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Abstract: A constrained least-squares (CLS) 3D source localization method is presented for acoustic
sensor networks with sensor position errors. The proposed approach uses angles of arrivals
(AOAs) and gain ratios of arrival (GROAs) measured simultaneously at each node to estimate
the source position jointly. Compared to AOA-only localization methods, the GROAs can be used in
conjunction with AOA measurements so as to get more accurate results by exploiting the geometrical
relationship between these two measurements. Compared to time difference of arrival localization
methods, the proposed algorithm does not require accurate time synchronization over different nodes.
The theoretical mean-square error matrices of the proposed approach are derived and they are exactly
equal to the Cramér–Rao bound for Gaussian noise under the small error condition. Simulations
validate the performance of the proposed estimator.

Keywords: wireless sensor networks; source localization; sensor position uncertainty; angle of arrival;
gain ratio of arrival

1. Introduction

Source localization is one of the key tasks for acoustic sensor networks (ASNs) [1–3]. It is typically
required for surveillance or monitoring the environment, e.g., vehicle localization [1,2], helicopter
localization [4] and animal localization [5,6]. In particular, when the spatially distributed nodes are
equipped with acoustic arrays, two types of measurements, such as angle of arrival (AOA) [7] and
gain ratio of arrival (GROA) [8], can be obtained locally using array signal processing techniques.
Moreover, time difference of arrival (TDOA) [9,10] can also be obtained either in the centralized or
distributed way after precise synchronization among the arrays. In fact, the above-mentioned metrics
are complementary in terms of their geometry properties [11]. The usage of their combinations can
improve the positioning accuracy [11–15].

In the ASN setting, acoustic arrays are randomly deployed in an area. Each array or node
consists of several microphones for signal collection, a battery for energy supplies, a microprocessor
for local computation and a radio for data communication. Due to the resource limitation, e.g., power
supplement, wireless bandwidth, local computational capacity, etc., the localization task is generally
divided into two steps [1]: (1) the AOA of the source signal is estimated in each local array; (2) those
bearings are intersected to localize the target. In fact, the gain measurements can be acquired during
the process of bearing estimation [16,17]. The additional gain ratio information can be utilized in
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conjunction with AOA measurements to improve source localization accuracy. In this paper, we solve
the source localization problem using the AOA and GROA measurements jointly.

For AOA-only localization in ASNs, the target position can be estimated by intersecting
bearing lines obtained from direction finding sensors at distinct locations. The highly nonlinear
relationship between the source position and AOA measurements makes the localization problem
nontrivial. For instance, the maximum likelihood (ML) cost functions using AOAs [18] are
nonlinear and nonconvex under the Gaussian noise assumption. The iterative algorithms similar to
Gauss–Newton [19] are commonly used to handle the nonlinearity with an initial guess. However,
the global convergence of those iterative algorithms can not be guaranteed. To overcome the
shortcomings of the ML method, a semi-definite relaxation [20] and a geometrical constrained
optimization [21] are proposed to avoid the divergence problem of the ML approach for poor
sensor-target geometry cases. However, those optimization algorithms are generally computing
expensive, which obstructs their applications in sensor networks whose sensor nodes have limited
computational capability. For this reason, algebraic solutions are also received much attention,
including weighted least-squares (WLS) [14], constrained least-squares (CLS) [22] and weighted
instrumental variable (WIV) [23,24] methods, etc. Basically, the AOA algebraic localization algorithms
are mainly developed in two-dimensional (2D) space. Only a few papers have focused on the
3D scenario in formal literature. The authors in [23] firstly derived the closed-form bearing-only
pseudolinear estimator (BOPLE) using the azimuth and elevation angles jointly. Although the BOPLE
estimator is simple to implement, it has bias that does not vanish as the number of measurements
increases. In [25], the authors pointed out that coordinate system rotation can be used to reduce the
estimation bias. In [24], a two-stage weighted instrumental variable estimator has been developed and
the estimation bias is compensated. In [26], the authors developed a bias reduced method for 3D AOA
localization in wireless sensor networks with sensor position uncertainty. The bias is mainly formed
by the correlation between the measurement matrix and the measurement vector. Compared to the
WLS method, the bias can be reduced by the CLS algorithm.

When the signals are captured at the nodes, both bearing and signal amplitude information can be
gathered. The signal strength can also be utilized to improve the localization accuracy. The motivation
comes from the fact that the received acoustic signal intensity is inversely proportional to the distance
between the source and the working node. As referred to in [27], one of the challenges for energy-based
source localization is the nonconvex property of the cost function formulated from the maximum
likelihood method [2]. The approach proposed in [27] applies a projection-onto-convex-sets method
to form a convex feasibility problem, while Ref. [28] presented a semidefinite relaxation method to
avoid plunging into local minima. The above methods focus on the nonlinear least-squares problem.
Alternatively, Ref. [8] developed a closed-form solution using energy ratio measurements.

