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Abstract: Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of
straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data
association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends
and compares existing algorithms for line fitting applicable also in the case of strong covariances
between the coordinates at each single data point, which must not be neglected if range-bearing
sensors are used. Besides, in particular, the determination of the covariance matrix is considered,
which is required for stochastic modeling. The main contribution is a new error model of straight
lines in closed form for calculating quickly and reliably the covariance matrix dependent on just
a few comprehensible and easily-obtainable parameters. The model can be applied widely in any
case when a line is fitted from a number of distinct points also without a priori knowledge of the
specific measurement noise. By means of extensive simulations, the performance and robustness of
the new model in comparison to existing approaches is shown.
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1. Introduction

Contour points acquired by active sensors using sonar, radar or LiDAR [1], or extracted from
image data [2,3], are a key source of information for mobile robots in order to detect obstacles or to
localize themselves in known or unknown environments [4,5]. For this purpose, often, geometric
features are extracted from raw data since in contrast to detailed contours, features are uniquely
described just by a limited set of parameters, and their extraction works as additional filtering in order
to improve reliability when dealing with sensor noise and masking [6]. However, the performance of
feature-based localization or SLAM strongly depends on exact the determination of a feature vector
y from measured raw data. Moreover, especially for data association, as well as for sensor fusing,
not only the feature parameters are needed, but also a reliable estimation of their uncertainty is
required. Generally, in the case of non-linear multi-sensor fusing, likelihood-based models can be
applied (see [7]), which employ Bayesian filtering [8] or the calculation of entropies [9] to quantify
uncertain information. Alternatively, especially for localization and map building, sensor fusing often
is achieved with a Kalman filter (EKF). For this purpose, the covariance matrix R is required, which
encapsulates the variances of the single elements in y and their dependencies.

This will be obvious if one looks at the standard algorithm for updating an estimated system state
x̂ typically by means of EKF; compare [10–12]: new measurements y are plausible if their deviations
from expected measurements ŷ = h(x̂) dependent on the in general non-linear measurement model
h(x̂) are within a limited range. For exact calculation of this limit, usually the Mahalanobis metric
is applied (see [11,13]), which considers the covariance matrix S of the innovation ν = y− ŷ with
S=R + H · P̂ · HT dependent on R, the covariance matrix P̂ of the system state and using H = ∇h(x̂).
A new measurement y will be considered to relate to an already known feature vector ŷ if its distance
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is below a given threshold rth with νTS−1ν < r2
th. Only in this case, the system state vector x̂ can

be updated by means of ∆x̂ = K · ν using the Kalman gain K = P̂ · HT · S, again depending on the
covariance matrix R of the measurements, while otherwise x̂ and P̂ are expanded by the new feature.

Thus, for reliable map building, errors in the step of data association should be strictly avoided
by means of exact knowledge of the covariance matrix at each measurement, since otherwise, multiple
versions of certain features would be included in the map, while other features erroneously are ignored.

Particularly in artificial environments, straight lines in a plane are frequently used as features,
since these are defined by just two parameters and can be clearly and uniquely determined. In contrast
to point features, lines in images are almost independent of illumination and perspective, and a number
of measurements can be taken along their length to localize them accurately and to distinguish them
from artifacts [14]. Moreover, already, a single line enables a robot to determine its orientation and
perpendicular distance, which clearly improves localization accuracy. Thus, many tracking systems
have been proposed based on line features, either using range-bearing scans [15,16] or applying visual
servoing (see [17,18]), and also, recently, this approach has been successfully implemented [19–21].
However, due to missing knowledge of the covariance matrix, for data association, often, suboptimal
solutions like the Euclidean distance in Hough space [15] or other heuristics are used [22].

Obviously, fitting data to a straight line is a well-known technique, addressed in a large number of
papers [23–25] and textbooks [26–28]. In [29], a recent overview of algorithms in this field is outlined.
As shown in [30,31], if linear regression is applied to data with uncertainties in the x- and y-direction,
always both coordinates must be considered as random variables. In [32], Arras and Siegwart suggest
an error model for range-bearing sensors including a covariance matrix, affected exclusively by noise
in the radial direction. Pfister et al. introduce weights into the regression algorithm in order to
determine the planar displacement of a robot from range-bearing scans [33]. In [34], a maximum
likelihood approach is used to formulate a general strategy for estimating the best fitted line from a set
of non-uniformly-weighted range measurements. Furthermore, merging of lines and approximating
the covariance matrix from an iterative approach is considered. In [30], Krystek and Anton point
out that the weighting factors of the single measurements depend on the orientation of a line, which
therefore can only be determined numerically. This concept has been later extended to the general case
with covariances existing between the coordinates of each data point [35].

