a stochastic neural network with a visible layer and a hidden layer. The visible units
v = (v1, v2, ..., vn)T that represent observations are connected to hidden units h = (h1, h2, ..., hm)T that
represent features by using undirected weighted connections. To deal with real-valued ship-radiated
noise, Gaussian–Bernoulli RBM (GB–RBM) is used, in which the hidden units are binary while the
input units are linear with Gaussian noise. The weights and biases define a probability distribution
over the joint states of the visible and hidden units via the energy function [12–14]:

E(v, h|θ) =
n

∑
i=1

(vi − ai)
2

2
−

m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

viWijhj, (1)

where θ = (Wij, ai, bj) , weight Wij represents the symmetric interaction term between visible unit
i and hidden unit j, and ai and bj are biases terms. n and m are numbers of visible and hidden
units, respectively.
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The conditional distribution P(h|v, θ) is:

P(hj = 1|v, θ) = σ(bj + ∑
i

viWij), (2)

where σ(x) = 1/(1 + e−x).
Likewise, the conditional distribution P(v|h, θ) is:

P(vi = 1|h, θ) = N(aj + ∑
j

hjWij, 1), (3)

where N(µ, V) obeys the Gaussian distribution with mean µ and variance V.
The gradient of the log probability of the training data is:

∂lnp(v)
∂θ

= Eh|v[
∂E(v, h)

∂θ
]− Eh,v[

∂E(v, h)
∂θ

], (4)

where E is the expectation.
By approximating the expectations by the contrastive divergence (CD) algorithm, the gradient

can be calculated effectively. Given the training data is conditioned to the visible units, the conditional
independence of hidden units makes it easy for RBM to extract features in the posterior distribution.
Training neutral networks with limited labeled data is a nonconvex optimization problem. However,
it is often easy to obtain a large amount of unlabeled ship-radiated noise that shares several features
with labeled data from the classification task of interest. The nonconvex optimization problem can
be solved by conducting unsupervised pretraining [15]. Unsupervised pretraining is implemented
by a single-layer RBM that takes the entire unlabeled and labeled data as input. The unsupervised
training phase of RBM is designed to increase the likelihood of training data [16]. To reconstruct
ship-radiated noise accurately, the hidden units of RBM must contain information about aspects of the
data that are not relevant to its classification. To reduce this unwanted effect, competitive learning is
introduced to improve the recognition performance.

3.2. Competitive Groups

Basically, RBM is a stochastic system for modeling the underlying probability distribution of
a given dataset. When RBM has learned the distribution of ship-radiated noise properly, a part of
vectors with information is constrained in hidden neurons [17]. This assumes that the goal of training
RBM is to express the entire input acoustic signal. The actual efficiency of training RBM depends on
how well the acoustic structure of ship-radiated noise is captured. Once RBM has been well trained,
the distribution of connection weight vectors can reflect the statistic property of ship-radiated noise.
Inherent distribution of input vectors can be explained by capturing the statistical relevance among
the weight vectors. As a result, hidden units of RBM can be grouped by category.

One simple way of grouping hidden units is to find, for a given hidden unit, an input category
that gives rise to the highest activation of the unit, and then this hidden unit can be viewed as a
feature-extraction unit of that category. The reasoning behind this idea is that a category to which the
unit is responding maximally could be a good first-order representation of what a unit is doing [18].
Only some samples contribute to high activation of a given hidden unit; the common information
of these samples in the same category needs to be determined, but it is not easy to find that by
inspection. A statistical method is adopted by calculating the score of a given hidden unit driven by
different categories.

The RBM with m hidden units can be trained by the training data with L categories, where
h = (h1, h2, ..., hm)T represent the hidden units and k ∈ (1, 2, ..., L) represents the category number.



Sensors 2018, 18, 952 5 of 13

The activation of a given hidden unit j is hj(v, θ), which is a function of both parameter θ and input
sample v. The score of hidden unit j driven by the kth category is:

score(hjk) =
1

Xk

Xk

∑
p=1

hj(v
p
k , θ)− 1

X/k

X/k

∑
q=1

hj(v/k
q, θ), (5)

where vk is a sample of the kth category, Xk is the number of samples in the kth category, v/k is a sample
of other categories and X/k is the number of its samples. This score can be described as the difference
of average activation values between target samples and non-target samples. A score matrix with
dimension L×m is obtained.

