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Abstract: Health condition is a vital factor affecting printing quality for a 3D printer. In this work,
an attitude monitoring approach is proposed to diagnose the fault of the delta 3D printer using
support vector machines (SVM). An attitude sensor was mounted on the moving platform of the
printer to monitor its 3-axial attitude angle, angular velocity, vibratory acceleration and magnetic field
intensity. The attitude data of the working printer were collected under different conditions involving
12 fault types and a normal condition. The collected data were analyzed for diagnosing the health
condition. To this end, the combination of binary classification, one-against-one with least-square
SVM, was adopted for fault diagnosis modelling by using all channels of attitude monitoring data in
the experiment. For comparison, each one channel of the attitude monitoring data was employed
for model training and testing. On the other hand, a back propagation neural network (BPNN)
was also applied to diagnose fault using the same data. The best fault diagnosis accuracy (94.44%)
was obtained when all channels of the attitude monitoring data were used with SVM modelling.
The results indicate that the attitude monitoring with SVM is an effective method for the fault
diagnosis of delta 3D printers.

Keywords: delta 3D printer; fault diagnosis; attitude sensor; support vector machine;
condition monitoring

1. Introduction

Additive manufacturing, also known as 3D printing [1], is a manufacturing technique based on the
idea of material deposition and its curing layer by layer which can be implemented through different
ways and materials [2]. Since it has a lot of merits compared to traditional manufacturing methods,
the applications of the 3D printing have dramatically increased in the last few decades [3]. The primary
advantage of the 3D printing is the ability to create almost any shape or geometric feature [4]. However,
one of the main disadvantages is its inferior dimensional accuracy, since the precision of the 3D printing
is influenced by many factors which have seriously restricted its sustainable development [5]. One of
the most important factors is the mechanical transmission of the 3D printer. Hence it is necessary to
monitor the transmission condition of the 3D printer even if it has precision components [6].

In general, 3D printers can be divided into serial structure ones and parallel structure ones [7].
Although serial mechanisms with open kinematic structures usually provide large workspace, parallel
mechanisms that have closed kinematic chains show such advantages as low weight, compact structure
and especially good stiffness [8]. As one of the most common and basic parallel devices, delta 3D
printers are employed as the research object of the fault diagnosis in this work. For parallel mechanisms,
kinematics [9], dynamics [10], joint clearance [11] and friction [12] models have been well studied.
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In [13], inverse and forward kinematic analyses were performed to design a parallel robotic leg.
An optimal parameter was obtained via a multi-objective optimization. In [14], a parallel manipulator
applied for automobile piece testing purposes was designed through the analyses of kinematics,
singularities and dynamics. However, even well-designed 3D printers may encounter faults during
their lifetime. This will influence the quality of the printed products [15]. From the viewpoint of
mechanism, delta 3D printers are more likely to suffer faults than serial mechanism ones due to their
more complicated transmission structures [16]. For this reason, early diagnosis of incipient faults is a
feasible way to provide motion compensation and to avoid economic losses for delta 3D printers.

Different signals may be collected from machinery to analyze their health condition [17].
Vibratory [18,19], electric [20], oil-based [21], thermal [22], and acoustic [23] signals have all been used
to diagnose faults of machinery or its components. To improve bearing defect detection performance,
Li et al. [24] proposed a criterion fusion approach to guide the spectral segmentation process with
vibration signals. In [25], a fault diagnosis filter is designed for a nonlinear discrete-time system in the
Takagi-Sugeno fuzzy form with faults and unknown inputs. To enhance fault detection for gearboxes,
Jing et al. [26] introduced an approach based on multi-sensor data fusion with deep convolutional neural
networks. All these techniques have made great contributions to the fault diagnosis field, but they may
not be completely applicable to delta 3D printers. Hence, this paper suggests an attitude monitoring
method incorporating a machine leaning algorithm for the fault diagnosis of the delta 3D printer.

There are two basic steps for diagnosing the delta 3D printer in the present method. The first one is
the data acquisition from the attitude sensor mounted on the moving platform of the printer. Attitude
sensors have been widely applied in various fields such as to balance robots, to stabilize cameras and
devices to analyze human movement. The attitude sensor can be made extremely light and compact by
using micro-electro-mechanical system (MEMS) technology [27]. The attitude sensor based on MEMS
usually consists of three-axial gyros (angular velocity signals), three-axial accelerometers (vibratory
acceleration signals) and three-axial magnetometers (magnetic field intensity signals) [28]. Data from
all sensing elements can be fully utilized by a Kalman filter [29], and further to obtain attitude angles
relative to the reference frame of the attitude sensor including pitch, roll and yaw. At the same time,
the raw data of sensing elements are also obtained [30]. The attitude of the moving platform can be
reflected in these data. The second step in the present method is to obtain the health condition using data
classification by an intelligent algorithm [31,32]. In [33], the approach based on a SVM classifier with a
multi-sensory system is proposed to diagnose wind turbines. In [34], multimodal deep support vector
classification with homologous features was applied to diagnose gearboxes, and it achieved the best
fault classification rate compared to representative deep and shallow learning methods. In [35], fault
diagnosis is performed for the gearbox of wind turbines by using deep neural networks, which provided
a classification accuracy of 98%. SVM can be applied as a pattern classification technique proposed by
Vapnik in 1995 [36]. Suykens et al. [37] proposed least squares support vector machine (LS-SVM) to
improve SVM in the classification accuracy. To facilitate practical applications, LS-SVM has evolved from
a binary classification method to a multi-classification one [38]. Hence, we employ LS-SVM for the fault
diagnosis modelling. This is an intelligent method for the fault diagnosis of the 3D printer.

The rest of the paper is organized as follows: in Section 2, the transmission mechanism of the
delta 3D printer is introduced to analyze different fault types. The attitude monitoring is subsequently
proposed for diagnosing the printer faults. The data classification based on LS-SVM is also detailed
in this section. In Section 3, the experiment on the fault diagnosis of delta 3D printer is carried out.
The experimental results and discussions were given in Section 4. Peer methods are also compared in
this section. Conclusions are drawn in Section 5.