In this paper, we present a novel closed-form estimator for 3D source localization in ASNs based
on hybrid AOA and GROA measurements when the node positions have errors. The proposed method
assumes homogeneous atmospheric propagations, which have been commonly used in the related
literature mentioned above. First, we linearize the nonlinear equations under the small Gaussian
noise condition. We then derive an accurate closed-form estimator by utilizing new geometrical
relationships between the hybrid measurements and the unknown source position. The proposed
estimator can be implemented with a WLS method for simplicity if the number of sensors is small.
For a large number of sensors, the estimator is realized by using a CLS algorithm to reduce the bias.
Performance analysis shows that the theoretical mean-square error (MSE) of the proposed estimator
can achieve the Cramér–Rao lower bound (CRLB) accuracy when the measurement errors are small.
In summary, the main contributions can be listed as follows: (i) by utilizing the AOAs in conjunction
with GROAs, we develop a new WLS estimator for 3D source localization; (ii) analogous to the bias
reduction technique in [26], we present a CLS method to reduce the estimation bias with sensor
position uncertainty; and (iii) we have proved that the theoretical MSE is equivalent to CRLB under
a sufficiently small noise region.
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The remainder of this paper is organized as follows. Section 2 provides the 3D hybrid measurement
model. A Hybrid WLS algorithm is presented in Section 3. Section 4 derives the hybrid bias reduced
estimator using a CLS approach. Simulation results are included in Section 5, and Section 6 contains
conclusions.

2. Problem Formulation

We consider a 3D source localization problem in an ASN. Figure 1 shows a typical configuration
of the ASN. M nodes are randomly dispersed at positions si = [xi, yi, zi]

T and (·)T is the transpose
operation, i = 1, . . . , M. The source locates at p = [x, y, z]T . In general, the localization task includes
two steps: the first step is to measure AOAs and GROAs in acoustic nodes by exploiting the signals
emitting from the target. As for step two, those measurements are communicated to the sink node
where the source localization task is accomplished (see Figure 1b). Data transmission utilizes cluster
tree topology, which contains sink node, cluster heads and local nodes. The sink node broadcasts
network forming messages to nearby cluster heads, and these control messages are further transmitted
to local nodes. As depicted in Figure 1a, an AOA measurement consists of the azimuth and elevation
angles. The true azimuth angle θi and elevation angle φi are related to the source position and node
i by

θi = atan2 (∆yi, ∆xi) , (1)

φi = atan2 (∆zi, ∆xi cos θi + ∆yi sin θi) , (2)

where ∆xi = x − xi, ∆yi = y − yi, ∆zi = z − zi, θi ∈ (−π, π) and φi ∈ (−π/2, π/2). Let ri =

[∆xi, ∆yi, ∆zi]
T denote the range vector connecting sensor si to the target p, and ri can be expressed as

ri = p− si = ribi, i = 1, . . . , M, (3)

where ri = ‖p − si‖ is the distance between the source and sensor i, ‖ · ‖ is the Euclidean norm,
and bi = [cos θi cos φi, sin θi cos φi, sin φi]

T is the normalized range vector. Similar to [12], we assume
that the attenuation of signal gain is proportional to ri and the propagation medium is homogeneous.
The true GROA received at sensor j with respect to the reference sensor 1 is

gj1 = rj/r1, (4)

where j = 2, . . . , M, rj and r1 represent the norm of r j and r1, respectively.
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Figure 1. An example of 3D source localization for acoustic sensor networks.
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In practice, the sensor measurements are affected by the additive noise and models (1), (2) and
(4) become

θ̃i = θi + ni, φ̃i = φi + wi, g̃j1 = gj1 + ej, (5)

respectively, where ni, wi and ej are zero mean Gaussian noise terms. It should be noted that
the Gaussian-noise assumption presented in Equation (5) is only applicable to specific scenarios
when acoustic signals propagate through homogeneous atmosphere. In practice, this assumption
might be invalid. For example, the performance of acoustic localization systems deployed in the
atmosphere depends on atmospheric conditions. In most cases, atmospheric turbulence can not be
neglected [29]. In addition, multi-path effects should also be considered [30], especially for urban or
indoor scenarios. Due to these reasons, the additive noise is non-Gaussian and/or impulsive [31].
Nevertheless, Equation (5) provides a reasonable model that has been used by other researchers.
The AOA model can be found in [24,26], and the GROA model can be found in [8,12]. The Gaussian
noise assumption is a good starting point for us to study the localization performance by jointly
utilizing the AOA and GROA measurements.

