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Abstract: In this paper, a novel time-frequency signature using resonance-based sparse signal
decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and
manifold learning is proposed for feature extraction of ship-radiated noise, which is called
resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with
oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution.
Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory,
non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature
signature of all these characteristics in the form of a time-frequency signature by the following steps:
first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon
the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map
the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal
non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to
fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to
produce the improved RTFM signature. All of the case studies are validated on real audio recordings
of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees
of noise pollution manifest the effectiveness and robustness of the proposed method.

Keywords: ship-radiated noise; resonance-based sparse signal decomposition; manifold learning;
phase space reconstruction; resonance-based time-frequency manifold

1. Introduction

Underwater ship-radiated noise, in which entire spectra are widely distributed from as low as
5 Hz to as high as 100 KHz, contributes dramatically to oceanic ambient noise [1]. Ship-radiated
noise is composed of four types due to the generated sources: propulsion noises, propeller noises,
auxiliary noises and hydrodynamic noises [2]. It is known that the broadband and tonal components
are caused by the propeller and associated cavitation noises [1,3]. Quasi-periodic harmonics with
low-frequency narrowband components are produced by the propulsion engines and propellers,
whose amplitudes and frequencies are independent of ship speed [4–6]. Therefore, the harmonic
elements play an important role in the detection and classification of ship-radiated noise [7]. As the
signals are severely corrupted by the inevitable environmental noise and transient interference after
long-range transmission, feature extraction and noise mitigation of ship-radiated noise are an intricate
and challenging task [3]. The signal model of ship-radiated noise can be expressed as follows [8]:

x(t) = s(t) + n(t) (1)
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where x(t) is the raw signal collected by the hydrophone, s(t) is the clean signal of ship-radiated noise,
and n(t) denotes complex environmental noise.

The techniques of feature extraction and noise mitigation are extensively applied to underwater
targets such as underwater acoustic signal detection, sea-bottom exploration and marine biological
monitoring [8] etc. Thus, the topic of advanced feature extraction and noise mitigation methods attracts
extensive attention. In the past two decades, the feature extraction of ship-radiated noise has been
extensively explored by developing the advanced techniques of underwater signal processing [9].
The oscillation nature, duffing oscillator [10] and stochastic resonance theory [11] are utilized to
detect the line-spectrum of ship-radiated noise. According to their non-stationary nature, emerged
time-frequency analysis techniques are much more suitable for non-stationary signals for combining the
advantages of methods that provide the non-stationary information in the time domain and frequency
domain, such as the short-time Fourier transform (STFT) [12,13], wavelet transform (WT) [7,14] and
the Hilbert–Huang transform (HHT) [15,16]. Taking into consideration the non-linear nature of
ship-radiated noise, numerous methods are employed for non-linear feature extraction, including
phase space reconstruction [17,18], fractal-based approaches [19,20] and complexity measures [21], etc.
Taking the non-stationary and non-linear features into account simultaneously, some effective
algorithms were developed to accurately capture embedded non-linear and non-stationary information.
For example, Fei Bao analyzed ship-radiated noise in the subspace of intrinsic mode functions in [22]
that were obtained by empirical mode decomposition [23], because the extraction of non-linear features
becomes much more feasible by the non-linear analysis of individual decomposed components.
In [24], manifold learning using auditory model features was adopted to obtain more effective
features of ship-radiated noise signals. Manifold learning is widely applied to non-linear feature
extraction of diverse applications. It can visualize a low-dimensional non-linear signature hidden in
high-dimensional data-processing by methods incorporating principal component analysis (PCA) [25],
isometric feature mapping (IsoMap) [26], locally linear embedding (LLE) [27] and local tangent space
alignment (LTSA) [28] etc. The determined information can be reserved well by manifold learning
for its inherent manifold signature; however, the random noise will be eliminated as it does not
have a stable skeleton form. Therefore, manifold learning also demonstrates a good noise mitigation
performance. Recently, time-frequency manifold (TFM) [29] based on time-frequency distribution
(TFD) and manifold learning has been proposed to extract the non-stationary and non-linear feature,
and this reduces the noise that corrupts the objective signal. Noise mitigation can be classified into
two categories: the filter-based and the wavelet decomposition-based strategies. The main principle
of filter-based denoising algorithms is to seek out the appropriate center frequency and bandwidth,
in order to preserve the narrowband signal component and discard the noise component from in-band
noise. The theoretical basis of the wavelet decomposition algorithms is the idea of multi-resolution
analysis [30]. Motivated by the oscillatory nature and denoising issue, resonance-based sparse signal
decomposition (RSSD) [31] was proposed to extract the oscillatory signature and condense the noise.
The merits of RSSD are as follows: (1) in-band noise can be removed by RSSD; (2) the oscillatory
signature can be captured from a signal with severe noise corruption; (3) the prior information of the
objective signals is not required.

Due to the generating mechanism of ship-radiated noise and the effect of underwater acoustic
channels, a signal of ship-radiated noise has the characteristics of oscillation, non-stationary and
non-linear. By considering these three characteristics simultaneously, we propose a new technique for
extracting the time-frequency features of ship-radiated noise called resonance-based time-frequency
manifold (RTFM). However, TFM does not provide any approach for the oscillatory nature of the
vibrational signals. The main contributions are as follows: (a) the oscillatory information contained
in the high-resonance component is extracted by the RSSD algorithm, which can facilitate the noise
mitigation compared to the conventional TFM method; (b) the proposed algorithm is validated based
on the real experimental datasets. Section 2 introduces the detail of the proposed method. Section 3
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is devoted to the results and analysis of the real audio recording of ship-radiated noise. Finally,
the conclusion is presented in Section 4.