Since linear regression is sensitive with respect to outliers, split-and-merge algorithms must be
applied in advance, if a contour consists of several parts; see [36,37]. In cases of strong interference,
straight lines can still be identified by Hough-transformation (compare [38–40]), or alternatively, RANSAC
algorithms can be applied; see [41,42]. Although these algorithms work reliably, exact determination of
line parameters and estimating their uncertainties still requires linear regression [43].

In spite of a variety of contributions in this field, a straightforward, yet accurate algorithm for
determining the covariance matrix of lines reliably, quickly and independently of the a priori mostly
unknown measurement noise is missing. In Section 4, such a model in closed-form is proposed
depending on just a few clearly-interpretable and easily-obtainable parameters. Besides its low
complexity and great clarity, the main advantage of the covariance matrix in closed form results from
the fact that it can be calculated from the same data points as used for line fitting without the need to
provide additional reliability information of the measurements, which in many cases is not available.

Beforehand, in the next two paragraphs, existing methods for the linear regression and calculation
of the covariance matrix are reviewed with certain extensions focusing on the usage of range-bearing
sensors, which cause strong covariances between the x- and y-coordinates. Based on these theoretical
foundations, Section 5 exhibits detailed simulation results in order to compare the precision and
robustness of the presented algorithms.

2. Determination of the Accurate Line Parameters

In 2D-space, each straight line is uniquely described by its perpendicular distance d from the origin
and by the angle φ between the positive x-axis and this normal line; see Figure 1. In order to determine
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these two parameters, the mean squared error MSE considering the perpendicular distances of N
measurement points from the fitted line needs to be minimized. For this purpose, each perpendicular
distance ρi of point i is calculated either from polar or with xi = ri cos θi and yi = ri sin θi alternatively
in Cartesian coordinates as:

ρi = di − d = ri cos(θi − φ)− d = xi cos φ + yi sin φ− d (1)

Then, MSE is defined as follows dependent on φ and d:

MSE(φ, d) =
N

∑
i=1

(siρi)
2 (2)

x 
ϕ 

y 

θi 
d 

ri 

1 

N 

ρi 

. 

. 
yi 

xi 

di 

Figure 1. Parameters of measured raw data and a fitted straight line.

In (2), optional scaling values si are included in order to consider the individual reliability of each
measurement point. By calculating the derivatives of (2) with respect to φ and d and setting both to
zero, the optimum values of these parameters can be analytically derived assuming all si to be constant,
i.e., independent of φ and d. The solution has been published elsewhere (compare [32]), and in the
Appendix of this paper, a straightforward derivation is sketched, yielding for φ and d:

φ =
1
2
· atan2

(
−2σxy, σ2

y − σ2
x

)
(3)

d = x̄ cos φ + ȳ sin φ (4)

The function atan2() means the four quadrant arc tangent, which calculates φ always in the
correct range. If d becomes negative, its modulus must be taken, and the corresponding φ has to be
altered by plus or minus π. In these equations, x̄ and ȳ denote the mean values of all N measurements
xi and yi, while σ2

x , σ2
y and σxy denote the variances and the covariance:

σ2
x =

1
N

N

∑
i=1

wi (xi − x̄)2 (5)

σ2
y =

1
N

N

∑
i=1

wi (yi − ȳ)2 (6)

σxy =
1
N

N

∑
i=1

wi (xi − x̄) (yi − ȳ) (7)
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x̄ =
1
N

N

∑
i=1

wixi (8)

ȳ =
1
N

N

∑
i=1

wiyi (9)

In (5)–(9), normalized weighting factors wi are used with 1
N ∑N

i=1 wi = 1 and 0 ≤ wi ≤ 1,
calculated dependent on the chosen scaling values si:

wi =
s2

i
1
N ∑N

i=1 s2
i

(10)

As pointed out in [35], for accurate line matching, the scaling values si must not be assumed to be
constant since in general, they depend on φ. This can be understood from Figure 2, which shows for
one measurement point i the error ellipse spanned by the standard deviations σx,i and σy,i, while the
rotation of the ellipse is caused by the covariance σxy,i.

. . 
ρi 

σρ 

σx 

σy 

. 