2. Methodology

The transmission mechanism of the delta 3D printer is introduced in the first subsection. For better
fault diagnosis of the printer, a novel method using the attitude monitoring is proposed. The next step
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is to use LS-SVM to generate a classification strategy for the data analysis. One can then obtain the
health condition of the delta 3D printer.

2.1. Transmission Mechanism Analysis of the Delta 3D Printer

For 3D printing, laying down material in layers is the additive principle of fused deposition
modeling (FDM) that was developed by Scott Crump in the late 1980s [39]. As described in Figure 1,
a filament of the material is melted in a heated extruder nozzle fixed on a moving platform and
deposited on a built platform. In company with the moving platform, the extruder nozzle is moved in
the X-Y plane to print a layer of the product. Along the Z direction the moving platform moves up one
step (the slice thickness) upon finishing this layer. The printer will repeat the aforementioned cycle for
the next layer until the built part (i.e., printed product) is completed.
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Figure 1. Schematic of the FDM process.

Based on the FDM theory, a typical delta 3D printer employs a symmetric structure for three
parallel kinematic chains [40]. Referring to Figure 2a, the delta 3D printer is composed of a built
platform, an extrusion nozzle fixed under a moving platform, six parallel arms and three sliders.
For closed-loop parallel architectures, the number of degrees-of-freedom (DOFs) indicating how many
variables to be controlled can be calculated by:

F = λ(n− j− 1) + ∑j
i fi −∑j

i pi, (1)

where F represents the DOFs of the mechanism, λ is the DOFs of the space in which the mechanism
works, n stands for the number of rigid bodies of the mechanism, j denotes the number of joints, fi is
the DOFs of each joint, and ∑

j
i=1 pi denotes the number of local DOFs and redundant constraints.

For the delta 3D printer, there are λ = 6, n = 11, j = 15, ∑
j
i=1 fi = 39 and ∑

j
i=1 pi = 6. Substituting

the aforementioned parameters into Equation (1) generates that there are three DOFs for the delta
3D printer. Thus, the delta 3D printer may be actuated by three electrical motors connected to three
linear transmission units. In these parallel kinematic chains, in fact, each chain is a parallelogram
which ensures that the moving platform is always parallel to the ground and also to the built platform.
In other words, the fault appears when the moving platform with vibration in a certain range is not
parallel to the built platform (except within the range of systematic error). This affects the printing
quality and even leads to the failure of the 3D printing task.

A typical delta 3D printer has three vertical guides. Along each vertical guide a slider moves
up and down, driven by a motor connected with a synchronous belt. The slider is connected to the
moving platform by the parallel arm with a spherical joint, also known as a joint bearing. Local views
of the slider and the moving platform are shown in Figure 2b,c, respectively. On the basis of geometric
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algorithms, it is known that the moving platform can be moved to any position in a cylindrical working
space provided a corresponding position of the three sliders.
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Figure 2. Typical structure of the delta 3D printer: (a) over view (b) local view of slider (c) local view
of moving platform.

According to the above fundamental analysis of the delta 3D printer, the wear and the clearance
of the joint bearing may lead to a bias at the moving platform (i.e., a fault of the printer). Generally,
kinematics, dynamics and wear models of a joint bearing with clearance can be established. With
reference to Figure 3, the kinematic model of the joint with clearance can be expressed as [41]:

S = RCj −RCi, (2)

where S is the eccentricity vector between the bearing and the ball with relative to global coordinate
system, RCi and RCj are the position vector of Ci and Cj in global coordinate system, respectively.
RCi and RCj can be rewritten as: {

RCi = HCit
RCj = r1 + R1h1

Cj
, (3)

where HCi is the shape function, t is the nodal coordinates of moving platform, r1 is the position vector
between the origin of local coordinate system and the global coordinate system, and h1

Cj is the position
vector of the center of gravity of the ball in the local coordinate system. The relationship between
normal and tangential velocity is formulated as: VA =

[( .
RPi −

.
RPj

)T
A
]

A

VB =
( .

RPi −
.

RPj

)
−VA

, (4)

where VA is the normal velocity, and VB is the tangential velocity.
To build the dynamics model of the delta parallel mechanism, the constraint equations among

rigid bodies can be formulated as [42]: K(q0, q1), K(q0, q2), K(q0, q3), K(q0, q4)

K(q6, q1), K(q7, q2), K(q8, q3), K(q9, q4)

K(l, q7), K(l, q8), K(l, q9), K(l, q5), K(l, q5)

 = 0, (5)
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where K(*,#) represents the constraint equation between * and #, q denotes rigid cylinder body,
and l stands for the moving platform. Then the dynamics model of delta parallel mechanism can be
expressed as:  Nq 0 KT

q
0 Nl KT

ql
Kq Kql 0




..
q
..
l
τ

 =

 Q1 + Q2

Q3 −Q4

Q5

, (6)

where Nq is the mass matrix of rigid bodies, Kq is the Jacobian matrix of the kinematic constraint

equations, Nl is the mass matrix of flexible body,
..
q is the acceleration vector of rigid bodies,

..
l is

the absolute acceleration vector of flexible body, τ is the Lagrange multipliers vector, Q1 is the
generalized external forces, Q2 is quadratic velocity quadratic velocity including gyroscopic moment
from differentiating the kinetic energy with respect to time and to the generalized coordinates, Q3 is
the elastic force of the finite element, Q4 the generalized external nodal forces and contact force and
Q5 is the quadratic velocity.

Sensors 2018, 18, x FOR PEER REVIEW  5 of 14 

 

where K(*,#) represents the constraint equation between * and #, q denotes rigid cylinder body, and 
l stands for the moving platform. Then the dynamics model of delta parallel mechanism can be 
expressed as: 






















































5

43

21

qlq

T
qll

T
qq

Q
QQ
QQ

τ
l
q

0KK
KN0
K0N




, (6) 

where Nq is the mass matrix of rigid bodies, Kq is the Jacobian matrix of the kinematic constraint 
equations, Nl is the mass matrix of flexible body, q  is the acceleration vector of rigid bodies, l  is 
the absolute acceleration vector of flexible body, τ  is the Lagrange multipliers vector, Q1 is the 
generalized external forces, Q2 is quadratic velocity quadratic velocity including gyroscopic 
moment from differentiating the kinetic energy with respect to time and to the generalized 
coordinates, Q3 is the elastic force of the finite element, Q4 the generalized external nodal forces and 
contact force and Q5 is the quadratic velocity. 