2. Methodology

In this paper, the aim of the proposed method is to capture an effective and robust time-frequency
signature of ship-radiated noise under severe noise corruption that reveals the characteristics of
oscillation, non-stationary and non-linear simultaneously. To comprehend our method, four techniques
are integrated as RTFM, which consists of RSSD (the link of the RSSD toolbox: http://eeweb.poly.edu/
iselesni/TQWT/index.html), phase space reconstruction (PSR) (the link of the PSR codes: http://cn.
mathworks.com/matlabcentral/fileexchange/54693-phase-space-reconstruction), TFD and manifold
learning, as shown in Figure 1. The main principle of the RTFM is as follows. First, RSSD is employed
to extract a high-oscillatory signal which represents the periodic oscillatory component hidden in
the ship-radiated noise signal, and to purge low-oscillatory signal and residual signal which denote
the transient pulse signal and white Gaussian noise, respectively. Second, the PSR method is used
to convert the 1-D high-oscillatory signal to the multidimensional signals in the high-dimensional
phase space. Third, the TFDs using a STFT spectrogram is produced in the high-dimensional phase
space. Finally, manifold learning is performed on the TFDs to generate the RTFM signature which
is the intrinsic non-linear feature embedded in the original signal. To improve the performance of
the final RTFM signature, a synthetic TFM signature is produced by proportionally overlapping the
top two RTFMs together. The RTFM is fit for extracting the inherent features hidden in the original
signal depending on the combination of the characteristics of non-stationary, non-linear and oscillation.
The effectiveness of the synthetic RTFM signature is validated by comparing it with the TFM method
based on real ship-radiated noise signals acquired from the sea.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 22 

is devoted to the results and analysis of the real audio recording of ship-radiated noise. Finally, the 
conclusion is presented in Section 4. 

2. Methodology 

In this paper, the aim of the proposed method is to capture an effective and robust time-
frequency signature of ship-radiated noise under severe noise corruption that reveals the 
characteristics of oscillation, non-stationary and non-linear simultaneously. To comprehend our 
method, four techniques are integrated as RTFM, which consists of RSSD (the link of the RSSD 
toolbox: http://eeweb.poly.edu/iselesni/TQWT/index.html), phase space reconstruction (PSR) (the 
link of the PSR codes: http://cn.mathworks.com/matlabcentral/fileexchange/54693-phase-space-
reconstruction), TFD and manifold learning, as shown in Figure 1. The main principle of the RTFM 
is as follows. First, RSSD is employed to extract a high-oscillatory signal which represents the periodic 
oscillatory component hidden in the ship-radiated noise signal, and to purge low-oscillatory signal 
and residual signal which denote the transient pulse signal and white Gaussian noise, respectively. 
Second, the PSR method is used to convert the 1-D high-oscillatory signal to the multidimensional 
signals in the high-dimensional phase space. Third, the TFDs using a STFT spectrogram is produced 
in the high-dimensional phase space. Finally, manifold learning is performed on the TFDs to generate 
the RTFM signature which is the intrinsic non-linear feature embedded in the original signal. To 
improve the performance of the final RTFM signature, a synthetic TFM signature is produced by 
proportionally overlapping the top two RTFMs together. The RTFM is fit for extracting the inherent 
features hidden in the original signal depending on the combination of the characteristics of non-
stationary, non-linear and oscillation. The effectiveness of the synthetic RTFM signature is validated 
by comparing it with the TFM method based on real ship-radiated noise signals acquired from the 
sea. 

( ) ( )m
xx t PS t→

( ) ( , )m m
x xPS t TFD t f→

( , ) ( , )m d
x xTFD t f RTFM t f→

( , )d
xRTFM t f  

Figure 1. Flow chart of the resonance-based time-frequency manifold (RTFM) algorithm. 

2.1. Resonance-Based Sparse Signal Decomposition 

Resonance-based sparse signal decomposition is an effective technique for extracting the 
sustained oscillatory component that is concealed in a ship-radiated noise signal. RSSD aims to 
decompose the objected signals into high-oscillatory, low-oscillatory and residual components, 
where the high-oscillatory component is a signal consisting of multiple simultaneous sustained 
oscillations, the low-oscillatory component is a signal consisting of non-oscillatory transients, and the 
residual component is Gaussian white noise [31,32]. Both high- and low-oscillatory components may 

Figure 1. Flow chart of the resonance-based time-frequency manifold (RTFM) algorithm.

http://eeweb.poly.edu/iselesni/TQWT/index.html
http://eeweb.poly.edu/iselesni/TQWT/index.html
http://cn.mathworks.com/matlabcentral/fileexchange/54693-phase-space-reconstruction
http://cn.mathworks.com/matlabcentral/fileexchange/54693-phase-space-reconstruction


Sensors 2018, 18, 936 4 of 21

2.1. Resonance-Based Sparse Signal Decomposition

Resonance-based sparse signal decomposition is an effective technique for extracting the sustained
oscillatory component that is concealed in a ship-radiated noise signal. RSSD aims to decompose
the objected signals into high-oscillatory, low-oscillatory and residual components, where the
high-oscillatory component is a signal consisting of multiple simultaneous sustained oscillations,
the low-oscillatory component is a signal consisting of non-oscillatory transients, and the residual
component is Gaussian white noise [31,32]. Both high- and low-oscillatory components may be either
a high-frequency signal or a low-frequency signal. Meanwhile, the pulses in the high-oscillatory
component are alien from those of the low-oscillatory component which are not reflected in the
frequency domain, due to the degree of their oscillations. The high-oscillatory and low-oscillatory
components cannot be extracted by frequency-based methods. Therefore, RSSD is a non-linear
signal-decomposition algorithm based on the oscillatory behavior of the signals, rather than frequency
or scale. Note that in-band and out-band noise can be removed by the RSSD algorithm, but the
filter-based method has no ability to reduce in-band noise. A tunable Q-factor wavelet transform
(TQWT) [31] and morphological component analysis (MCA) [33,34] are adopted in the RSSD algorithm.
TQWT is applied to obtain the basic functions of high-Q and low-Q wavelet transforms and obtain
the corresponding wavelet coefficients for signal decomposition. MCA is a general method for
signal decomposition based on sparse representation, which is utilized to decompose the signal into
high-oscillatory, low- oscillatory and residual components.