Moreover, we assume that the sensor positions also have errors. Let s̃i be the noisy sensor position
vector. s̃i can be written as

s̃i = si + ∆si, (6)

where ∆si is the corresponding sensor position error. For practical applications, the node positions are
often determined by self-localization [32] or GPS and the accuracy can not be perfect. Although the
system error or bias may exist during self-positioning, it can be removed by sensor registration [33].
Similar to the assumption used in [26], we assume that ∆si follows zero mean Gaussian distribution.
Being corrupted by noise, the measurement model can be written in vector form

χ̃ = χ + η, (7)

where χ̃ = [θ̃
T , φ̃

T , g̃T , s̃T ]T is the measurement vector, θ̃ = [θ̃1, θ̃2, . . . , θ̃M]T , φ̃ = [φ̃1, φ̃2, . . . , φ̃M]T

and g̃ = [g̃21, g̃31, . . . , g̃M1]
T are the collections of the AOA and GROA measurements, and s̃ =

[s̃T
1 , s̃T

2 , . . . , s̃T
M]T is the sensor position vector. χ = [θT , φT , gT , sT ]T , θ = [θ1, θ2, . . . , θM]T , φ =

[φ1, φ2, . . . , φM]T and g = [g21, g31, . . . , gM1]
T are the vectors where the elements are the true values of

AOA and GROA. and s = [sT
1 , sT

2 , . . . , sT
M]T is the true sensor position vector. η = [nT , wT , eT , ∆sT ]T

is the independent and identically distributed zero mean Gaussian noise with covariance matrix
Q, where n = [n1, n2, . . . , nM]T is the azimuth angle measurement noise vector with covariance
matrix Qn, w = [w1, w2, . . . , wM]T is the elevation angle measurement noise vector with covariance
matrix Qw, e = [e2, e3, . . . , eM]T is the GROA measurement noise vector with covariance matrix Qe,
and ∆s = [∆sT

1 , ∆sT
2 , . . . , ∆sT

M]T is the sensor position error vector with covariance matrix Qs.
The objective of source localization problem is to estimate the location p as accurate as possible

with all the available measurements, including azimuth angles θ̃, elevation angles φ̃ and GROA g̃.

3. WLS Estimator Using Joint AOA-GROA Measurements

Given measurement model (4), our task is to find the estimate of p that can attain the CRLB
accuracy. Under the Gaussian noise assumption, it is certain that the ML estimation is optimal by
minimizing the weighted MSE of χ. However, the ML cost function is nonlinear and nonconvex with
respect to p. Numerical search is required to solve the ML nonlinear optimization problem, which is
costly, and, therefore, we seek to establish a simple closed-form solution for estimating p using AOAs
and GROAs jointly.
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Let us define

aθ,i = [sin θi,− cos θi, 0]T ,

aφ,i = [cos θi sin φi, sin θi sin φi,− cos φi]
T . (8)

Both aθ,i and aφ,i are orthogonal to bi. Premultiplying Equation (3) with aθ,i and aφ,i, Equation (3)
can be rewritten as

F i p− F isi = 0, (9)

where F i = [aθ,i, aφ,i]
T . The relationships in Formula (9) is firstly derived in [23] using orthogonal

vectors. The subspace method can facilitate the analysis for the source localization problem.
For GROAs, we first obtain the following equation from Equation (3)

2p = s1 + sj − (rj − r1)b1 + rj(bj + b1). (10)

Premultiplying Formula (10) with (bj − b1)
T yields

2(bj − b1)
T p = (bj − b1)

T [s1 + sj − (rj − r1)b1]. (11)

To derive Equation (11), the relationship rj(bj − b1)
T(bj + b1) = 0 is used, which was mentioned

previously in [14]. Substituting the relations rj = gj1r1 and r1b1 = p− s1 into (8), we have

(1 + gj1)(bj − b1)
T p = (bj − b1)

T(sj + gj1s1). (12)

Putting the 2M equations for i = 1, . . . , M from Equation (9) and the other M− 1 equations for
j = 2, . . . , M from Formula (12) together yields the matrix form

Ap = h, (13)

where A is the measurement matrix and h is the measurement vector, A = [AT
θ , AT

φ, V T
g ]

T , Aθ =

[aθ,1, aθ,2, . . . , aθ,M]T , Aφ = [aφ,1, aφ,2, . . . , aφ,M]T , V g = [v2, v3, . . . , vM]T , vj = (1 + gj1)(bj − b1),
h = [hT

θ , hT
φ, uT

g ]
T , hθ = [aT

θ,1s1, aT
θ,2s2, . . . , aT

θ,MsM]T , hφ = [aT
φ,1s1, aT

φ,2s2, . . . , aT
φ,MsM]T , ug =

[u2, u3, . . . , uM]T , and uj = (bj − b1)
T(sj + gj1s1).