 
Figure 3. Contact kinematic of joint bearing with clearance. 

The friction-induced wear model can be expressed by [11]: 

Dμ
dE
dU

 , (7) 

where U is the wear depth, E the sliding distance, μ the linear wear coefficient, and D the  
contact pressure. 

Based on the above models, one can see that it is complicated and difficult to directly solve the 
fault problem of the delta 3D printer from the kinematics, dynamics and friction-induced wear 
models. Moreover, the above models are only for one joint. In a delta 3D printer, there are 12 joint 
bearings. Hence, in this work, a data-driven model is established for the diagnosis of the delta 3D 
printer to solve those problems. 

In brief, the fault may result from the wear of the joint bearing. It is undetectable when the wear 
is less but it affects the quality of the printed products. To avoid the establishment and solution of 
the complicated kinematics, dynamics and friction-induced wear models, we try to use only one 
sensor to monitor the health condition of the delta 3D printer by taking into account kinematics, 
dynamics and friction-induced wear. 

2.2. Data Collection in the Attitude Monitoring 

According to [43], an attitude sensor can detect 3-axial attitude angle, angular velocity, 
vibratory acceleration and magnetic field intensity signals, which represent the parameters of the 

Figure 3. Contact kinematic of joint bearing with clearance.

The friction-induced wear model can be expressed by [11]:

dU
dE

= µD, (7)

where U is the wear depth, E the sliding distance, µ the linear wear coefficient, and D the
contact pressure.

Based on the above models, one can see that it is complicated and difficult to directly solve the
fault problem of the delta 3D printer from the kinematics, dynamics and friction-induced wear models.
Moreover, the above models are only for one joint. In a delta 3D printer, there are 12 joint bearings.
Hence, in this work, a data-driven model is established for the diagnosis of the delta 3D printer to
solve those problems.

In brief, the fault may result from the wear of the joint bearing. It is undetectable when the wear
is less but it affects the quality of the printed products. To avoid the establishment and solution of the
complicated kinematics, dynamics and friction-induced wear models, we try to use only one sensor to
monitor the health condition of the delta 3D printer by taking into account kinematics, dynamics and
friction-induced wear.

2.2. Data Collection in the Attitude Monitoring

According to [43], an attitude sensor can detect 3-axial attitude angle, angular velocity, vibratory
acceleration and magnetic field intensity signals, which represent the parameters of the kinematics,
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dynamics and friction-induced wear models to a certain extent. Hence, an attitude sensor is employed
to monitor the delta 3D printer in our work. The real-time attitude angle calculation can be solved
by using the three-axial gyro, accelerometer and magnetometer separately [44]. With the gyro signal,
one has:

θi = (ωi −ωb)dt + θi−1, (8)

where θi is the angle of the i-th time, ωi is the angular velocity measured by the gyro at i-th time and
ωb is the angular velocity bias.

To calculate attitude angles, the measurements of three-axial accelerometer and three-axial
magnetometer may be applied to the following equations:

α = tan−1

(
ax√

a2
y+a2

z

)
,β = tan−1

(
ay√

a2
x+a2

z

)
,

γ = tan−1
(

my cos β+mx sin β sin α−mz sin β cos α
mx cos α+mz sin α

)
,

(9)

where α, β and γ are pitch (the angle of rotation of X-axis), roll (the angle of rotation of Y-axis) and yaw
(the angle of rotation of Z-axis), respectively; ax, ay and az are X-axial, Y-axial and Z-axial acceleration,
respectively; and mx, my and mz are X-axial, Y-axial and Z-axial magnetic field intensity, respectively.

Although the gyro has a very fast dynamic response, it has drift bias and may be affected by
the temperature. Meanwhile, with the integral error accumulation, attitude angles calculated by
gyro measurements will be inaccurate. Accelerometers are not applicable to dynamic measurement
for the influence of acceleration motion. Magnetometers are sensitive to the interference of external
magnetic fields. Hence, the attitude sensor based on MEMS and integrated with gyros, accelerometers
and magnetometers is selected in this paper. As described in Figure 4a, the attitude sensor employs
three-axial gyros assisted by three-axial accelerometers and three-axial magnetometers as well as
compensated for the temperature. The gyro drifts in the pitch and roll are corrected by accelerometers.
The correction of gyros drift in the yaw angle is performed by magnetometers. Then, using a Kalman
filter for every sensing element [45], one can obtain the accurate attitude angles relative to the reference
frame of the attitude sensor including pitch, roll and yaw as is shown in Figure 4b. By employing an
attitude sensor, one can obtain not only three attitude angles, but also raw data of the three-axial gyro,
three-axial accelerometer and three-axial magnetometer [46] filtered using finite impulse response (FIR)
filter [47]. This means that there are twelve channels in the attitude monitoring. After a comprehensive
consideration of the performance and price, the MEMS attitude sensor, whose price is about $400 US,
was selected and all-channel data were used for fault diagnosis in this work.
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Notice that the fault will be reflected by the attitude of the moving platform as long as the fault
appears on the delta 3D printer. In addition, an attitude sensor can be made extremely light and
compact by using MEMS technology. Any components in the transmission chain of the delta 3D
printer may be faulty. However, it is uneconomical and unrealistic to install one sensor in every
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transmission chain component due to the limit of the installation space. For saving the number of
sensors in a transmission chain, one can install a sensor at the end of the transmission chain to monitor
the health condition of the whole transmission chain [33]. Hence, only one attitude sensor fixed on top
of the moving platform is used as shown in Figure 4c. The connection between the moving platform
and attitude sensor is a threaded connection to ensure that there is no relative movement. With the
aid of the attitude sensor, one can easily obtain different attitude conditions of the moving platform,
which reflects the health condition of the printer. Considering that the early wear of joint bearing
is very weak, we employ LS-SVM to model the data so that the fault type of delta 3D printer can
be obtained.