2.1.1. Q-factor and Signal Oscillatory Behavior

The quantity of the quality factor (Q-factor) reflects the oscillatory intensity of one signal. The
Q-factor is defined as follows [35]:

Q = fc/BW (2)

where fc is the center frequency, and BW is the bandwidth. When the input signal has the sampling
rate fs, the center frequency fc of the level j is given by [36]:

fc = αj 2− β

4α
fs (3)

and the bandwidth BW is expressed as [36]:

BW =
1
2

βαj−1π (4)

where α and β are the scaling parameters of low-pass and high-pass scaling, respectively. According to
(2)–(4), the Q-factor can be derived in the form of α and β as below [32]:

Q =
2− β

β
(5)

It is obvious from Figure 2 that a signal with a higher Q-factor reveals a higher oscillatory
intensity in the time-domain and, at the same time, better frequency concentration, and vice versa [36].
The suitable selection of Q-factor values for the wavelet basis functions is vital to the effective extraction
of the oscillatory information that is embedded in ship-radiated noise signals. When the analyzed
signal is comprised of more oscillatory components, the higher Q-factor values of the wavelet basis
function should be chosen and vice versa. Compared with the frequency-based filtering methods,
resonance-based methods have the overwhelming superiority that the Q-factor can be utilized to
separate the signals with distinct oscillatory behaviors, even when they are distributed at the same
frequencies [35].
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Figure 2. Wavelet waveforms and the corresponding spectra of frequency response under the different
parameters. (a) waveform with Q = 3, r = 3. (b) Spectrum with Q = 3, r = 3. (c) waveform with
Q = 3, r = 6. (d) Spectrum with Q = 3, r = 6. (e) waveform with Q = 6, r = 3. (f) Spectrum with
Q = 6, r = 3.

2.1.2. Tunable Q-Factor Wavelet Transform

Essentially, the tunable Q-factor wavelet transform is a discrete-time wavelet transform (DWT) [37]
with adjustable constant dual Q-factors, over-complete bases and a perfect reconstruction property [32].
The flexibility of the TQWT is such that the Q-factors of DWT can be adjusted due to the oscillatory
behavior of the observed signal. The frame of the TQWT is due to the discrete dyadic DWT
which employs the analysis and synthesis filter banks with two channels and real-valued scaling
parameters [32], as exhibited in Figure 3. For each level, two channels are made up of a high-pass filter
Hh(w) and a low-pass filter Hl(w), where Hh(w) and Hl(w) are constructed as below [32]:

Hh(w) =


0 |w| ≤ (1− β)π

µ
(

απ−w
α+β−1

)
(1− β)π ≤ w ≤ απ

1 απ ≤ |w| < π

(6)
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Hl(w) =


1 |w| ≤ (1− β)π

µ
(

w+(β−1)π
α+β−1

)
(1− β)π ≤ w ≤ απ

0 απ ≤ |w| < π

(7)

where 0 < β ≤ 1, 0 < α < 1, and µ(w) = 0.5(1 + cos w)
√

2− cos w. Then, the outputs of the filters are
further handled by low-pass and high-pass scaling, where low-pass scaling with 0 < α < 1 is defined
as [32]:

Y(w) = X(αw), |w| ≤ π (8)

and high-pass scaling with 0 < β ≤ 1 is expressed as [32]:

Y(w) =

{
X(βw + (1− β)π), 0 < w < π

X(βw + (1− β)π), −π < w < 0
(9)

The TQWT algorithm is executed by using the two channel filter banks on its low-pass channel
iteratively and, then, further processed by the low-pass and high-pass scaling. Meanwhile, the optimal
over-complete bases can be built by the selection of the oversampling rate r to attain the optimal sparse
signal representation [38,39].
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The most important parameters of the TQWT are the quality factor Q, the oversampling rate r
and the level J. Q has been defined in Equation (5). The relationship of r, α and β can be described as
follows [32]:

r =
β

α + 1
(10)

and the maximum number Jmax of levels must be satisfied by the condition as below [32]:

Jmax =

∣∣∣∣ log(βN/8)
log(1/α)

∣∣∣∣ (11)

where N is the length of the input signal. According to Equations (5), (10) and (11), it is obvious that
the desired values of Q, r and J can be calculated by selecting the appropriate α and β. Note that the
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selection of parameters α and β for the objected signal is not affected by the variation of signal-to-noise
ratio (SNR), as the RSSD algorithm is based on the inherent oscillatory behavior of the signals.

The selection of Q, r and J must abide by the following criteria [31–36,38]. Firstly, the number
of the oscillatory wavelet. A higher value of the high Q-factor generates more oscillatory wavelets.
Setting Q = 1 leads to a wavelet transform for which the wavelet is similar to the second derivate of a
Gaussian. Therefore, Q = 1 is fit for the low Q-factor. Secondly, the assigned value of the oversampling
rate r must be strictly greater than 1 and r ≥ 3 is generally recommended to avoid the following
issue. When two-channel filter banks are iterated on its low-pass output and calculated infinitely
to perform a wavelet transform, the wavelet transform is oversampled by r. If r edges to unity, the
transition bands of Hl(w) and Hh(w) will be relatively narrow and the time-domain response will not
be well localized. If Figure 2b,d are compared, altering r does not change the shape of the frequency
response. However, when Q is invariable, increasing r leads to aggravation of the overlap of adjacent
frequency response. Finally, the level J should be set as large as possible in order to make wavelets
cover frequency band maximally and get the over-complete bases, although the bigger J leads to
higher computational complexity.