In practice, only noisy vector χ̃ is available. By employing these noisy measurements,
Equation (13) becomes

η̃ = h̃− Ãp, (14)

where η̃ denotes the pseudo-linear residual, Ã and h̃ on the right side of Equation (14) are A and h with
their actual values replaced by the measurements. When the measurement noise is small, sin ni ≈ ni,
sin wi ≈ wi, cos ni ≈ 1 and cos wi ≈ 1, then we have the following approximations [26]

sin θ̂i ≈ sin θi + ni cos θi, cos θ̂i ≈ cos θi − ni sin θi,

sin φ̂i ≈ sin φi + wi cos φi, cos φ̂i ≈ cos φi − wi sin φi. (15)

According to Equations (9) and (15) and s̃i = si +∆si, we obtain the noisy pseudo-linear equations
of AOA measurements by neglecting second-order error terms

ãT
θ,i s̃i − ãT

θ,i p ≈ −niri cos φi + aT
θ,i∆si, (16)

ãT
φ,i s̃i − ãT

φ,i p ≈ −wiri + aT
φ,i∆si. (17)
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We then derive the noisy pseudo-linear equations for GROA measurements. The ranges from
the target to sensors varies due to the sensor position uncertainty, and it leads to the change of the
corresponding GROAs. With regard to noisy ranges, we have the following approximation when the
sensor position error is small

r̃j = rj + bT
j ∆sj. (18)

Accordingly, the noisy GROAs can be approximated by

g̃j1 ≈ gj1 +
bT

j ∆sj

r1
+ ej. (19)

Using Equations (12), (15) and (19) and s̃i = si + ∆si, the noisy GROA pseudo-linear equation is
given by

ũj − ṽT
j p ≈ n1rj f T

n,1bj − njrj f T
n,jb1 +w1rj f T

w,1bj − wjrj f T
w,jb1

−ejr1(bj − b1)
Tb1 + ∆s1gj1(bj − b1)

T + ∆sj f T
s,j,

(20)

where f n,i = [− sin θi cos φi, cos θi cos φi, 0]T , f w,i = [− cos θi sin φi,− sin θi sin φi, cos φi]
T and f s,j =

(bj − b1)− bjb
T
1 (bj − b1). Substituting Formulas (16), (17) and (20) into Equation (14), we obtain

η̃ = h̃− Ãp ≈ Gη, (21)

where G on the right side of Equation (21) is

G =

 Gθ 0 0 Gθs

0 Gφ 0 Gφs

Γθ Γφ Σ Γs

 . (22)

Gθ = −diag([r1 cos φ1, r2 cos φ2, . . . , rM cos φM]), Gφ = −diag([r1, r2, . . . , rM]), Gθs =

blkdiag(aT
θ,1, aT

θ,2, . . . , aT
θ,M), Gφs = blkdiag(aT

φ,1, aT
φ,2, . . . , aT

φ,M), Γθ = [dθ, Hθ], dθ =

[r2 f T
n,1b2, r3 f T

n,1b3, . . . , rM f T
n,1bM]T , Hθ = −diag([r2 f T

n,2b1, r3 f T
n,3b1, . . . , rM f T

n,Mb1]), Γφ = [dφ, Hφ],
dφ = [r2 f T

w,1b2, r3 f T
w,1b3, . . . , rM f T

w,1bM]T , Hφ = −diag([r2 f T
w,2b1, r3 f T

w,3b1, . . . , rM f T
w,Mb1]), Σ =

−diag([r1(b2 − b1)
Tb1, r1(b3 − b1)

Tb1, . . . , r1(bM − b1)
Tb1]), Γs = [ds, Hs], ds = [g21(b2 −

b1), g31(b3− b1), . . . , gM1(bM− b1)]
T and Hs = blkdiag( f T

s,2, f T
s,3, . . . , f T

s,M). The abbreviations diag(·)
and blkdiag(·) denote diagonal and block diagonal operations respectively.

Note from model (7) that Gη is zero mean Gaussian noise and the covariance matrix of Gη is
GQGT . Then, a weighted least-squares (WLS) (The WLS algorithm was presented at the 36th Chinese
Control Conference, Dalian, China, July 2017.) estimate of p can be obtained from Equation (21)

p̂WLS = (ÃTW Ã)−1 ÃTWh̃, (23)

where W = (GQGT)−1 is the weighting matrix. To implement the WLS estimator, we need to calculate
the weighting matrix W . However, the matrix W is unknown since it depends on the true source
position. We can first replace W by an identity matrix to get the least-squares (LS) initial location
estimate, and then compute W using the initial position guess and the noisy measurements. Since
the performance of WLS estimator is no sensitive to the errors in the weighting matrix W , it does not
require an accurate value. Therefore, W is updated after new measurements arrived and only one or
two repetitions are enough.
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4. CLS Estimator Using Joint AOA-GROA Measurements

Note that p̂WLS is biased because the error for h̃ is statistically dependent on the matrix of Ã.
The bias of p̂WLS does not vanish as the number of sensors goes to infinity. Inspired by the biased
reduced method proposed by Wang and Ho [26], we develop a hybrid constrained least-squares (CLS)
method in this section by using the AOA and GROA measurements jointly to reduce the bias.