2.3. SVM Modelling in the Attitude Monitoring

After collecting attitude sensor data under different fault conditions, the next step is to generate a
classification strategy. In this paper, SVM [48], one of the most precise classification algorithms in the
field of supervised learning is utilized for the fault diagnosis modelling.

Aiming at diagnosing faults, health conditions of the delta 3D printer are divided into 13 patterns
consisted of one normal and 12 faulty ones. In other words, it is a non-linear and multi-classification
issue. The standard SVM is a binary classifier to define a hyperplane that separates the data from two
different classes. As a modification version of the SVM, LS-SVM employs a least squares loss function
and equality constraints for the classification.

Given a training set (xi, yi), where xi (xi ∈ Rn) and yi (yi ∈ {−1, +1}) represent the i-th (i = 1, 2,
. . . , k) training sample and pattern, respectively. The objective function is formulated as [49]:

min
w,b,e

1
2
‖w‖2 +

1
2
ξ

k

∑
i=1

e2
i , s.t. yi[wT ϕ(xi) + b] = 1− ei, i = 1, 2, . . . , k, (10)

where ξ is error penalty factor, ei is the slack factor of yi, w is the normal vector, ϕ(·) is nonlinear
mapping function, and b is bias term. Lagrange form is defined as:

L(w, b, e,η) =
1
2
‖w‖2 +

1
2
ξ

k

∑
i=1

e2
i −

k

∑
i=1

ηi

{
yi[wT ϕ(xi) + b]− 1 + ei

}
, (11)

where ηi (i = 1, 2, . . . , k) are Lagrange multipliers. The optimal solution of the objective function is
obtained, provided that partial derivatives of Lagrange function L is equal to zero with regard to w, b,
e and η respectively. Then optimal solution can be expressed by the following linear equation:[

0 −YT

Y ZZT + ξ−1I

][
b
η

]
=

[
0
→
1

]
, (12)

where Y = [y1; . . . ; yk], Z = [ϕ(x1)
Ty1; . . . ; ϕ(xk)

Tyk],
→
1 = [1; . . . ; 1], η = [η1; . . . ; ηk]. According to

Mercer’s theorem, kernel function exists which corresponds to a dot product in a higher dimensional
space. Accordingly, the decision function of LS-SVM is given by:

f (x) = sgn

(
k

∑
i=1

ηiyiG(xi, x) + b

)
, (13)

where G(xi, x) is the kernel function. In this work, radial basis function kernel is adopted below for
non-linear data classification:

G(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
, (14)

where σ is the kernel width.
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The approaches of combination of binary classification, one-against-one and one-against-all,
are usually applied to multi-classification [50]. The method of one-against-one, which constructs
N(N − 1)/2 classifiers for N-class issue (i.e., each pair of classes has one binary classifier), is adopted
to complete multi-fault pattern recognition in this work. The testing sample x is classified by voting in
the following form:{

Vi = Vi + 1; fij(x) = 1
Vj = Vj + 1; fij(x) = −1

, i = 1, . . . , N − 1; j = i + 1, . . . , N, (15)

where Vk is the votes of k-class (k = 1, . . . , N), the original value of Vk equal to zero, and fij(x) is
the classifier between i-class (positive) and j-class (negative). If Vc is the maximum when all binary
classifiers completed the voting, then testing sample x is assigned to c-class. To avoid over fitting
problem, cross-validation algorithm was adopted to optimize parameters in this work [51,52].

There are two ways for applying the attitude sensor data in samples generation. In Equation (16),
only the optimal channel may be used. On the contrary, another feasible solution is to employ all
channels of the sensor as shown in Equation (17):

x = g1(dopt), (16)

x = g2(d1, d2, . . . , d12), (17)

where x is the training or testing sample, dopt is the optimal channel that makes the highest classification
among twelve channels, di is the i-th channel (i = 1, . . . , 12). In our work, we first employ Equation (16)
for the attitude monitoring, while applying Equation (17) for comparison.

2.4. Overview of the Present Attitude Monitoring with SVM

According to the above analysis, Figure 5 illustrates the schematic of the proposed approach,
which is also summarized as below.
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Channel_1 Channel_2 …… Channel_12

Samples
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Training vectors Training labels Testing vectors Testing labels

Trained LS-SVM model

The labels predicted by trained 
LS-SVM model for testing vectors

Accuracy of fault diagnosis  
Figure 5. Overview of the proposed approach. Figure 5. Overview of the proposed approach.

Step 1. Collect data from the attitude sensor installed on the moving platform of the delta 3D printer in
different faulty types;

Step 2. All channels data are employed to generate training and testing samples with given labels;
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Step 3. Train LS-SVM model;
Step 4. Test trained LS-SVM model;
Step 5. Output the labels (health condition of the delta 3D printer) predicted by the trained

LS-SVM model;
Step 6. Compare predicted labels with testing labels; and
Step 7. Output the fault diagnosis accuracy. End.

3. Experiments

To validate the effectiveness of the present method, an experimental setup was built as shown
in Figure 6. In the experiments, a delta 3D printer (SLD-BL600-6, SHILEIDI, Dongguan, China),
an attitude sensor (AH100B, RION, Shenzhen, China) and a laptop (Inspiron N4110, DELL, Round
Rock, DX, USA) were connected together. Resolutions of attitude angle, angular velocity, vibratory
acceleration and magnetic field intensity are less than 0.1◦, 0.1◦/s, 0.098 m/s2 and 0.25 µT, respectively.
The delta 3D printer was used to provide a predefined movement at the moving platform. Different
abrasions were pre-planted on the joint bearing. The attitude sensor was mounted on the moving
platform to collect condition data under different fault conditions. The laptop offers G-codes for the
delta 3D printer through Repetier-Host (a slicing software) and collects the output data from the
attitude sensor via an upper monitor, where the calibration of the attitude sensor, the observation
of real-time data and the adjustment of the sampling frequency can be implemented. In this work,
sampling frequency was set at 100 Hz.
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Figure 6. Experimental configurations for the fault diagnosis of the delta 3D printer.