The category that makes the score of a given hidden unit have a maximum value will be regarded
as the corresponding category of that hidden unit. The hidden units that have the maximum score will
be included in the kth group. The frame of the hidden-unit grouping method is shown in Figure 2.
In general, each hidden unit belongs to only one group, and each group contains at least one hidden
unit. Otherwise, the RBM is probably in a state of under-fitting. By applying this grouping method,
the model makes the preliminary selection of hidden units and plays a role of initialization for the
subsequent competitive learning.

Class L

Class 2

Class 1

G1

G2

···

···

GL

Figure 2. Grouping method.

3.3. Competitive Layer

After the hidden units of RBM have been grouped as Gk, where k = 1, 2, ..., L, the lateral connection
is added between any two hidden units to build the competitive layer. The numbers of units at the
input layer and competitive layer are both constant values. The competitive layer has a number of
groups equal to the desired number of clusters. Each group in the competitive layer is assigned to one
of the predetermined categories, and they compete with each other during training. Lateral inhibitions
between groups are from small negative weights connected in units across groups. The activation
function is sigmoid. Figure 3 gives a diagram of competitive layer, where the dashed lines represent
negative weights. Thus it is possible to make up the competitive mechanism of intragroup enhancement
and intergroup inhibition. According to the competitive mechanism, as long as the outputs of hidden
units differ slightly, the network will eventually make the layer have only one activation group.
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Group 1 Group k Group L

1h
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1c jc
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Figure 3. Competitive layer.
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After competing with each other, the group that resembles the input vector the most wins the
competition. Thus, input vector v is classified into a category to which the winner neuron belongs.
To optimize the weights of RBM, a gradient-based algorithm is applied with the objective function:

O =
1
2

m

∑
j=1

[cj − hj(v)]2, (6)

where c = (c1, c2, ..., cm)T is a competitive layer and h = (h1, h2, ..., hm)T is the hidden layer.
For a single training sample v, the objective function O is the sum of variances of the competitive

layer with the hidden layer for adapting each weight in shape to improve the extent of clustering.
For each output unit j in the competitive layer, the desired partial derivative is:

∂O
∂Wij

= η(cj − hj)hj(1− hj)hj, (7)

where cj and hj represent the jth neurons of the competition layer and the hidden layer, respectively,
and η is the learning rate. The training stops once the neurons stabilize, with each neuron in the
competitive layer at the center of a cluster, and each group of such neurons mapped to a certain
category. The proposed CRBM can also fulfil the task of clustering, while keeping the RBM structure
unchanged.

3.4. Deep Architecture

After completing the training of the CRBM, the hidden units can be used as input data for training
the next one. By applying such a procedure repeatedly, a CDBN with many layers is obtained to
represent more complex statistical structures in ship-radiated noise. Recognition accuracy of the deep
model can be further improved by discriminatively fine-tuning with a cost function that measures the
discrepancy between the outputs and labels [15].

4. Experiments and Discussion

4.1. Experimental Dataset and Procedure

Experiments were conducted with sea trial data to evaluate and verify the overall performance
of the proposed CDBN method. The experimental data was recorded in the South China Sea at
a sampling rate of 22,050 Hz using an omnidirectional hydrophone placed at 30 m below sea level.
The experimental data contains both unlabeled and labeled data. Unlabeled data includes ocean
ambient noise and radiated noise from vehicles without label information. Labeled data includes
radiated noise from two classes of vehicles with label information, small boat and autonomous
underwater vehicle. These two classes of targets were approximately 3.5 km away from the recording
hydrophone, and moved along the same route with different speeds. To avoid interference, no other
ships were present within the radius of about 10 km.

There are three main sources of ship-radiated noise: internal machinery, propellers
and hydrodynamic flow noise. The spectrum of ship-radiated noise comprises both discrete
(linear frequency) and continuous spectrum. The discrete components of the noise spectrum are
unique for each underwater acoustic target, and thus can be used to identify the target. Because
ship noise has special line-spectrum characteristics, and the spectrum contains the intrinsic property
of targets, the spectrum calculated by discrete Fourier transforms (DFTs) was used as input of the
CDBN. Signals were divided into short frames of 186 ms, with each frame generally being considered
wide-sense stationary. The spectrum of each frame or sample contains 2048 frequency bins. There were
20,000 unlabeled samples and 4000 labeled samples (2000 samples for each class) in total. In the labeled
samples, 2800 samples were used for training and the rest were used for testing.