4.1. Constrained Least-Squares Solution

Consider the WLS cost function from Equation (21)

J = ξT D̃TW D̃ξ, (24)

where D̃ = [−Ã, h̃] and ξ = α[pT , 1]T , and α is a scaling constant. D̃ suffers from additive noise and it
can be decomposed as D̃ = D + ∆D, where D is a noiseless version of D̃ and ∆D is the error matrix of
D̃. Substituting D̃ = D + ∆D into Equation (24) yields

J = ξT DTW Dξ + ξT∆DTW∆Dξ + 2ξT∆DTW Dξ. (25)

By doing expectation of Formula (25), the last term of Equation (25) is zero and it becomes

E[J] = ξT DTW Dξ + ξTE[∆DTW∆D]ξ. (26)

Following from Equation (26), we observe that E[J] attains the minimum if ξTE[∆DTW∆D]ξ is
zero. Thus, the constrained least-squares (CLS) solution of cost function (24) can be formulated as

min ξT D̃TW D̃ξ s.t. ξTΛξ = c, (27)

where Λ = E[∆DTW∆D] is the constrained matrix and c represents a constant and it can be any value.
The above constrained minimization problem can be solved by the Lagrange multiplier approach by
constructing the following auxiliary function

ξT D̃TW D̃ξ + λ(c− ξTΛξ), (28)

where λ is the Lagrange multiplier. The solution of ξ is the generalized eigenvector of the pair
(D̃TW D̃, Λ) by taking partial derivative of the auxiliary function with respect to ξ, resulting in
D̃TW D̃ξ = λΛξ. Finally, the CLS estimate for source localization is

p̂CLS =
ξ(1 : 3)

ξ(4)
. (29)

The use of generalized eigenvector solution to problem (27) was derived in [22] for bearing-only
target motion analysis and later generalized to the 3D case [26]. This method requires the constrained
matrix Λ to be exactly known and therefore we will discuss how to calculate Λ in the following part.

First, we evaluate the error of the augmented matrix D̃. Using the approximation (15), ∆D is
given by

∆D = RU, (30)
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where R is the (3M − 1) × (6M − 3) error matrix and elements of R are i.i.d. Gaussian random
variables. U is the (6M− 3)× 4 matrix of the coefficients related to the noise terms. R is given by

R =

 Rn Rs 0 0 0 0 0 0 0 0
0 0 Rn Rw Rs 0 0 0 0 0
0 0 0 0 0 R′n R′w Re R′s Rs1

 , (31)

where Rn = diag(n), Rw = diag(w), Re = diag(e), Rs = diag(∆s), R′n = diag([n2, n3, . . . , nM]),
R′w = diag([w2, w3, . . . , wM]) R′s = diag([w2, w3, . . . , wM]) and Rs1 = I(M−1)×(M−1)∆s1. The matrix
U can be written as

U =

[
ΨT

θn 0 ΨT
φn ΨT

φw 0 ΨT
gn ΨT

gw ΨT
ge ΨT

gs 0
βT

θn βT
θs βT

φn βT
φw βT

φs βT
gn βT

gw βT
ge βT

gs βT
gs1

]T

, (32)

where Ψθn, Ψφn and Ψφw are the matrices with their ith row, i = 1, 2, . . . , M given
by ψθn,i = [− cos θi,− sin θi, 0]T , ψφn,i = [sin θi sin φi,− cos θi sin φi, 0]T and ψφw,i =

[− cos θi cos φi,− sin θi cos φi,− sin φi]
T . The matrices Ψgn, Ψgw, Ψge and Ψgs are defined with

their jth row, j = 2, 3, . . . , M given by ψgn,j = (1 + gj1)( f n,1 − f n,j), ψgw,j = (1 + gj1)( f w,1 −
f w,j), ψge,j = b1 − bj and ψgs,j = 1

r1
∆sT

j bj(b1 − bj). The vectors βθn, βφn, βφw, βgn, βgw

and βge are given by βθn = −[ψT
θn,1s1, ψT

θn,2s2, . . . , ψT
θn,MsM]T , βθs = −[aT

θ,1, aT
θ,2, . . . , aT

θ,M]T ,
βφn = −[ψT

φn,1s1, ψT
φn,2s2, . . . , ψT

φn,MsM]T , βφw = −[ψT
φw,1s1, ψT

φw,2s2, . . . , ψT
φw,MsM]T , βφs =

−[aT
φ,1, aT

φ,2, . . . , aT
φ,M]T , βgn = [( f T

n,2 − f T
n,1)s2, . . . , ( f T

n,M − f T
n,1)sM]T , βgw = [( f T

w,2 −
f T

w,1)s2, . . . , ( f T
w,M − f T

w,1)sM]T , βge = [(b2 − b1)
Ts1, (b3 − b1)

Ts1, . . . , (bM − b1)
Ts1]

T , βgs =

[( f ′s,2)
T , ( f ′s,3)

T , . . . , ( f ′s,M)T ]T , f ′s,j = (bj − b1) +
1
r1

sT
1 (bj − b1)bj, and βgs1 = [g21(b2 − b1)

T , g31(b3 −
b1)

T , . . . , gM1(bM − b1)
T ]T . As long as ∆D is obtained, the constrained matrix is equal to

Λ = E[∆DTW∆D] = UTE[RTW R]U, (33)

where E[RTW R] is given in Appendix A.