In our scheme, the wear of a joint bearing was set as a faulty pattern. As introduced in Section 2.1,
a typical delta 3D printer has 12 joint bearings (named as A, B, . . . , and L, respectively). In the
experiments, the normal condition was label as pattern No. 1. Different faulty patterns on each joint
bearing were labeled as pattern No. 2, No. 3, . . . , and No. 13, respectively. All the 13 condition
patterns are listed in Table 1. Considering that connections between sliders, moving platform and
joint bearings are of thread, the screw (0.7 mm pitch) of each joint bearing was loosened a half-turn to
simulate a fault (i.e., 0.35 mm clearance each).
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Table 1. Condition patterns set in the experiments.

Pattern No. Description of the Delta 3D Printer

1 Normal
2 Faulty joint bearing A
3 Faulty joint bearing B
4 Faulty joint bearing C
5 Faulty joint bearing D
6 Faulty joint bearing E
7 Faulty joint bearing F
8 Faulty joint bearing G
9 Faulty joint bearing H

10 Faulty joint bearing I
11 Faulty joint bearing J
12 Faulty joint bearing K
13 Faulty joint bearing L

Before data collection, two balls were printed by the delta 3D printer used in this experiment
under the normal condition (pattern No. 1) and the faulty joint bearing A (pattern No. 2). As shown in
Figure 7, the quality of printed ball was affected by the health condition. If the fault can be detected by
using the proposed approach, one may avoid the waste of materials.
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In the experiments, a cylindrical shell model with radius 75 mm and height 0.3 mm was first
established in a 3D modeling software, and then was saved as a STL format file. The G-codes for the
trail (ten circles with radius 75 mm) of moving platform were generated by importing the STL file
into the slicing software. In this way, the theoretical movement of the moving platform is ten circles
with radius of 75 mm on the same layer in one experiment. Moving a circle with radius 75 mm takes
moving platform 21.3 s in the experiments. Each experiment was repeated three times for collecting
the data using the aforementioned program. In other words, there are 30 circle data in each condition
pattern. In each condition pattern, 300 samples were obtained by evenly dividing each circle into ten
pieces. Finally, 3900 samples were obtained in total. In each data sample, there are 12 channels each of
which has 213 data acquisition points. All samples were randomly sorted before training and testing
of LS-SVM model. In each data analysis, 2730 (70%) samples were used for model training, while the
rest 1170 (30%) samples for the fault diagnosis testing.

4. Results and Discussion

4.1. Fault Diagnosis Results Using the Proposed Method

Using all channels data as a sample, the LS-SVM modelling and testing were repeated 6 times.
The highest accuracy is 95.56% and the lowest one is 93.42%. The mean value of the fault diagnosis
accuracy is 94.44% with variance 0.00007101. The overall accuracy of each time is provided in Table 2.
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Table 2. Fault diagnosis results using LS-SVM model with all channels data.

Channel
Repeat Order

Mean (%) Variance
1(%) 2(%) 3(%) 4(%) 5(%) 6(%)

All
channels 94.79 95.56 93.50 94.96 94.44 93.42 94.44 0.00007101

4.2. Comparison with Peer Methods

4.2.1. LS-SVM Modelling with Only One Channel

For comparison, we also employed only one of the twelve channels for LS-SVM modelling.
The fault diagnosis results are shown in Table 3. Higher accuracy (about 71.40%) was obtained when
the data of No. 10, 11 or 12 channels (X-axial, Y-axial or Z-axial magnetic field intensity) were used
for LS-SVM modelling. On the other hand, the classification is worse (about 6.78%) using the data of
No. 7, 8 or 9 channel (X-axial, Y-axial or Z-axial acceleration). This means that the solely application
of vibration acceleration is insufficient for the fault diagnosis of the delta 3D printer. In addition,
the highest classification accuracy (73.68%) in this method is inferior to all channels data as shown
in Table 2.

Table 3. Fault diagnosis results using LS-SVM model with one of the twelve channels data.

Channel
Repeat Order

Mean (%) Variance
1(%) 2(%) 3(%) 4(%) 5(%) 6(%)

1 35.64 35.56 36.75 33.08 36.50 35.98 35.59 0.00017258
2 31.71 30.94 33.68 31.37 34.10 30.51 32.05 0.00022082
3 67.86 67.35 70.43 68.21 68.21 67.95 68.34 0.00011529
4 45.04 44.36 41.97 42.91 43.08 41.97 43.22 0.00015705
5 37.52 39.83 37.52 39.91 36.75 40.60 38.69 0.00025875
6 33.16 31.03 31.54 32.91 32.99 32.74 32.40 0.00007836
7 6.24 6.50 6.15 7.01 5.64 5.90 6.24 0.00002288
8 6.58 5.81 6.15 6.50 6.84 8.80 6.78 0.00011080
9 8.55 6.32 6.84 6.75 6.84 6.24 6.92 0.00007042

10 71.37 72.14 72.05 71.45 69.57 73.68 71.71 0.00017888
11 71.20 72.05 71.11 70.68 71.37 71.97 71.40 0.00002781
12 71.71 69.66 72.22 72.48 73.16 68.89 71.35 0.00028694

4.2.2. BPNN Modelling with Data from One of the Twelve Channels

The same data was used for BPNN modeling. Table 4 shows the fault diagnosis results using
BPNN modelling with each channel data of the attitude sensor. The highest fault diagnosis accuracy is
56.71% which is inferior to the results as shown in Table 3. This indicates that LS-SVM is superior to
BPNN in the fault diagnosis modelling.
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Table 4. Fault diagnosis results using BPNN model with all the twelve channels data.