ϕ 

i i 

i 

Figure 2. Optimum setting of weighting parameter for each data point.

Apparently, as a measure of confidence, only the deviation σρ,i perpendicular to the line is
relevant, while the variance of any data point parallel to the fitted line does not influence its reliability.
Thus, the angle φ given in (3) will only be exact, if the error ellipse equals a circle, which means
that all measurements exhibit the same standard deviations in the x- as in the y-direction, and no
covariance exists. Generally, in order to determine optimum line parameters with arbitrary variances
and covariance of each measurement i, in Equation (2) the inverse of σρ,i dependent on φ has to be
used as scaling factor si, yielding:

MSE(φ) =
N

∑
i=1

ρ2
i (φ)

σ2
ρ,i(φ)

(11)

In this formula, which can only be solved numerically, the variance σ2
ρ,i needs to be calculated

dependent on the covariance matrix of each measurement point i. In the case of line fitting from
range-bearing scans, the covariance matrix Rrθ,i can be modeled as a diagonal matrix since both
parameters ri and θi are measured independently, and thus, their covariance σrθ,i equals zero:

Rrθ,i =

(
σ2

r,i 0
0 σ2

θ,i

)
(12)

Typically, this matrix may also be considered as constant, thus independent of index i, assuming
that all measured radii and angles are affected by the same noise, i.e., Rrθ,i ≈ Rrθ .

With known variances σ2
r,i and σ2

θ,i and for a certain φ, now σ2
ρ,i is determined by evaluating the

relation between ρi and the distances di of each data point with 1 ≤ i ≤ N. According to (1) and with
the distance d written as the mean of all di, it follows:
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ρi = di −
1
N

N

∑
j=1

dj =

(
N − 1

N

)
di −

1
N

N

∑
j=1
(j 6=i)

dj (13)

Since noise-induced variations of all distances di are uncorrelated with each other, now the
variance σ2

ρ,i is calculated by means of summing over all variances σ2
d,i:

σ2
ρ,i =

(
N − 1

N

)2
σ2

d,i +
1

N2

N

∑
j=1
(j 6=i)

σ2
d,j (14)

In order to derive σ2
d,i, changes of di with respect to small deviations of ri and θi from their

expected values r̄i and θ̄i are considered with di = d̄i + ∆di, ri = r̄i + ∆ri and with θi = θ̄i + ∆θi:

∆di = ∆d r
i + ∆d θ

i (15)

The terms on the right side of (15) can be determined independently of each other, since ∆ri and
∆θi are assumed to be uncorrelated. With di = ri · cos(θi − φ), it follows:

∆d r
i = ∆ri · cos(θ̄i − φ) (16)

and:

∆d θ
i = r̄i

[
cos(θ̄i − φ + ∆θi)− cos(θ̄i − φ)

]
≈ −r̄i

[
∆θ2

i
2

cos(θ̄i − φ) + ∆θi sin(θ̄i − φ)

]
(17)

In the last line, the addition theorem was applied for cos(θ̄i − φ + ∆θi), and for small variations,

the approximations cos(∆θi)≈1− ∆θ2
i

2 and sin(∆θi)≈∆θi are valid.
The random variables ∆ri and ∆θi are assumed to be normally distributed with variances σ2

r,i and
σ2

θ,i. Thus, the random variable ∆θ2
i exhibits a χ2-distribution with variance 2(σ2

θ,i)
2 (see [44]), and the

variance of di is calculated from (15)–(17) as the weighted sum with r̄i and θ̄i approximately replaced
by ri and θi, respectively:

σ2
d,i =

(
σ2

r,i +
(σ2

θ,i)
2

2

)
cos2(θi − φ) + σ2

θ,i sin2(θi − φ) (18)

When applying this algorithm, a one-dimensional minimum search of MSE according to (11)
needs to be executed, yielding the optimum φ of the straight line. For this purpose, σ2

ρ,i is inserted
from (14) considering (18) and ρi is determined according to (1) by calculating d from (4) and (8)–(10)
with si = 1/σρ,i.