4.2. Performance Analysis

To illustrate the performance of CLS estimator, we need to develop the theoretical MSE. We first
compute the CRLB of the proposed estimator and show that the theoretical MSE of the CLS estimator
is equal to the CRLB over the small error region. The CRLB provides a benchmark for the performance
comparison of any unbiased estimator. Let ϑ = [pT , sT ]T . The CRLB matrix of the parameter vector ϑ

is given by [34]

CRLB(ϑ) = FIM−1(ϑ) =

 ∂κT

∂p Q−1
κ

∂κ
∂pT

∂κT

∂p Q−1
κ

∂κ
∂sT

∂κT

∂s Q−1
κ

∂κ
∂pT

∂κT

∂s Q−1
κ

∂κ
∂sT + Q−1

s

−1

, (34)

where FIM represents the Fisher information matrix, κ = [θT , φT , gT ]T , ∂κ
∂pT = [LT

θ , LT
φ, qT ]T and

∂κ
∂sT = −[LT

θ , LT
φ, qT ]T . The matrices Lθ and Lφ are defined with their ith row, i = 1, 2, . . . , M given as

lT
θ,i =

1
ri
[− sin θi/ cos φi, cos θi/ cos φi, 0], (35)

lT
φ,i =

1
ri
[− cos θi sin φi,− sin θi sin φi, cos φi]. (36)
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The vector q is defined by

q =

[
b2

r1
− r2b1

r2
1

,
b3

r1
− r3b1

r2
1

, . . . ,
bM
r1
− rMb1

r2
1

]T

. (37)

According to the block matrix inversion formula [34], we have the inverse of CRLB matrix with
respect to p

CRLB(p)−1 =
∂κT

∂p
Q−1

κ
∂κ

∂pT −
∂κT

∂p
Q−1

κ
∂κ

∂sT

(
∂κT

∂p
Q−1

κ
∂κ

∂pT + Q−1
s

)
∂κT

∂s
Q−1

κ
∂κ

∂pT . (38)

It is demonstrated that the inverse of theoretical MSE matrix for CLS estimator is [26]

COV(p̂CLS)
−1 ≈ ATW A = AT(GQGT)−1 A. (39)

We let G = [Gκ, Gs], where

Gκ =

 Gθ 0 0
0 Gφ 0

Γθ Γφ Σ

 , Gs =

 Gθs

Gφs

Γs

 . (40)

Substituting Equation (40) into Equation (39) and applying the matrix inversion lemma [34] on
Equation (39) leads to

COV(p̂CLS)
−1 = (G−1

κ A)TQ−1
κ G−1

κ A

− (G−1
κ A)TQ−1

κ G−1
κ Gs

(
Q−1

s + (G−1
κ Gs)

TQ−1
κ G−1

κ Gs

)−1
(G−1

κ Gs)
TQ−1

κ G−1
κ A. (41)

We are interested in finding COV(p̂CLS) = CRLB(p). From the expressions of Gθ,Gφ, Lθ and Lφ,
we first obtain

GθLθ = Aθ, GφLφ = Aφ. (42)

Then, using the matrices Γθ, Γφ, Σ and ∂κ
∂pT , we have

vT
j = −(bj − b1)

Tr1b1

(
bj

r1
−

rjb1

r2
1

)
+ rj f T

n,1bjl
T
θ,1 + rj f T

w,1bjl
T
φ,1 − rj f T

n,jb1lT
θ,j − rj f T

w,jb1lT
φ,j (43)

for j = 2, 3, . . . , M. Combining Equations (42) and (43), we observe that ∂κ
∂pT = G−1

κ A. Similarly, we

have ∂κ
∂sT = −G−1

κ Gs. Substituting these two expressions into Equation (38) results in CRLB(p) =

COV(p̂CLS).

5. Simulation Results

In this section, we illustrate the performance of the proposed CLS method using AOA and
GROA measurements jointly and compare it with the bearing-only WLS and CLS algorithms. We also
include the WLS estimator from (23). The weighted matrix utilized in the WLS algorithm is calculated
according to the result of the LS method.

In the simulations, we assume that M acoustic nodes are placed on the unmanned aerial vehicles
(UAVs). The UAVs are networked together to localize an aeroplane or a helicopter. The UAVs are
flying at the same speed and in the same direction. The positions of UAVs are generated randomly
within a 500 m × 500 m × 50 m cube. The target location is set at (1000 m, 1000 m, 1000 m). Figure 2
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plots the sensor-target geometry, where the red circle denotes the position of the node and the blue star
represents the location of the target.
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Figure 2. The geometry of the target and nodes.