Channel
Repeat Order

Mean (%) Variance
1(%) 2(%) 3(%) 4(%) 5(%) 6(%)

1 25.21 20.68 17.86 9.57 27.95 23.42 20.78 0.00424408
2 26.58 22.99 23.59 22.82 23.25 20.43 23.28 0.00038810
3 54.96 56.84 55.04 50.51 48.72 56.50 53.76 0.00112073
4 15.04 18.89 14.27 15.98 17.26 18.97 16.74 0.00038868
5 17.26 15.64 15.90 15.21 15.38 14.79 15.70 0.00007295
6 13.42 15.81 13.33 15.81 16.32 14.36 14.84 0.00017198
7 25.56 25.30 15.98 25.73 28.63 23.33 24.09 0.00186552
8 33.76 31.37 37.26 33.93 31.71 30.43 33.08 0.00060961
9 10.77 12.31 11.45 11.26 8.29 12.39 11.08 0.00022557

10 57.69 49.23 57.26 50.68 59.83 60.68 55.90 0.00230168
11 54.62 58.12 57.35 54.02 58.21 57.95 56.71 0.00035579
12 36.41 37.18 34.62 37.69 30.60 32.99 34.92 0.00074956

4.2.3. BPNN Modelling with All the Twelve Channels Data

The performances using all channels data are presented in Table 5. Compared to Tables 2 and 3,
it is shown that LS-SVM modelling with all channels of the attitude sensor features the highest fault
diagnosis accuracy for the delta 3D printer.

Table 5. Fault diagnosis results using BPNN model with all the twelve channels data.

Channel
Repeat Order

Mean (%) Variance
1(%) 2(%) 3(%) 4(%) 5(%) 6(%)

All
channels 49.40 50.85 12.48 43.85 45.85 9.49 35.34 0.03629351

5. Conclusions

The printing quality is dramatically affected by the health condition of the 3D printer. In this
paper, an attitude monitoring method with SVM has been proposed for the fault diagnosis of the
delta 3D printer. By collecting the monitoring data in different condition patterns, the attitude samples
were applied for SVM modelling via supervised learning for model training and testing. The highest
accuracy (94.44%) in this study has been achieved while all channel data was utilized for fault
diagnosis with LS-SVM modelling. For comparison, only one channel data were used for SVM
modelling. The results show that different channel data could lead to different fault diagnosis accuracy
levels. However, only using one channel data is insufficient for the fault diagnosis of the delta 3D
printer. On the other hand, BPNN model has been built using the same data as well. Unfortunately,
performances of BPNN models are unable to meet the requirement of fault diagnosis regardless of
using optimal channel or all channels.

Author Contributions: Chuan Li and Zhijun Yang designed the topic of the study. The experimental design was
completed by Kun He and Chuan Li. LS-SVM and BPNN models were built by Yun Bai and Jianyu Long. Kun He
prepared the first version of the manuscript and all authors read, approved and substantially contributed this
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number
[51775112], Natural Science Foundation of Guangdong Province [2015A030313649], the Research Program of
Higher Education of Guangdong [2016KZDXM054], and the Research start-up funds of DGUT [GC300501-08].

Conflicts of Interest: No conflict of interest exits in the submission of this manuscript, and it is approved
by all authors for publication. We declare that the work described was original research, and it has not been
published previously.



Sensors 2018, 18, 1298 13 of 15

References

1. Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive
manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018,
21, 22–37. [CrossRef]

2. Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review
of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [CrossRef]

3. Gao, W.; Zhang, Y.B.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.;
Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering.
Comput. Aided Des. 2015, 69, 65–89. [CrossRef]

4. MacDonald, E.; Wicker, R. Multiprocess 3D printing for increasing component functionality. Science 2016,
353, aaf2093. [CrossRef] [PubMed]

5. Di Angelo, L.; Di Stefano, P.; Marzola, A. Surface quality prediction in FDM additive manufacturing.
Int. J. Adv. Manuf. Technol. 2017, 93, 3655–3662. [CrossRef]

6. Galantucci, L.M.; Bodi, I.; Kacani, J.; Lavecchia, F. Analysis of Dimensional Performance for a 3D
Open-source Printer Based on Fused Deposition Modeling Technique. In 3rd CIRP Global Web Conference on
Production Engineering Research—Advancement Beyond State of the Art (CIRPe); University Naples Federico II:
Naples, Italy, 2014.

7. Kun, K. Reconstruction and Development of a 3D Printer Using FDM Technology. In Proceedings of the
International Conference on Manufacturing Engineering and Materials (ICMEM), Novy Smokovec, Slovakia,
6–10 June 2016.

8. Alvarez-Cedillo, J.A.; Sandoval-Gutierrez, J.; Herrera-Lozada, J.C.; Medel-Juarez, J.D.J.; Olguin-Carbajal, M.
Design, manufacturing and performance of a low cost delta robot. Dyna 2016, 91, 346–352.

9. Zsombor-Murray, P.; Gfrerrer, A. Mapping similarity between parallel and serial architecture kinematics.
Meccanica 2011, 46, 183–194. [CrossRef]

10. Wang, L.P.; Xu, H.Y.; Guan, L.W. Kinematics and inverse dynamics analysis for a novel 3-PUU parallel
mechanism. Robotica 2017, 35, 2018–2035.

11. Wang, G.X.; Liu, H.Z.; Deng, P.S.; Yin, K.M.; Zhang, G.G. Dynamic Analysis of 4-SPS/CU Parallel Mechanism
Considering Three-Dimensional Wear of Spherical Joint With Clearance. J. Tribol. 2017, 139, 021608. [CrossRef]

12. Sharifzadeh, M.; Tale Masouleh, M.; Kalhor, A.; Shahverdi, P. An experimental dynamic identification &
control of an overconstrained 3-DOF parallel mechanism in presence of variable friction and feedback delay.
Robot. Auton. Syst. 2018, 102, 27–43.

13. Russo, M.; Herrero, S.; Altuzarra, O.; Ceccarelli, M. Kinematic analysis and multi-objective optimization of
a 3-UPR parallel mechanism for a robotic leg. Mech. Mach. Theory 2018, 120, 192–202. [CrossRef]

14. Herrero, S.; Pinto, C.; Altuzarra, O.; Diez, M. Analysis of the 2PRU-1PRS 3DOF parallel manipulator:
kinematics, singularities and dynamics. Robot. Computer Integr. Manuf. 2018, 51, 63–72. [CrossRef]

15. Santana, L.; Ahrens, C.H.; Netto, A.D.S.; Bonin, C. Evaluating the deposition quality of parts produced by an
open-source 3D printer. Rapid Prototyp. J. 2017, 23, 796–803. [CrossRef]

16. Song, X.; Pan, Y.Y.; Chen, Y. Development of a Low-Cost Parallel Kinematic Machine for Multidirectional
Additive Manufacturing. J. Manuf. Sci. Eng. 2015, 137, 021005. [CrossRef]

17. Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault Diagnosis for Rotating Machinery Using
Vibration Measurement Deep Statistical Feature Learning. Sensors 2016, 16, 895. [CrossRef] [PubMed]

18. Li, C.; Liang, M. Time-frequency signal analysis for gearbox fault diagnosis using a generalized
synchrosqueezing transform. Mech. Syst. Signal Process. 2012, 26, 205–217. [CrossRef]

19. Marinaki, M.; Marinakis, Y.; Stavroulakis, G.E. Vibration control of beams with piezoelectric sensors and
actuators using particle swarm optimization. Exp. Syst. Appl. 2011, 38, 6872–6883. [CrossRef]

20. Ottewill, J.R.; Orkisz, M. Condition monitoring of gearboxes using synchronously averaged electric motor
signals. Mech. Syst. Signal Process. 2013, 38, 482–498. [CrossRef]

21. Li, C.; Liang, M. Extraction of oil debris signature using integral enhanced empirical mode decomposition
and correlated reconstruction. Measurement Sci. Technol. 2011, 22, 085701. [CrossRef]

22. Lu, Y.S.; Wang, F.L.; Jia, M.X.; Qi, Y.C. Centrifugal compressor fault diagnosis based on qualitative simulation
and thermal parameters. Mech. Syst. Signal Process. 2016, 81, 259–273. [CrossRef]

http://dx.doi.org/10.1016/j.mattod.2017.07.001
http://dx.doi.org/10.1016/j.compositesb.2018.02.012
http://dx.doi.org/10.1016/j.cad.2015.04.001
http://dx.doi.org/10.1126/science.aaf2093
http://www.ncbi.nlm.nih.gov/pubmed/27708075
http://dx.doi.org/10.1007/s00170-017-0763-6
http://dx.doi.org/10.1007/s11012-010-9410-0
http://dx.doi.org/10.1115/1.4034763
http://dx.doi.org/10.1016/j.mechmachtheory.2017.10.004
http://dx.doi.org/10.1016/j.rcim.2017.11.018
http://dx.doi.org/10.1108/RPJ-05-2016-0078
http://dx.doi.org/10.1115/1.4028897
http://dx.doi.org/10.3390/s16060895
http://www.ncbi.nlm.nih.gov/pubmed/27322273
http://dx.doi.org/10.1016/j.ymssp.2011.07.001
http://dx.doi.org/10.1016/j.eswa.2010.12.037
http://dx.doi.org/10.1016/j.ymssp.2013.01.008
http://dx.doi.org/10.1088/0957-0233/22/8/085701
http://dx.doi.org/10.1016/j.ymssp.2016.03.018


Sensors 2018, 18, 1298 14 of 15

23. Gao, L.X.; Zai, F.L.; Su, S.B.; Wang, H.Q.; Chen, P.; Liu, L.M. Study and Application of Acoustic Emission
Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears. Sensors 2011, 11, 599–611. [CrossRef] [PubMed]

24. Li, C.; Liang, M.; Wang, T.Y. Criterion fusion for spectral segmentation and its application to optimal
demodulation of bearing vibration signals. Mech. Syst. Signal Process. 2015, 64–65, 132–148. [CrossRef]

25. Chibani, A.; Chadli, M.; Shi, P.; Braiek, N.B. Fuzzy Fault Detection Filter Design for T-S Fuzzy Systems in
Finite Frequency Domain. IEEE Trans. Fuzzy Syst. 2017, 25, 1051–1061. [CrossRef]

26. Jing, L.Y.; Wang, T.Y.; Zhao, M.; Wang, P. An Adaptive Multi-Sensor Data Fusion Method Based on Deep
Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox. Sensors 2017, 17, 414. [CrossRef]
[PubMed]

27. Ahmed, H.; Tahir, M. Accurate Attitude Estimation of a Moving Land Vehicle Using Low-Cost MEMS IMU
Sensors. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1723–1739. [CrossRef]

28. Zhu, R.; Sun, D.; Zhou, Z.Y.; Wang, D.Q. A linear fusion algorithm for attitude determination using low cost
MEMS-based sensors. Measurement 2007, 40, 322–328. [CrossRef]

29. De Marina, H.G.; Espinosa, F.; Santos, C. Adaptive UAV Attitude Estimation Employing Unscented Kalman
Filter, FOAM and Low-Cost MEMS Sensors. Sensors 2012, 12, 9566–9585. [CrossRef] [PubMed]

30. Shi, C.Q.; Zhang, L.Y.; Wei, H.; Liu, S.L. Attitude-sensor-aided in-process registration of multi-view surface
measurement. Measurement 2011, 44, 663–673. [CrossRef]

31. Lu, C.; Wang, Z.Y.; Zhou, B. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional
network based health state classification. Adv. Eng. Inform. 2017, 32, 139–151. [CrossRef]

32. Bououden, S.; Chadli, M.; Karimi, H.R. An ant colony optimization-based fuzzy predictive control approach
for nonlinear processes. Inf. Sci. 2015, 299, 143–158. [CrossRef]

33. Santos, P.; Villa, L.F.; Renones, A.; Bustillo, A.; Maudes, J. An SVM-Based Solution for Fault Detection in
Wind Turbines. Sensors 2015, 15, 5627–5648. [CrossRef] [PubMed]

34. Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, V.; Cabrera, D.; Vasquez, R.E. Multimodal deep support vector
classification with homologous features and its application to gearbox fault diagnosis. Neurocomputing 2015,
168, 119–127. [CrossRef]

35. Qin, F.W.; Bai, J.; Yuan, W.Q. Research on intelligent fault diagnosis of mechanical equipment based on
sparse deep neural networks. J. Vibroeng. 2017, 19, 2439–2455. [CrossRef]

36. Elangovan, K.; Tamilselvam, Y.K.; Mohan, R.E.; Iwase, M.; Nemoto, T.; Wood, K. Fault Diagnosis of a
Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines. Appl. Sci. 2017, 7, 1025.
[CrossRef]

37. Kumar, L.; Sripada, S.K.; Sureka, A.; Rath, S.K. Effective fault prediction model developed using Least Square
Support Vector Machine (LSSVM). J. Syst. Softw. 2018, 137, 686–712. [CrossRef]