Obviously, numerical line fitting can also be accomplished if measurements are available in
Cartesian coordinates xi and yi. In this case, the covariance matrix Rxy,i of each measurement point
must be known, defined as:

Rxy,i =

(
σ2

x,i σxy,i

σxy,i σ2
y,i

)
(19)

Furthermore, the partial derivatives of di according to (1) with respect to xi and yi need to
be calculated:

Jd,i =
(

∂di
∂xi

∂di
∂yi

)
=
(

cos φ sin φ
)

(20)
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Then, σ2
d,i follows dependent on Rxy,i and Jd,i:

σ2
d,i = Jd,i · Rxy,i · (Jd,i)

T = σ2
x,i cos2 φ + σxy,i sin φ cos φ + σ2

y,i sin2 φ (21)

If raw data stem from a range-bearing scan, Rxy,i can be calculated from Rrθ,i by exploiting the
known dependencies between the polar and Cartesian plane. For this purpose, the Jacobian matrix
Jxy,i is determined:

Jxy,i =

 ∂xi
∂ri

∂xi
∂θi

∂yi
∂ri

∂yi
∂θi

 =

(
cos θi −ri sin θi
sin θi ri cos θi

)
(22)

Then, the covariance matrix Rxy,i will depend on Rrθ,i, if small deviations from the mean value of
the random variables ri and θi and a linear model are assumed:

Rxy,i = Jxy,i · Rrθ,i · (Jxy,i)
T (23)

According to (23), generally a strong covariance σxy,i in Rxy,i must be considered, if measurements
are taken by range-bearing sensors.

By means of applying (21)–(23) instead of (18) for searching the minimum of MSE dependent on
φ, the second order effect regarding ∆θi is neglected. This yields almost the same formula as given
in [35], though the derivation differs, and in [35], additionally, the variance of d is ignored assuming
σ2

ρ,i = σ2
d,i, which according to (14) is only asymptotically correct for large N.

Finally, it should be noted that the numerical determination of φ according to (11) means clearly
more complexity compared to the straightforward solution according to Equation (3). Later, in Section 5,
it will be analyzed under which conditions this additional computational effort actually is required.

3. Analytic Error Models of Straight Lines

In the literature, several methods are described to estimate errors of φ and d and their mutual
dependency. Thus, the covariance matrix Rdφ must be known, defined as:

Rdφ =

(
σ2

d σdφ

σdφ σ2
φ

)
(24)

For this purpose, a general method in nonlinear parameter estimation is the calculation of the
inverse Hessian matrix at the minimum of MSE. Details can be found in [30,35], while in [45], it is
shown that this procedure may exhibit numerical instability. In Section 5, results using this method are
compared with other approaches.

Alternatively, in [32,46], an analytic error model is proposed based on fault analysis of the line
parameters. In this approach, the effect of variations of each single measurement point defined by Rxy,i
with respect to the covariance matrix of the line parameters Rdφ is considered, based on (3) and (4).
Thereto, the Jacobian matrix Jdφ,i with respect to xi and yi is determined, defined as:

Jdφ,i =

 ∂d
∂xi

∂d
∂yi

∂φ
∂xi

∂φ
∂yi

 (25)

With this matrix, the contribution of a single data point i to the covariance matrix between d and
φ can be written as:

Rdφ,i = Jdφ,i · Rxy,i · JT
dφ,i (26)
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For determining the partial derivatives of d in (25), Equation (4) is differentiated after expanding
it by (8) and (9), yielding:

∂d
∂xi

= wi
cos φ

N
+ (ȳ cos φ− x̄ sin φ)

∂φ

∂xi
(27)

∂d
∂yi

= wi
sin φ

N
+ (ȳ cos φ− x̄ sin φ)

∂φ

∂yi
(28)

Differentiating φ according to (3) with respect to xi gives the following expression with u = −2σxy

and v = σ2
y − σ2

x :
∂φ

∂xi
=

1
2(u2 + v2)

(
∂u
∂xi

v− ∂v
∂xi

u
)

(29)

The partial derivation of u in (29) is calculated after expanding it with (7) and (8) as:

∂u
∂xi

= − 2
N
· ∂

∂xi

(
N

∑
i=1

wixiyi − ȳ
N

∑
i=1

wixi

)
= −2wi

N
(yi − ȳ) (30)

while partial derivation of v with (5), (6) and (8) yields:

∂v
∂xi

= − 1
N
· ∂

∂xi

 N

∑
i=1

wix2
i −

1
N

(
N

∑
i=1

wixi

)2
 = −2wi

N
(xi − x̄) (31)

Finally, after substituting all terms with u and v in (29), it follows:

∂φ

∂xi
= wi

(
σ2

x − σ2
y

)
(yi − ȳ)− 2σxy (xi − x̄)

N
((

σ2
x − σ2

y

)2
+ 4σ2

xy

) (32)