In essence, the TQWT method is a constant Q-factor wavelet transform. We need to set Qh, rh and
Jh for a high-oscillatory channel and Ql , rl and Jl for a low-oscillatory channel manually. The selection
guide of the above parameters is given in Table 1 [38].

Table 1. The selection guides of the parameters for the TQWT algorithm [38].

Parameters The Overlap of
Frequency Response Computational Cost Selection Guide

Q No direct effect ↓ if Q↑, when J = max Ql = Qmin = 1
Qh = oscillatory level of the signal

r No direct effect ↑ if r↑, when J = max
r = trade-off between overlapping
intensity of frequency responses

and computational cost

J ↑ if r↑ ↑ if J↑ J = Jmax

2.1.3. Morphological Component Analysis

Morphological component analysis has been developed to separate different morphological
features based on sparse representation [33]. The oscillatory and non-oscillatory components which
are hidden in ship-radiated noise are taken for the disparate morphological features, so MCA can
be applied to isolate and extract the oscillatory component. The aim of MCA is to construct the
optimal sparse representation of high-resonance and low-resonance components, then separate these
two components. Suppose a ship-radiated signal x = xh + xl + n, x, xh, xl , n ∈ <N , where xh, xl
and n represent the high-oscillatory component, low-oscillatory component and residual component,
respectively. Assume that xh and xl can be represented sparsely in basis Ψh and Ψl . The aim of MCA is
to estimate xh and xl individually which can be determined by minimizing the objective function as
follows [31,34]:

J(wl , wh) = ‖x−Ψlwl −Ψhwh‖2
2 +

J1+1

∑
j=1

λl,j‖w
j
l‖1 +

J2+1

∑
j=1

λh,j‖w
j
h‖1 (12)

where wj
l and wj

h are the wavelet coefficients of low-oscillatory and high-oscillatory components for
each level, respectively, J1 and J2 are the levels of low-oscillatory and high-oscillatory components, λl,j
and λh,j are the regularization parameters which are the metric of the sparse representation of wl and
wh. For the level j, the values of λl,j and λh,j are determined by the proportion of the energy of Ψl,j
and Ψh,j, expressed as [39]:

λl,j = cl,j‖Ψl,j‖2, λh,j = ch,j‖Ψl,j‖2 (13)
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where cl,j + ch,j = 1, cl,j and ch,j are the proportion parameters of the energy distribution between
low-oscillatory and high-oscillatory components. Note that when λh is constant, increasing λl will
enhance the energy of xh and impair the energy of xl , and vice versa. Furthermore, augmenting both
of λh and λl will strengthen the energy of the residual and weaken that of the oscillatory components.
Therefore, we set cl,j = ch,j = 0.5 in this paper for all levels j to balance the energy distribution of these
two components.

Then w∗l and w∗h are obtained by using the split augmented Lagrangian shrinkage algorithm
(SALSA) [31], to minimize the objective function in Equation (12). For details of the SALSA algorithm
refer to [31]. MCA provides the estimation of high- and low-oscillatory components as follows [31]:

x̂h=Ψhw∗h, x̂l=Ψlw
∗
l (14)

where x̂h is high-oscillatory signal and x̂l is low-oscillatory signal.
In conclusion, the RSSD algorithm can be summarized in Algorithm 1. The high-oscillatory

component x̂h is extracted as the input signal of the PSR method, which is used to transfer
one-dimensional objected signal to high-dimensional phase space.

Algorithm 1. Resonance-based sparse signal decomposition (RSSD).

Input: The raw signal of ship radiated noise x(t).
Output: The high-oscillatory signal x̂h and the low-oscillatory signal x̂l .

Initialize: Set the suitable α and β.

1: Calculate Qh, rh and Jh for high-oscillatory channel and Ql , rl and Jl for low-oscillatory channel;
2: Construct the wavelet bases Ψh and Ψl by TQWT based on the above selected parameters;
3: Choose the benefitting weight parameters λl,j and λh,j at each level according to Equation (13) and
observation of noise corruption intensity;
4: Work out the objected optimization Function (12) using the SALSA method and obtain the wavelet
coefficient matrices w∗

l and w∗
h ;

5: Estimate high-oscillatory and low-oscillatory components x̂h and x̂l according to Equation (14).

2.2. Phase Space Reconstruction

Phase space reconstruction [40] is an efficient method for searching for an inherent pattern of
dynamic system embedded in the time series by utilizing time-delayed versions of a time series
as coordinates for the space. This algorithm aims to depict the orbit of the dynamic system in the
reconstructed high-dimensional space [29]. It is the most used method of PSR is the time-delay
reconstruction that provides a coordinate system in essence [41–44]. For extracting the manifold
of ship-radiated noise signals, the high-dimensional phase space data is obtained by projecting a
one-dimensional high-oscillatory signal x̂h to the phase space by PSR. However, the estimation of the
embedding dimension m does not require prior knowledge. In this paper, we used Cao’s method [45]
to decide the embedding dimension m due to its superiority of robustness to noise.

Let {x̂i, i = 1, 2, . . . , N} be an observed time series with one dimension. Assume the embedding
dimension is m, the jth vector in the m-dimensional phase space can be reconstructed by the following
equation [44]:

Xm
j =

[
x̂j, x̂j+τ , . . . , x̂j+(m−1)τ

]
(15)

where x̂j is the jth data point of the high-resonance signal x̂(t) and τ is the time delay. Note that the
time delay τ = 1 could be set by Takens’ theory [46]. In this paper, we have chosen τ = 1 to obtain a
high time resolution of RTFM.