The acoustic nodes on each UAV platform can take azimuth, elevation and GROA measurements
simultaneously. The azimuth error, elevation error, GROA error and the sensor position error are
independent and they follow zero mean Gaussian distribution with diagonal covariance matrices
Qn, Qw, Qe and Qs. For simplicity, the covariance matrices of azimuth noise and elevation noise
are set equal and Qn = Qw = σ2

AOA I. We make comparisons over various AOA, GROA and sensor
position errors, whose noise powers are denoted by σ2

AOA, σ2
GROA and σ2

s , respectively. We will
examine the localization accuracy where one noise variance varies while the other noise powers are
fixed. To alleviate the dependency of a particular geometry, we first do experiments over 100 random
geometries. For each geometry, the number of Monte Carlo runs is 50.

5.1. Fixed Number of Nodes

We first consider the source localization scenario when the number of nodes is fixed at 10.
To compare the performance of the algorithms, we compute the average mean square error (MSE),

MSE =
1
K

K

∑
k=1

[
(x− x̂k)

2 + (y− ŷk)
2 + (z− ẑk)

2
]

, (44)

where (x̂k, ŷk, ẑk) is the estimated target position at the k-th simulation run, and K is the total number
of runs. In the figures drawn as follows, we will use log-scale for MSE to show the wide range of the
levels examined in this example, which is given by 10 lg(MSE).

We set the standard deviation of the AOA measurement noise from 0.5◦ (0.0087 radian) to 5◦

(0.087 radian), that of the GROA noise from 10−4 to 10−2 and that of the sensor position error from
10−2 m to 10 m.

In Figure 3, we plot the average MSE results as σAOA varies, where σGROA and σs are fixed at
3× 10−3 and 10−2 m, respectively. The MSEs of the AOA-only WLS, AOA-only WLS, AOA-GROA
WLS and AOA-GROA CLS methods are drawn by the blue circle, blue square, black star and black
upper triangle, respectively. The black solid line is the CRLB of the proposed method. As can be seen,
the proposed CLS estimator using AOA-GROA outperforms the other methods, and it can achieve
CRLB when σAOA is below 1.5◦. From Figure 3, we observe that the GROA information can be used to
improve location accuracy. The AOA-GROA WLS algorithm outperforms the AOA-WLS method to
8 dB. Note that a difference of 3 dB is equivalent to multiplying 2 in the MSE calculation. Compared to
the AOA-CLS method, the AOA-GROA CLS algorithm has better performance and the improvement
is about 9 dB. The performance of the AOA-GROA WLS and the AOA-GROA CLS are quite close
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when σAOA is below 0.5◦. This is because the biases of both methods are small at a low noise level.
However, the AOA-GROA CLS is more beneficial to reducing the bias when σAOA is above 1◦.
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Figure 3. Average MSE results of AOA-only WLS, AOA-only CLS, AOA-GROA WLS and AOA-GROA
CLS methods, σAOA varies, whereas σGROA = 3× 10−3 and σs = 10−2 m.

Figure 4 shows the average MSEs of the methods as σGROA varies, where σAOA and σs are fixed at
10−2 radian and 10−2 m. When σGROA is above 10−2, using both AOAs and GROAs gives about the
same accuracy as using AOAs only. This is because the proposed algorithm puts much more weight
on AOAs rather than GROAs at a high level of σGROA. When σGROA is below 5× 10−4, the average
MSE of the proposed method does not reduce as the value of σGROA gets small. This is because the
performance is dominated by the GROAs and the bias introduced by the GROAs can not be neglected.
The estimation results of the AOA-only WLS and the AOA-only CLS in Figure 4 are the same because
these two methods are not related to σGROA.
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Figure 4. Average MSE results of AOA-only WLS, AOA-only CLS, AOA-GROA WLS and AOA-GROA
CLS methods, σGROA varies, whereas σAOA = 10−2 radian and σs = 10−2 m.

Figure 5 depicts the average MSE performance of the methods as σs varies, where σAOA and σGROA
are fixed at 10−2 radian and 3× 10−3, respectively. Figure 5 validates the proposed AOA-GROA CLS
method, which provides superior performance on the sensor position uncertainty. The AOA-GROA
CLS method is very useful for a small value of σs. When σs reaches 10 m, the results of using the
AOA-GROA WLS and AOA-GROA CLS methods are almost the same.
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Figure 5. Average MSE results of AOA-only WLS, AOA-only CLS, AOA-GROA WLS and AOA-GROA
CLS methods, σs varies, whereas σAOA = 10−2 radian and σGROA = 3× 10−3.

5.2. Changed Number of Nodes

In this subsection, we consider the location accuracy of various methods when the number of
nodes varies. The number of nodes changes from 3 to 100. All nodes are randomly placed within
a 500 m × 500 m × 50 m cube. The position of the target is fixed at (1000, 1000, 1000) m. As such,
we can illustrate that the number of nodes can affect the location accuracy.