Correspondingly, for the partial derivative of φ with respect to yi, the following result is obtained:

∂φ

∂yi
= wi

(
σ2

x − σ2
y

)
(xi − x̄) + 2σxy (yi − ȳ)

N
((

σ2
x − σ2

y

)2
+ 4σ2

xy

) (33)

Now, after inserting (27), (28), (32) and (33) into (25), the covariance matrix of d and φ (24) is
calculated by summing over all N data points since the noise contributions of the single measurements
can be assumed to be stochastically independent of each other:

Rdφ =
N

∑
i=1

Rdφ,i =
N

∑
i=1

Jdφ,i · Rxy,i · JT
dφ,i (34)

Equation (34) enables an exact calculation of the variances σ2
d , σ2

φ and of the covariance σdφ as
long as the deviations of the measurements stay within the range of a linear approach, and as long as
Equations (3) and (4) are valid. In contrast to the method proposed in [35], no second derivatives and
no inversion of the Hessian matrix are needed, and thus, more stable results can be expected.

However, both algorithms need some computational effort especially for a large number of
measurement points. Moreover, they do not allow one to understand the effect of changing parameters
on Rdφ, and these models can only be applied, if for each data point, the covariance matrix Rxy,i is
available. Unfortunately, for lines extracted from images, this information is unknown, and also, in the
case of using range-bearing sensors, only a worst case estimate of σr is given in the data sheet, while σθ

is ignored.
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4. Closed-Form Error Model of a Straight Line

In this section, a simplified error model in closed form is deduced, which enables a fast, clear and
yet, for most applications, sufficiently accurate calculation of the covariance matrix Rdφ in any case
when line parameters d and φ have been determined from a number of discrete data points.

Thereto, first, the expected values of the line parameters d and φ, denoted as d̄ and φ̄, are assumed
to be known according to the methods proposed in Section 2 with d̄ ≈ d and φ̄ ≈ φ. Besides,
for modeling the small deviation of d and φ, the random variables ∆d and ∆φ are introduced. Thus,
with d = d̄ + ∆d and φ = φ̄ + ∆φ, it follows for the variances and the covariance:

σ2
d = σ2

∆d σ2
φ = σ2

∆φ σdφ = σ∆d∆φ (35)

Next, ∆d and ∆φ shall be determined dependent on a random variation of any of the N measured
data points. For this purpose, Figure 3 is considered, which shows the expected line parameters and
the random variables ∆d and ∆φ.

θ1 

x  

 L 

ϕ 

θN 

Δd  

d  

x off 

Δϕ  

ρ  

∼  

_ 

_  

Figure 3. Dependency between ∆d, ∆φ and geometric parameters.

In order to derive expressions for ∆d and ∆φ depending on the random variables ρi, Figure 4
shows an enlargement of the rectangular box depicted in Figure 3 along the direction of the line x̃.

x

L
  
i = − N

2   
i = N

2Δx

Figure 4. Details of Figure 3 with the deviation of data points along the axis x̃.

First, the effect of variations of any ρi on ∆φ is considered. Since ∆φ is very small, this angle
may be replaced by its tangent, which defines the slope ∆m of the line with respect to the direction x̃.
Here, only ρi is considered as random variable, but not x̃i. Thus, the standard formula for the slope
of a regression line can be applied (see, e.g., [26] Chapter 2), which will minimize the mean squared
distance in the direction of ρ, if all x̃i are assumed to be exactly known:
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∆φ ≈ tan (∆φ) = ∆m =
σρx̃

σ2
x̃

=

∑
i

ρi · x̃i

∑
i

x̃2
i

(36)

Now, in order to calculate the variance of ∆φ, a linear relation between ∆φ and each ρi is required,
which is provided by the first derivation of (36) with respect to ρi:

∂∆φ

∂ρi
=

x̃i

∑
i

x̃2
i

(37)

Then, the variance of ∆φ dependent on the variance of ρi can be specified. From (37), it follows:

σ2
∆φ,i = σ2

ρ,i ·
(

∂∆φ

∂ρi

)2
= σ2

ρ,i ·
x̃2

i(
∑
i

x̃2
i

)2 (38)

If σ2
ρ,i is assumed to be approximately independent of i, it may be replaced by σ2

ρ and can be
estimated from (2) with ρi taken from (1) and setting all si to 1/N:

σ2
ρ,i ≈ σ2

ρ =
1
N

N

∑
i=1

ρi(φ, d)2 (39)

It should be noted that for a bias-free estimation of σ2
ρ with (39), the exact line parameters φ and d

must be used in (1), which obviously are not available. If instead, estimated line parameters according
to Section 2 are taken, e.g., by applying (3) and (4), calculated from the same data as used in (39),
an underestimation of σ2

ρ especially for small N can be expected, since φ and d are determined by
minimizing the variance of ρ of these N data points. This is referred to later.