The experiment procedure is illustrated in Figure 4.
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• RBM was pretrained with 20,000 unlabeled datapoints in an unsupervised manner.
• The hidden units of RBM were grouped using 2800 labeled training datapoints.
• Competitive learning was conducted to construct a CRBM.
• A 2048-500-500-50-50 CDBN was constructed by greedy layer-wise training and supervised

fine-tuning to obtain CDBN features.
• SVM was used to evaluate the classification performance of CDBN features.
• The classification performance of CDBN features was compared with four widely used traditional

hand-engineered feature sets.

The four feature sets were MFCC features, waveform features, auditory features and wavelet
features, collectively called traditional features. MFCC features were extracted by taking the coefficients
that collectively make up a Mel-frequency cepstrum. First-order differential Mel-frequency cepstrum
coefficients (DMFCCs) and second-order differential Mel-frequency cepstrum coefficients (DDMFCCs)
were calculated [6,19]. Waveform features were extracted via signal statistical characteristics of
zero-crossing wavelength and peak-to-peak amplitude, together with their distribution [1,2]. Auditory
features were extracted according to frequency division and masking properties of the human auditory
system [5]. Wavelet features contained information of entropy of zero-crossing wavelength distribution
density of all levels of wavelet signals and the low-frequency envelope of wavelet decomposition.
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Figure 4. Experiment steps.

4.2. Grouping Experiment

The t-SNE [20] feature-visualization method was used to observe the distribution of weight
vectors in RBM and CRBM. The goal was to test whether the competitive learning can improve
discriminative performance. 500 hidden units of trained RBM were divided into two groups according
to categories. The scatter diagram of the grouped weight vectors of RBM viewed by t-SNE is shown in
Figure 5a. A similar result of first-layer CRBM in CDBN is shown in Figure 5b, which is seen to be
more distributed than that in Figure 5a. The results indicate that the proposed CRBM can learn the
differences of ship types.
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(a) (b)

Figure 5. The grouped weights viewed by t-SNE. (a) The weights of RBM (before competition); (b) the
weights of CRBM (after competition).

4.3. Feature Visualization

The distribution of samples described by CDBN features was observed by t-SNE. 200 samples
of each category were randomly selected to draw the scatter diagram. Traditional features of these
samples were extracted for comparison. The last two hidden layers were extracted as the CDBN
features, denoted as Layer1 and Layer2. Figure 6 shows the comparison of the scatter diagram of these
samples described by CDBN features and traditional features. It is obvious that CDBN features in both
Layer1 and Layer2 produce a better distribution than traditional features.

(a) Layer1 (b) Layer2 (c) MFCC

(d) Waveform (e) Auditory (f) Wavelet

Figure 6. 2-dimensional feature map viewed by t-SNE on the training samples. (a) 50 features of
Layer1; (b) 50 features of Layer2; (c) 36 features of MFCC, DMFCC and DDMFCC; (d) 8 waveform
features; (e) 24 auditory features; (f) 14 wavelet features.
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4.4. Features Evaluation

The significance of each feature was evaluated by calculating its relevancy with labels. Normalized
mutual information (NMI) was used to measure the performance [21]. Let F denote the features and L
represent the labels. NMI(F, L) is defined as:

NMI(F, L) =
H(F)− H(F|L)

max[H(F), H(L)]
, (8)

where H(·) is the entropy. It is obvious that NMI(F, L) ranges from 0 to 1. NMI = 1 when the two
variables are identical and NMI = 0 when the two variables are independent.

The significance index of all features is shown in Figure 7. The average signification index of
each feature set is shown in Table 1. The average significance index of features of Layer2 is 0.554,
which outperforms other features. The features of Layer1 perform second best. Features extracted by
our proposed algorithm outperform all competing methods.

Figure 7. Comparison of proposed methods and traditional feature-extraction methods via significance
index of features.

Table 1. Comparison of proposed methods and traditional feature-extraction methods via classification
accuracy and variance.

Methods Features Dimension NMI Accuracy/% Variance/×10−3

Traditional

MFCC [6] 12 0.315 78.9 5.1
DMFCC [6] 12 0.184 73.1 5.8

DDMFCC [6] 12 0.177 71.8 5.6
Waveform [1,2] 8 0.307 73.9 9.2

Auditory [5] 24 0.190 75.2 8.3
Wavelet [3,4] 14 0.269 76.3 7.4

CDBN Layer1 50 0.392 80.6 3.9
Layer2 50 0.554 86.7 3.7

4.5. Classification Experiment

In this section, the classification performance of CDBN features and traditional features are
compared. SVM classifiers were used to determine how well each category departs from others.
Parameters of the classifiers were selected by using 10-fold cross-validation. Average classification
accuracy over 10 random trials is reported. Results are shown in Table 1. The features of Layer1 give
a classification accuracy of 80.6%, which performs better than traditional features. The classification
accuracy of features of Layer2 is 86.7%, which is significantly higher than the accuracy obtained by all
other features.
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In addition, the combination of all traditional features and the combination of all hidden layers are
compared. In consideration of the difference of dimension, a feature-selection algorithm was applied
to the two feature sets to make a fair comparison. According to the significant index of each feature
shown in Figure 8, features were sorted in descending order, and then they were selected incrementally
to make up the input feature subsets of the SVM classifier.