In Cao’s method, the mean value E1(m) is defined to diagnose a false neighbor as below [45]:

E1(m) = E(m + 1)/E(m) (16)
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where,

E(m) =
1

N −mτ

N−(m−1)τ

∑
i=1

‖Xm+1
j − Xm+1

η(j) ‖
‖Xm

j − Xm
η(j)‖

(17)

when m is larger than a constant value m0, the embedding dimension m0 is determined under the
condition that E1(m) would become a steady value.

High-dimensional data vectors
{

Pi
x, i = 1, 2, . . . , m

}
can be constructed from a one-dimensional

observed signal by PSR. A m × n matrix in the phase space can be formed from these vectors as
follows [40]: 

P1
x

P2
x
· · ·
Pm

x

 =


Xm

1
Xm

2
· · ·
Xm

n

 =


x1 x2 · · · xn

x2 x3 · · · xn+1

· · · · · · · · · · · ·
xm xm+1 · · · xN

 (18)

where n = N −m + 1 and Pi
x ∈ R1×n, i = 1, 2, . . . , m. The time-series vectors

{
Pi

x, i = 1, 2, . . . , m
}

can
be regarded as m-dimensional signals in the phase space.

2.3. Time-Frequency Distribution

Time-frequency distribution is the dominant tool for providing the information of a time-frequency
domain for non-stationary signals. TFD performs a mapping of the one-dimensional signal into a
two-dimensional signature combining the time and frequency information. It is well known that
STFT is one of earliest time-frequency analysis method and still one of most widely used [47,48].
The time-frequency distribution using STFT [46] is called the spectrogram. The spectrogram is a
positive and real-valued distribution which exposes a synthetic structure of ship-radiated noise. In this
paper, we adopted the spectrogram to depict the TFD of constructed signals in the phase space. TFD is
formulated as below [48]:

TFDm
x (t, f ) =

∣∣∣∣∫ +∞

−∞
Pm

x (τ)h∗(t− τ)e−i2π f τdτ

∣∣∣∣2 (19)

where h(t) is a STFT window which is centralized at t = 0 and f = 0 and h∗(t) is the complex conjugate
of h(t). When the spectrogram is employed as high-dimensional vector

{
Pi

x|i = 1, 2, . . . , m
}

, each 1× n
vector Pi

x is mapped to the n∗ × L constructed TFD in the phase space where n∗ is smaller than n.
For m-dimensional phase space, a 3-D matrix with the size of m× n∗ × L is formed by all the TFDs.

2.4. Manifold Learning

Non-linear manifold learning is an emerging and effective method of dimension reduction to
visualize the low-dimensional non-linear manifold features from the unorganized high-dimensional
data. In this paper, we conducted LTSA (the link of the LTSA code: https://github.com/gionuno/
local_tangent_space_alignment) [28] on 3-D TFDs with the size of m× n∗ × L in high-dimensional
phase space to realize dimension reduction and non-linear manifold extraction. In mathematics,
we assume that a d-dimension manifold hidden in an m-dimensional phase space (d < m) can be
formulated as follows [28]:

f : αi ∈ <d → ϕi ∈ <m (20)

where ϕi is the resolution data of i-th TFD in the m-dimensional phase space and αi is the
low-dimensional reconstructed feature vector.

The main principle of the LTSA algorithm is described as follows [28,49]: firstly, LTSA indicates
the local geometry of the manifold utilizing tangent spaces which are learned through fitting an affine
subspace in a neighborhood of each data point. Secondly, LTSA aligns these tangent spaces to acquire
the global coordinates of each data sample in regard to the underlying manifold by a partial eigen
decomposition of the neighborhood connection matrix [50,51]. The determined non-linear information

https://github.com/gionuno/local_tangent_space_alignment
https://github.com/gionuno/local_tangent_space_alignment
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is well reserved by the LTSA algorithm on account of its intrinsic manifold, whereas the random
information (e.g., the noise) is abandoned because the inherent solid structure does not exist in the
noise [52]. We have known that the size of the 3-D TFDs matrix is m × n∗ × L. In order to adapt
the input of the LTSA algorithm, we need to transform 3-D matrix to 2-D by concatenating column
by column for each 2-D TFD matrix. After data processing, then LTSA is implemented on the 2-D
recombinant TFD matrix with the size of m× (n∗ × L).

We assume a data set Φ =
[

ϕ1, . . . , ϕ(n∗×L)

]
∈ <m×(n∗×L) with ϕi ∈ <m, which denotes the TFD

pixels in m-dimensional phase space. The d-dimensional coordinates Λ ∈ Rd×(n∗×L) are generated by
the LTSA method to construct the manifold from a data of local nearest neighbors. The LTSA method
is performed in the following steps [28,29]:

Step 1: Determining local neighborhood: the set of k neighbors Φi =
[
ϕi1 , . . . , ϕik

]
for each data

point ϕi is selected by the Euclidean distance ∆ = ‖ϕi − ϕij‖
2
2
, j = 1, 2, . . . , k.

Step 2: Local linear fitting: the basic model of the LTSA algorithm is to discover the optimal
d-dimensional affine subspace approximation for the set of k neighbors Φi by the following
optimization equation [28]:

min
ϕ,Θ,Q

k

∑
j=1
‖ϕij −

(
ϕ + Ωθj

)
‖2

2
= min

ϕ,Θ,Q
‖Φi −

(
xeT + ΩΘ

)
‖

2

2
(21)

where Ω is an orthonormal basis matrix with d columns and Θ is the local coordinates series.
The optimal ϕ is obtained by ϕi which is the mean of all the ϕij where j = 1, 2, . . . , k, the optimal Ω is
obtained by Ωi that can be taken as the d left singular vectors of Φi

(
I − eeT/k

)
corresponding to its

d largest singular values by singular value decomposition (SVD) [53], i.e., Φi
(

I − eeT/k
)
= ΩdΣdVT

d ,

and Θ is obtained by Θi =
[
θ
(i)
1 , . . . , θ

(i)
k

]
where θ

(k)
j = ΩT

i

(
ϕij − ϕi

)
. Therefore, we can gain (n∗ × L)

local coordinates Θi =
[
θ
(i)
1 , . . . , θ

(i)
k

]
, i = 1, . . . , n∗ × L.