Next, from (38), the variance of ∆φ results as the sum over all N data points, since all ρi are
independent of each other:

σ2
∆φ = ∑

i
σ2

∆φ,i ≈ σ2
ρ ·

∑
i

x̃2
i(

∑
i

x̃2
i

)2 = σ2
ρ ·

1
∑
i

x̃2
i

(40)

Equations (40) with (35) and (39) enables an exact calculation of σ2
φ dependent on the N data

points of the line.
However, from (40), a straightforward expression can be derived, which is sufficiently accurate in

most cases and enables a clear understanding of the influencing parameters on σ2
φ; compare Section 5.

For this purpose, according to Figure 3, the length L of a line segment is determined from the
perpendicular distance d and from the angles θ1 and θN of the first and N-th data point, respectively:

L = d · |tan(φ− θN)− tan(φ− θ1)| (41)

Furthermore, a constant spacing ∆x̃ between adjacent data points is assumed:

∆x̃ ≈ L
N − 1

. (42)
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Applying this approximation, the sum over all squared x̃i can be rewritten, yielding for even N as
depicted in Figure 4:

∑
i

x̃2
i ≈ 2 ·

N/2

∑
i=1

[
∆x̃
2
(2i− 1)

]2
= ∆x̃2 ·

N/2

∑
i=1

(2i− 1)2

2
(43)

The last sum can be transformed into closed form as:

N/2

∑
i=1

(2i− 1)2

2
=

N
2

(
4
(

N
2

)2
− 1
)

6
=

N(N2 − 1)
12

(44)

With N odd, the sum must be taken twice from 1– N−1
2 , since in this case, the central measurement

point has no effect on σ2
∆φ,i, yielding:

∑
i

x̃2
i ≈ 2 ·

(N−1)
2

∑
i=1

[∆x̃ · i]2 = ∆x̃2 ·
(N−1)

2

∑
i=1

2 · i2 (45)

Again, the last sum can be written in closed form, which gives the same result as in (44):

(N−1)
2

∑
i=1

2 · i2 =

N−1
2

(
N−1

2 + 1
) (

2 · N−1
2 + 1

)
3

=
N(N2 − 1)

12
(46)

Finally, by substituting (43) with (44) or (45) with (46) into (40) and regarding (35), as well as (42),
a simple analytic formula for calculating the variance of φ is obtained, just depending on L, N and the
variance of ρ:

σ2
φ ≈ σ2

ρ ·
12

L2 · N ·
N − 1
N + 1

N�1≈ σ2
ρ ·

12
L2 · N (47)

The last simplification in (47) overestimates σ2
φ a little bit for small N. Interestingly, this error

compensates quite well for a certain underestimation of σ2
ρ according to (39), assuming that the line

parameters φ and d are determined from the same data as σ2
ρ ; see Section 5.

Next, in order to deduce the variance σ2
d , again, Figure 3 is considered. Apparently, the first part

of the random variable ∆d is strongly correlated with ∆φ since any mismatch in φ is transformed into
a deviation ∆d by means of the geometric offset xo f f with:

∆d φ = −xo f f · ∆φ (48)

Actually, with a positive value for xo f f , as depicted in Figure 3 the correlation between ∆d and
∆φ becomes negative, since positive values of ∆φ correspond to negative values of ∆d. According to
Figure 3, xo f f is determined from φ and d, as well as from θ1 and θN :

xo f f =
d
2
· [tan(φ− θN) + tan(φ− θ1)] (49)

Alternatively, xo f f can be taken as the mean value from all N data points of the line segment:

xo f f =
d
N
·

N

∑
i=1

tan(φ− θi) (50)

Nevertheless, it should be noted that ∆d is not completely correlated with ∆φ, since also in the
case xo f f = 0, the error ∆d will not be zero.
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Indeed, as a second effect, each single ρi has a direct linear impact on the variable ∆d. For this
purpose, in Figure 4, the random variable ∆d ρ is depicted, which describes a parallel shift of the
regression line due to variation in ρi, calculated as the mean value over all ρi:

∆d ρ =
1
N
·∑

i
ρi (51)

Combining both effects, variations in d can be described as the sum of two uncorrelated terms,
∆dφ and ∆dρ:

∆d = ∆d φ + ∆d ρ = −xo f f · ∆φ +
1
N
·∑

i
ρi (52)

This missing correlation between ∆φ and the sum over all ρi is also intuitively accessible: if the
latter takes a positive number, it will not be possible to deduce the sign or the modulus of ∆φ.
From (52) and with E(∆d φ·∆d ρ) = 0, E(∆d φ) = 0 and E(∆d ρ) = 0, the variance σ2

d can be calculated as:

σ2
d = E([∆d]2) = E([∆d φ]2) + E([∆d ρ]2) = x2

o f f · E([∆φ]2) +
1

N2 · E

[∑
i

ρi

]2
 (53)

≈ x2
o f f · σ

2
φ +

1
N
· σ2

ρ (54)

In the last step from (53) to (54), again, the independence of the single measurements from each
other is used; thus, the variance of the sum of the N data points approximates N-times the variance σ2

ρ .
Finally, the covariance between φ and d needs to be determined. Based on the definition, it follows
with σdφ = σ∆d∆φ:

σdφ = E(∆d · ∆φ) = E(∆d φ · ∆φ) + E(∆d ρ · ∆φ) = −xo f f · E([∆φ]2) = −xo f f · σ2
φ (55)

By means of (47), (54) and (55), now, the complete error model in closed form is known, represented
by the covariance matrix Rdφ given as:

Rdφ ≈ σ2
ρ ·

 12·x2
o f f

L2·N + 1
N

−12·xo f f
L2·N

−12·xo f f
L2·N

12
L2·N

 (56)

Applying this error model is easy since no knowledge of the variances and covariance for each
single measurement is needed, which in practice is difficult to acquire. Instead, just the number N of
preferably equally-spaced points used for line fitting, the variance σ2

ρ according to (39), the length L of
the line segment calculated with (41) and its offset xo f f according to (49) or (50) must be inserted.

5. Simulation Results

The scope of this section is to compare the presented algorithms for linear regression and error
modeling based on statistical evaluation of the results. Segmentation of raw data is not considered;
if necessary, this must be performed beforehand by means of well-known methods like Hough
transformation or RANSAC; compare Section 1. Thus, for studying the performance reliably and
repeatably, a large number of computer simulations was performed, applying a systematic variation of
parameters within a wide range, which would not be feasible if real measurements are used.

For this purpose, straight lines with a certain perpendicular distance d from the origin and within
a varying range of normal angles φ have been specified. Each of these lines is numerically described
by a number of N points either given in Cartesian (xi, yi) or in polar (ri θi) coordinates. In order to
simulate the outcome of a real range-bearing sensor as much as possible, the angular coordinate was
varied between θ1 and θN . To each measurement, a certain amount of normally-distributed noise
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with σx, σy and σxy or alternatively with σr and σθ was added. Further, for each φ, a number of
Ns = 1000 sets of samples was generated, in order to allow statistical evaluation of the results. The first
simulation was performed with N = 40 equally-spaced points affected each by uncorrelated noise in
the x- and y-direction with standard deviations σx =σy =5 cm. This is a typical situation when a line
is calculated from binary pixels, and in Figure 5a, a bundle of the simulated line segments is shown.
The deviations ∆φ and ∆d taken as the mean value over all Ns samples of the estimated φ and d from
their true values, respectively, are depicted in Figure 5b,c, comparing four algorithms as presented in
Section 2: The triangles mark the outcome of Equations (3) and (4) with all weights set to one, whereas
the squares are calculated according to the same analytic formulas, but using individual weighting
factors applying (10) with si = 1/σρ,i. The perpendicular deviations σρ,i are determined according
to (14) and (21) with φ taken from (3) without weights. Obviously, in this example, all triangles
coincide with the squares since each measurement i is affected by the same noise and thus for any φ,
all weighting factors are always identical. The blue lines in Figure 5b,c show the results when applying
the iterative method according to (11) with the minimum of MSE found numerically. For this purpose,
σ2

ρ,i is inserted from (14) considering (21) and ρi is taken from (1) and d is calculated from (4), (8)–(10)
with si = 1/σρ,i. The black lines (KA) depict the deviations of d and φ obtained according to Krystek
and Anton in [35]. Both numerical algorithm yield the same results, which is not surprising, since
the variances σ2

ρ,i used as weighting factors are all identical. Further, here, the analytical algorithms
provide exactly the same performance as the numerical ones, since for σx = σy. the weighting factors
show no dependency on φ, and for that case, the analytical formulas are optimal.
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Figure 5. Simulation results for equidistant measurement points superimposing normally-distributed
and uncorrelated noise in the x- and y-direction.