Similar to the experiments done in the case of fixed number of nodes, we do comparisons with
a various number of nodes using the localization methods mentioned above. All results are shown in
Figures 6 and 7. Figure 6 compares the MSEs of the solutions, where the standard deviations of σAOA,
σGROA and σs are fixed at 10−2 radian, 3× 10−3 and 10−2 m, respectively. Figure 7 illustrates the MSE
performance, where the standard deviations of σAOA, σGROA and σs are fixed at 0.05 radian, 3× 10−3

and 10−2 m, respectively.
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Figure 6. Average MSE results of AOA-only WLS, AOA-only CLS, AOA-GROA WLS and AOA-GROA
CLS methods with respect to various number of nodes, σAOA = 0.01 radian, σGROA = 3× 10−3 and
σs = 10−2.
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Figure 7. Average MSE results of AOA-only WLS, AOA-only CLS, AOA-GROA WLS and AOA-GROA
CLS methods with respect to various number of nodes, σAOA = 0.05 radian, σGROA = 3× 10−3 and
σs = 10−2.

In these two figures, the localization algorithms appear to have better performance as the number
of nodes increases. Note that the localization methods can significantly decrease MSE when the
number of nodes is below 15. On the contrary, the localization algorithms improve performance very
slowly when the number of nodes is above 20. A large number of nodes do not provide much benefit.
For practical applications, we need to balance the costs of devices against their localization accuracy.
If the localization accuracy is designated in advance, node selection is required to optimize the lifetime
of ASNs and this will be our future work.

6. Conclusions

In this paper, we propose a CLS source localization method for acoustic sensor networks by jointly
using the AOA and GROA measurements in the presence of node position errors. The proposed
AOA-GROA CLS estimator is simple to implement and it does not require the initial guess. Compared
to the AOA-only method, the proposed algorithm has better performance with the assistance of
additional GROA information. Simulations validate the performance of the proposed estimator.
The theoretical performance analysis is also conducted in this paper, and it predicts that the MSE of
the proposed method can attain the CRLB over the small Gaussian region.
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Abbreviations

The following abbreviations are used in this manuscript:

AOA Angle of arrival
ASN Acoustic sensor network
BOPLE Bearing-only pseudolinear estimator
CLS Constrained least-squares
CRLB Cramér–Rao lower bound
GROA Gain ratio of arrival
LS Least-squares
ML Maximum likelihood
MSE Mean square error
TDOA Time difference of arrival
WIV Weight instrumental variables
WLS Weighted least-squares

Appendix A

Assume that the noise vectors n, w and e are independent from each other and the measurement
noise from each sensor is subject to independence. Then, the covariance matrix of η can be written as

Q =


Qn 0 0 0
0 Qw 0 0
0 0 Qe 0
0 0 0 Qs

 . (A1)

Note that Q is a diagonal matrix and the weight matrix W = (GTQG)−1 is symmetrical. If we
partition the weighting matrix W as follows:

W =

 W11 W12 W13

W12 W22 W23

W T
13 W T

23 W33

 , (A2)

where W11, W22 and W12 have the same size M×M, the matrices W13, W23 have size M× (M− 1)
and W33 is a (M− 1)× (M− 1) matrix. According to (26), it is straightforward to have

E[RTW R] =



Q11
n 0 Q12

n 0 0 Q̄13
n 0 0 0 0

0 Q11
s 0 0 Q12

s 0 0 0 Q̄13
s Q̄13

s1

Q12
n 0 Q22

n 0 0 Q̄23
n 0 0 0 0

0 0 0 Q22
w 0 0 Q̄23

w 0 0 0
0 Q12

s 0 0 Q22
s 0 0 0 Q̄23

s Q̄23
s1

(Q̄13
n )T 0 (Q̄23

n )T 0 0 Q̄33
n 0 0 0 0

0 0 0 (Q̄23
w )T 0 0 Q̄33

w 0 0 0
0 0 0 0 0 0 0 Q33

e 0 0
0 (Q̄13

s )T 0 0 (Q̄23
s )T 0 0 0 Q̄33

s 0
0 (Q̄13

s1)
T 0 0 (Q̄23

s1)
T 0 0 0 0 Q̄33

s1



, (A3)

where Q11
n = Qn �W11, Q12

n = Qn �W12, Q22
n = Qn �W22, Q̄13

n = [0(M−1)×1, Q′n]
T �W13, Q′n =

diag([n2, n3, . . . , nM]), Q̄23
n = [0(M−1)×1, Q′n]

T �W23, Q̄33
n = Q′n �W33, Q22

w = Qw �W22, Q̄23
w =

[0(M−1)×1, Q′w]T �W23, Q′w = diag([w2, w3, . . . , wM]), Q̄33
w = Q′w �W33, Q33

e = Qe �W33.
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