Step 3: Constructing alignment matrix: for aligning (n∗ × L) local coordinates Θi =
[
θ
(i)
1 , . . . , θ

(i)
k

]
,

i = 1, . . . , n∗ × L to get global coordinates Gi =
[
gi1 , . . . , gik

]
, i = 1, . . . , n∗ × L, the objective is to strive

for seeking out gi and the optimal alignment matrix Li in order to minimize the reconstruction errors
Ei = Gi

(
I − eeT/k

)
− Liθi as follows [28]:

min∑
i
‖Ei‖

2 ≡∑
i
‖Gi

(
I − eeT/k

)
− Liθi‖

2
(22)

where e is an column vector of all ones. For the fixed Gi, the optimal Li is obviously given by
Li = Gi

(
I − eeT/k

)
Θ†

i = GiΘ†
i , where † represents the Moore–Penrose generalized inverse. Then, we

need to find G to minimize the overall reconstruction error defined as follows [28]:

∑
i
‖E‖2

F = ∑
i
‖GSiΛi‖2

F = ‖GSΛ‖2
F (23)

where G = [g1, . . . , gn∗×L] and S =
[
Si1 , . . . , Sn∗×L

]
. here Si is the 0− 1 selection matrix such that

GSi = Gi and Λ = diag
(

Λ1, . . . , Λ(n∗×L)

)
with Λi =

(
I − eeT/k

)(
I −Θ†

i Θi

)
. To uniquely determine

G, we impose the constraints GGT = Id. So the alignment matrix can be constructed as B ≡ SΛΛTST .
Step 4: Aligning global coordinates: first, compute the d + 1 minimum eigenvectors of B.
Second, obtain the eigenvector matrix [u2, . . . , ud+1] corresponding to the 2nd to d + 1 minimum

eigenvalues; Finally, set the global coordinates G = [u2, . . . , ud+1]
T .

The global coordinates of the low-dimensional RTFMs are equal to G = [u2, . . . , ud+1]
T .

The 3-DRTFM matrix can be recombined with the size of d × n∗ × L where d � m. We denote
this 3-D RTFM matrix as RTFMd

x(t, f ).
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3. Results and Discussion

In this paper, we used a real audio recording of ship-radiated noise which was recorded by an
underwater hydrophone in the shallow sea located on the west coast of Taiwan Strait and named as
ship A. The real observed signal, which is a time series with the data points N = 2048, is acquired
under the condition that the sampling frequency is 10 KHz, the depth of the underwater hydrophone
is 25 m, and the distance between the objectd ship and the hydrophone is about 1 km.

In this paper, the audio recordings of ship-radiated noise are regarded as the clean signals, because
the raw signal is less corrupted by the inevitable noise shown in Figure 4a. It is obvious that the clean
ship-radiated noise is a periodic oscillatory signal in a time domain and the main spectral energy
concentrates below 200 Hz, as demonstrated in Figure 4a,b. Thus, in essence ship-radiated noise is a
low-frequency periodic oscillatory signal. It is necessary to verify the performance of RTFM under
severe noise pollution and ship-radiated noise with−10 dB adopted as the observed signal, as shown in
Figure 4c,d. For the real oceanic experiment, we apply the RTFM algorithm to extract the 2-D effective
manifold signature of ship-radiated noise for visualizing the oscillatory, non-stationary and non-linear
features and eliminating the noise and interference. In this section, we demonstrate the experimental
results of RTFM signatures and synthetic RTFM signatures under severe noise corruption. Meanwhile,
we verify the effectiveness of the RTFM approach by comparing it with TFM. Note that, all of the case
studies were done against an existing database of real audio recordings of ship-radiated noise.
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Figure 4. Waveform and spectrum of the recording audio for ship radiated noise. (a) The clean
ship-radiated noise. (b) Spectrum of the clean ship-radiated noise. (c) Ship-radiated noise
(SNR = −10 dB). (d) The spectrum of signal (SNR = −10 dB).

3.1. Results and Analysis of Resonance-Based Time-Frequency Manifold (RTFM)

According to the process of the RTFM algorithm, firstly, we conducted the RSSD algorithm
on the observed signal to extract the high-resonance component. We set the scaling parameters
α = 0.867 and β = 0.4 for high-Q TQWT, hence we obtained Q1 = 4, r1 = 3, J1,max ≈ 32.43
according to Equations (5)–(7), respectively, then chose J1 = 32. Likewise, α = 0.667 and β = 1
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were chosen for low-Q TQWT, then we gained Q2 = 1, r2 = 3, J2 = 3. RSSD decomposes the
observed signal into high-oscillatory, low-oscillatory and residual components, which are shown in
Figure 5a–c, respectively. In the two sub-figures of Figure 5a,b, we zoom locally in on the time interval
[0.75 : 0.8] to observe the oscillatory and pulse components. It is obvious from Figure 5d–f that the
spectrum of the high-oscillatory component is similar to the original signal and the inherent oscillatory
information of ship-radiated noise is kept well in the high-oscillatory component. Therefore, we extract
the high-oscillatory component, and meanwhile eliminate low-oscillatory and residual components
which denote transient interference and white Gaussian noise, respectively.Sensors 2018, 18, x FOR PEER REVIEW  13 of 22 
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of low-resonance component.