38. Su, Z.Q.; Tang, B.P.; Liu, Z.R.; Qin, Y. Multi-fault diagnosis for rotating machinery based on orthogonal
supervised linear local tangent space alignment and least square support vector machine. Neurocomputing
2015, 157, 208–222. [CrossRef]

39. Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures
using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal
selection. Mater. Des. 2017, 124, 143–157. [CrossRef]

40. Ye, W.; Fang, Y.F.; Guo, S. Design and analysis of a reconfigurable parallel mechanism for multidirectional
additive manufacturing. Mech. Mach. Theory 2017, 112, 307–326. [CrossRef]

41. Wang, G.; Liu, H. Three-dimensional wear prediction of four-degrees-of-freedom parallel mechanism with
clearance spherical joint and flexible moving platform. J. Tribol. 2018, 140, 031611. [CrossRef]

42. Xu, B.; Wang, X.; Ji, X.; Tong, R.; Xue, Y. Dynamic and motion consistency analysis for a planar parallel
mechanism with revolute dry clearance joints. J. Mech. Sci. Technol. 2017, 31, 3199–3209. [CrossRef]

43. Nirmal, K.; Sreejith, A.G.; Mathew, J.; Sarpotdar, M.; Suresh, A.; Prakash, A.; Safonova, M.; Murthy, J. Noise
modeling and analysis of an IMU-based attitude sensor: Improvement of performance by filtering and
sensor fusion. In Proceedings of the Conference on Advances in Optical and Mechanical Technol. Telescopes
and Instrumentation II, Edinburgh, UK, 26 June–1 July 2016.

44. Renaudin, V.; Combettes, C. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-Based Attitude
Estimation with Smartphone Sensors for Indoor Pedestrian Navigation. Sensors 2014, 14, 22864–22890. [CrossRef]
[PubMed]

http://dx.doi.org/10.3390/s110100599
http://www.ncbi.nlm.nih.gov/pubmed/22346592
http://dx.doi.org/10.1016/j.ymssp.2015.04.004
http://dx.doi.org/10.1109/TFUZZ.2016.2593921
http://dx.doi.org/10.3390/s17020414
http://www.ncbi.nlm.nih.gov/pubmed/28230767
http://dx.doi.org/10.1109/TITS.2016.2627536
http://dx.doi.org/10.1016/j.measurement.2006.05.020
http://dx.doi.org/10.3390/s120709566
http://www.ncbi.nlm.nih.gov/pubmed/23012559
http://dx.doi.org/10.1016/j.measurement.2010.12.003
http://dx.doi.org/10.1016/j.aei.2017.02.005
http://dx.doi.org/10.1016/j.ins.2014.11.050
http://dx.doi.org/10.3390/s150305627
http://www.ncbi.nlm.nih.gov/pubmed/25760051
http://dx.doi.org/10.1016/j.neucom.2015.06.008
http://dx.doi.org/10.21595/jve.2017.17146
http://dx.doi.org/10.3390/app7101025
http://dx.doi.org/10.1016/j.jss.2017.04.016
http://dx.doi.org/10.1016/j.neucom.2015.01.016
http://dx.doi.org/10.1016/j.matdes.2017.03.065
http://dx.doi.org/10.1016/j.mechmachtheory.2016.02.011
http://dx.doi.org/10.1115/1.4038806
http://dx.doi.org/10.1007/s12206-017-0609-z
http://dx.doi.org/10.3390/s141222864
http://www.ncbi.nlm.nih.gov/pubmed/25474379


Sensors 2018, 18, 1298 15 of 15

45. Wang, Z.H.; Shen, Y.; Zhang, X.L. Attitude sensor fault diagnosis based on Kalman filter of discrete-time
descriptor system. J. Syst. Eng. Electron. 2012, 23, 914–920. [CrossRef]

46. Liu, Y.f.; Noguchi, N.; Ishii, K. Attitude Angle Estimation for Agricultural Robot Navigation Based on Sensor
Fusion with a low-cost IMU. IFAC Proc. Vol. 2013, 46, 130–134. [CrossRef]

47. Ramon, H.; Li, H.L.; Demeester, P.; Bauwelinck, J.; Torfs, G. Efficient parallelization of polyphase arbitrary
resampling FIR filters for high-speed applications. J. Signal Process. Syst. 2018, 90, 295–303. [CrossRef]

48. Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis.
Mech. Syst. Signal Process. 2007, 21, 2560–2574. [CrossRef]

49. Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9,
293–300. [CrossRef]

50. Chen, S.G.; Wu, X.J. Multiple birth least squares support vector machine for multi-class classification.
Int. J. Mach. Learn. Cybern. 2017, 8, 1731–1742. [CrossRef]

51. Zhong, J.J.; Tse, P.W.; Wang, D. Novel Bayesian inference on optimal parameters of support vector machines
and its application to industrial survey data classification. Neurocomputing 2016, 211, 159–171. [CrossRef]

52. Shen, C.Q.; Wang, D.; Kong, F.R.; Tse, P.W. Fault diagnosis of rotating machinery based on the statistical
parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement 2013,
46, 1551–1564. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSEE.2012.00112
http://dx.doi.org/10.3182/20130327-3-JP-3017.00031
http://dx.doi.org/10.1007/s11265-017-1235-9
http://dx.doi.org/10.1016/j.ymssp.2006.12.007
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1007/s13042-016-0554-7
http://dx.doi.org/10.1016/j.neucom.2015.12.132
http://dx.doi.org/10.1016/j.measurement.2012.12.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Transmission Mechanism Analysis of the Delta 3D Printer 
	Data Collection in the Attitude Monitoring 
	SVM Modelling in the Attitude Monitoring 
	Overview of the Present Attitude Monitoring with SVM 

	Experiments 
	Results and Discussion 
	Fault Diagnosis Results Using the Proposed Method 
	Comparison with Peer Methods 
	LS-SVM Modelling with Only One Channel 
	BPNN Modelling with Data from One of the Twelve Channels 
	BPNN Modelling with All the Twelve Channels Data 


	Conclusions 
	References