Results are shown in Figure 8. By applying the feature-selection algorithm on traditional features,
the SVM classifier could achieve an accuracy of 83.42% with 36 features, while the highest accuracy
obtained on CDBN features is 90.89% with nine features. The proposed method can achieve an 8.95%
improvement of the classification accuracy on fewer features.

Figure 8. Results of feature selection on the combination of traditional features and the combination of
CDBN features.

Assuming that the first class was positive and the second class was negative, receivers operating
characteristic (ROC) curves were constructed from decision function scores of SVM classifiers obtained
on test data. Figure 9 shows the comparison of ROC curves of SVM trained on CDBN features and the
previous state-of-the-art features. ROC curves obtained from features in Layer1 and Layer2 together
with each traditional feature set are shown in Figure 9a. In addition, ROC curves obtained from the
best nine CDBN features and the best 36 traditional features are shown in Figure 9b. Normalized
area-under-ROC curve (AUC) is calculated. As shown in Figure 9a, SVM trained on features in
Layer2 has the highest AUC. The performance of Layer1 is the second best. In Figure 9b, the AUC
obtained from CDBN features is higher than that obtained from traditional features. In particular,
the SVM trained on CDBN features exhibits 100% true-positive rate at 27.5% false-positive rate, which is
lower than that trained on traditional features, and this property is desired in ship-radiated noise
recognition tasks.

(a) (b)

Figure 9. ROC curves of the proposed method and its competitors. (a) ROC curves obtained from
features in Layer1 and Layer2 together with each traditional feature set. (b) ROC curves of the best
9 CDBN features and the best 36 traditional features.
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4.6. Spectrum Reconstruction of Ship-Radiated Noise with CDBN

As mentioned in Section 4.1, the intrinsic property of ships can be expressed by the discrete
components of the spectrum of ship-radiated noise that are unique for each underwater acoustic target.
Figure 10 depicts the original spectrum and reconstruction spectrum of the small-boat noise obtained
by the first layer of CDBN. Frequency range below 7800Hz is shown for better viewing. It is obvious
that the random noise was significantly reduced, and the line-spectrum characteristics of ships were
enhanced by the CDBN method. Thus the deeper layer of CDBN can focus on the line-spectrum
characteristics of ship noise, and extract features that have more classification information. As shown
in Figures 6, 7 and Table 1, the CDBN features outperform traditional features, and can get better
classification performance.
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Figure 10. (a) Spectrum of ship-radiated noise reconstructed by CDBN; (b) Spectrum of
ship-radiated noise.

5. Conclusions

A deep-learning architecture competitive deep-belief network is presented by stacking the
proposed competitive restricted Boltzmann machine, which adjusts the activation level of the grouped
hidden units by competitive learning. It is found that the deep-belief network pretrained with a large
amount of unlabeled ship-radiated noise can solve the problem of the lack of training samples.
By introducing competitive learning, the features learned by the deep-belief network have the
self-clustering property. Compared with the traditional features, the competitive deep-belief network
features have a greater relevance with the labels. By implementing our algorithm on the underwater
acoustic target recognition task, the support vector machine trained on the competitive deep-belief
network features can achieve higher classification accuracy with fewer features and achieve 100%
true-positive rate with lower false-positive rate than other feature-extraction methods.
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Abbreviations

The following abbreviations are used in this manuscript:

RBM restricted Boltzmann machine
DBN deep-belief networks
CRBM competitive restricted Boltzmann machine
CDBN competitive deep-belief networks
SVM support vector machine
MFCC Mel-frequency cepstral coefficients
DMFCC first-order differential Mel-frequency cepstrum coefficients
DDMFCC second-order differential Mel-frequency cepstrum coefficients
DFT discrete Fourier transforms
NMI normalized mutual information
ROC receivers operating characteristic
AUC area under ROC curve
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