Secondly, we employed Cao’s method to ascertain the embedding dimension and conduct
PSR on high-oscillatory component extracted by RSSD to convert 1-D high-oscillatory signal to
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multidimensional signal in the high-dimensional phase space. For obtaining a high time resolution of
RTFM, we set τ = 1 and calculate E1(m) which is exhibited in Figure 6. It is evident that the value
of E1(m) ceases to change basically after m = 9. Therefore, the embedding dimension is selected as
9 according to Cao’s method. After determining the embedding dimension m = 9, the 9-dimensional
signals are constructed in the phase space in Figure 7.Sensors 2018, 18, x FOR PEER REVIEW  14 of 22 
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Figure 7. The waveforms of the constructed signals with one dimension in the phase space using phase
space reconstruction (PSR).

Thirdly, the TFD technique is used on the above constructed high-dimensional signals to reveal
non-stationary information in the phase space. As shown in Figure 8a, it is evident that the TFD of
the raw signal has high signal strength and low noise interference. Therefore, we assume that the
original recording acquired by the hydrophone is the clean signal without the noise. In Figure 8b,
the time-frequency resolution of the TFD is severely corrupted by noise interference for the original
signal with −10 dB. Compared with the TFD of the clean signal in Figure 8a, we depict the signal and
noise components where the rectangle A is the signal component and the three ellipses B, C and D
are the noise components which are the most severe places of noise corruption in the TFD. Due to
the effect of noise suppression using the RSSD algorithm, the TFD of high-oscillatory component is
demonstrated in Figure 8c where it can be found that RSSD eliminates the noise at all scales to some
extent, but the noise cannot be completely abolished especially in the ellipse D. As the time-delay
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operation of the PSR method just provides a time-delayed representation for each TFD in phase space,
noise corruption also occurs in the phase space as illustrated in Figure 8d.Sensors 2018, 18, x FOR PEER REVIEW  15 of 22 
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(d) m TFDs in high-dimensional phase space.

Finally, the LTSA algorithm is applied to the TFDs to extract the intrinsic non-linear manifold
signature and eliminate the noise. The first two RTFM signatures are acquired by the LTSA method,
as indicated in Figure 9, where rectangle A is the objected signal component and ellipses B, C and
D are the noise components. As illustrated in Figure 9a, it is quite visible that the bigger resolution
values of both the signal and noise components are reserved after the process of dimension reduction
and all of their values are positive. In Figure 9b, we can find that the resolution values of the signal
component remain positive; nevertheless, the resolution values of the noise components in ellipses B,
C and D mostly remain negative. The two patterns can be distinctly projected into the scatter plot of
these two RTFM signatures, as indicated in Figure 10, where each element signifies one pixel value in
RTFM signature. In the two sub-figures, the facts are proved once again that the pixel values of the
first RTFM signature are positive and the values of the noise components which exist in the second
RTFM signature are negative. We can find that the amplitude is the pixel values of the first RTFM, and
is a monotonic increase, seen from the x-axis. Different to the first RTFM, the second RTFM is a convex
function in the rectangular area. The signal and noise parts are separated by the peak of the convex
function where the rectangle region is noise components. Thus, we can extract the skeleton pixels from
the noise by combining the first two RTFM signatures.
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3.2. Results and Analysis of Synthetic RTFM Signatures

The idea of combining the first two RTFM signatures, which is referred to as the synthetic RTFM
signature, can effectively remove the noise components and highlight the intrinsic manifold to improve
the quality of the RTFM signature. In Figure 10, it is obvious that the positive/negative values of the
first RTFM correspond to the negative/positive values of the second RTFM and the zero values are close
to the original point of scatter plot in the rectangle area which is the noise part. Therefore, the synthetic
RTFM signature can be obtained by a straightforward proportional addition. The synthetic RTFM
signature can be defined by the following equation [29]:

RTFM(t, f ) = RTFM1(t, f ) + ηRTFM2(t, f ) (24)

where η is an appropriate ratio parameter for well eliminating the noise components and RTFM(t, f ),
RTFM1(t, f ) and RTFM2(t, f ) represent the synthetic RTFM signature, the first RTFM signature and
the second RTFM signature, respectively. The extreme method is used to calculate η in this paper.
Two extreme points E1 =

(
ξ1

RTFM1, ξ1
RTFM2

)
and E2 =

(
ξ2

RTFM1, ξ2
RTFM2

)
are calculated in the noise

part of Figure 10, respectively. Therefore, η can be given as follows [29]:
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η =

∣∣∣∣∣ ξ1
RTFM1 − ξ2

RTFM1

ξ1
RTFM2 − ξ2

RTFM2

∣∣∣∣∣ (25)

Note that the positive/negative values of the first RTFM are in line with the negative/positive
values of the second RTFM. In conclusion, the synthetic RTFM signature can be adopted for the
time-frequency feature representation of ship-radiated noise. To validate the availability and robustness
of the proposed RTFM method, case studies of ship-radiated noise signals to the proposed method
were conducted in the following part.

3.2.1. Case Study for the Availability of the Proposed RTFM Method

In this case, we verified the effectiveness of the proposed RTFM method between the real audio
recording of ship A and B with−10 dB, where the description of ship A has given in the Section 3.1 and
ship B was the acoustic signal of a large commercial ship downloaded from Discovery of Sound in the
Sea (http://dosits.org/galleries/audio-gallery/anthropogenic-sounds/ship/). Ship B was acquired at
approximately 20 knots of the cruising speed and 3.2 km away from the hydrophone. The fragments
with 2048 samples intercepted from the recordings of both ship A and B were employed as the clean
signals. White Gaussian noise with −10 dB was then added to these two clean signals to produce the
objected signals.

TFM method has been applied to extract the non-stationary and nonlinear features and the fact
has been verified that the performance of TFM method is better than the wavelet-packing transform
(WPT)-based filtering, the EMD-based filtering, the continuous wavelet transform (CWT)-based
filtering, the discrete wavelet transform (DWT)-based de-nosing method and the time-domain manifold
signature method in [29]. Therefore, we select TFM method as a comparison in this paper.

The essential difference between RTFM and TFM is that the RTFM method considers the nature
of oscillation, non-stationary and nonlinear simultaneously, but TFM don’t has the ability to reveal
oscillatory feature. When RTFM method is operated on ship A and B, the RSSD parameters are
determined artificially and the embedding dimension m is selected by Cao’s method. We set the
parameters as follows: the parameters of RSSD algorithm for ship A were chosen as mentioned in
Section 3.1 and for ship B the parameters were set as Q1 = 8, r1 = 3, J1 = 28, Q2 = 1, r2 = 3, J2 = 3
and m = 6. The proposed RTFM method was applied to the ship A and B with −10 dB to extract the
effective time-frequency feature signature and denoise the signature. Meanwhile, it was compared
with the traditional TFM method to prove the availability and merits of the RTFM method in Figure 11.
In Figures 8b and 11a, both of ship A and B are contaminated by the noise, where rectangle and ellipse
denote the objected signal and noise, respectively. Synthetic TFM method is the efficient method
to reveal the non-stationary and nonlinear features and overall has a decent performance of noise
mitigation for both ship A and B, which are exhibited in Figures 11b and 10d, compared with the
TFD of the original signals in Figures 8b and 11a. However, some distinct noise components are still
doggedly reserved in the TFM signature. Especially, the ellipses B, C and D in Figure 11b and the
ellipses C and D in Figure 11d can’t be well eliminated. When we compare the RTFM signatures
of ship A and B as illustrated in Figure 11c,e with their TFM signatures, it is conspicuous that the
noise components are vanished in the ellipses B C and D of ship A and the ellipses C and D of ship
B respectively. Although some signal components with low strength of ship A and B are slightly
weakened such as rectangle A in Figure 11e, it does not affect the effective RTFM representation to
a large extent. In conclusion, the performance of noise mitigation of RTFM method is much more
prominent than TFM method. Meanwhile, RTFM signature is more effective than TFM signature in
revealing the inherent time-frequency manifold structure related to feature extraction of ship radiated
noise by carefully considering the trade-off between feature representation and noise mitigation.

http://dosits.org/galleries/audio-gallery/anthropogenic-sounds/ship/
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3.2.2. Case Study for the Robustness of the Proposed RTFM Method

To further evaluate the robustness of the proposed method, the RTFM method was conducted
on the real recording of ship A under the different SNRs which are −10 dB, −12 dB and −15 dB.
In Figure 12, rectangles and ellipses also represent the signal and noise components, respectively.
It is obvious that the time-frequency signatures of ship A deteriorated much more severely with
the decrease of SNR, which is shown in sequence in Figures 8b and 12a,c. We can find that noise
components in the elliptical area as displayed in Figure 11c were perfectly removed. Figure 12b shows
noise elements in the ellipses B and C are marginally retained. In Figure 12d, noise ingredients in the
elliptical region have a relatively higher resolution, but the objected signal constituents in rectangle A
still can be recognized readily and the RTFM method also shows a fairly good ability to eliminate noise
on the whole RTFM signature. Although the resolution strength of rectangle A is somewhat impaired
with the reduction of SNR, RTFM signatures also successfully recover the objected signal components
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from the original signal aggravated intensively by the white Gaussian noise. To balance the trade-off
deliberately between feature representation and noise elimination, the effectiveness and robustness of
the RTFM method can be manifested by the above experimental results. The RTFM method is practical
for disparate ship-radiated noise collected from various ships and different levels of noise pollution.
In conclusion, the RTFM algorithm has the case of low SNRs.
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4. Conclusions

In order to obtain more effective feature extraction and noise mitigation for ship-radiated noise,
this paper has proposed a novel RTFM signature which is comprised of RSSD, PSR, TFD and LTSA
based on simultaneously considering the characteristics of oscillation, non-stationary and non-linear.
The proposed RTFM signature skillfully visualizes a 2-D inherent time-frequency structure and extracts
the intrinsic oscillatory, non-stationary and non-linear information embedded in ship-radiated noise.
Hence, it is important to solve the difficulty of extracting the oscillatory, non-stationary and non-linear
features for ship-radiated noise.

To verify the prominent effectiveness and robustness of the RTFM method, case studies were
conducted on different datasets of ship-radiated noise and various degrees of noise pollution. All of
the case studies are done against an existing database of real audio recordings of ship-radiated noise.
Firstly, we validated the merits of the RTFM method by comparing the experimental results with the
TFM method based on the objected signal of ship A with −10 dB. In this case, the experimental results
indicate that RTFM has a better performance of feature representation and noise mitigation than TFM
in the whole time-frequency signature. Secondly, the RTFM algorithm was applied to diverse real
audio recordings of ships A and B with −10 dB, to prove further that the availability of the proposed
method was useful for various ship-radiated noise signals. Finally, we conducted the RTFM method on
the real audio recording of ship A under three diverse degrees of noise pollution, and the experimental
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results demonstrated the RTFM method has prominent robustness for different noise-pollution levels.
In conclusion, the RTFM algorithm has remarkable robustness of time-frequency representation and
noise suppression in the context of low SNRs.

In future, we will conduct further research on feature extraction based on the RTFM signature
and image-processing techniques with the aim of recognizing ship-radiated noise signals.
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