The lower subfigures depict the parameters of the covariance matrix Rdφ, again as a function
of φ comparing different methods. Here, the circles represent numerical results obtained from the
definitions of variance and covariance by summing over all Ns passes with 1≤ k≤Ns, yielding dk and
φk, respectively:

σ2
d =

1
Ns

Ns

∑
k=1

(dk − d)2 (57)
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σ2
φ =

1
Ns

Ns

∑
k=1

(φk − φ)2 (58)

σdφ =
1

Ns

Ns

∑
k=1

(dk − d) (φk − φ) (59)

Since these numerical results serve just as a reference for judging the accuracy of the error models,
in the formulas above, the true values for d and φ have been used. The required line parameters dk
and φk in (57)–(59) can be estimated with any of the four described methods, since minor differences
in dk and φk have almost no effect on the resulting variances and the covariance. The blue lines in
Figure 5d–f show the results of the analytic error model as described in Section 3, and the black lines
represent the outcomes of the algorithm from Krystek and Anton [35], while the red lines corresponds
to the model in closed-form according to (56) in Section 4 with L and xo f f taken from (41) and (49),
respectively. Interestingly, although the theoretical derivations differ substantially, the results match
very well, which especially proves the correctness of the simplified model in closed-form. Since this
model explicitly considers the effect of the line length L and of the geometric offset xo f f , the behavior of
the curves can be clearly understood: The minimum of L will occur if φ equals the mean value of θmin
and θmax, i.e., at φ = 55◦, and exactly at this angle, the maximum standard deviation σφ occurs. Further,
since L linearly depends on φ, a quadratic dependence of σφ on φ according to (47) can be observed.
With respect to Figure 5e, the minimum of σd also appears at φ = 55◦ corresponding to xo f f = 0.
At this angle, according to (54), the standard deviation of d is given as σd ≈ σρ/

√
N = 5/

√
40 = 0.79,

while the covariance σρd calculated according to (55) and with it the correlation coefficient shown in
Figure 5f vanish.

When comparing the results, one should be aware that in the simulations of the analytic error
models, the exact variances σ2

xi
, σ2

yi
and σxyi are used; thus, in practice, the achievable accuracies will

be worse. On the other hand, when applying the new error model in closed-form, the variance σ2
ρ is

calculated as the mean value of all ρ2
i from the actual set of N data points according to (39), and hence,

is always available.
Nevertheless, if in this equation, the estimated line parameters φ and d are used, which are

calculated, e.g., according to (3) and (4) using the same measurements as in (39), no unbiased σ2
ρ can be

expected. This is reasoned from the fact that for each set of N data points, the mean quadratic distance
over all ρ2

i is minimized in order to estimate φ and d. Thus, the numeric value of σ2
ρ will always be

smaller than its correct value calculated with the exact line parameters. This effect can be clearly
observed from Figure 6, which shows for the same simulation parameters as depicted in Figure 5a the
dependency of σ2

ρ on the number of points on the line N, averaged over Ns sets of samples: only in
the case of using the exact line parameters in (39), which obviously are only available in a simulation,
actually the correct σ2

ρ = 25 cm2 is obtained as shown by the triangles. If however, in each run, σ2
ρ is

calculated with the estimated φ and d as indicated by the squares, a clear deviation especially at low N
occurs. Only asymptotically for large N when φ converges to its exact value, the correct σ2

ρ is reached.
Fortunately, this error can be compensated quite well by means of multiplying σ2

ρ with a correction
factor c = N+1

N−1 as shown by the dashed line in Figure 6. Due to the strongly non-linear relation between
φ and any ρi, this correction works much better than simply exchanging in (39) the divisor N by N − 1
as often used in statistics. Since c is the inverse of the term neglected in the approximation of σ2

φ in (47),
the closed-form of the covariance matrix Rdφ according to (56) yields almost unbiased results also for
small N if σ2

ρ is calculated according to (39) with estimated line parameters φ and d. Although not
shown here, the proposed bias compensation works well for a large range of measurement parameters.
For a reliable determination of σ2

ρ from N data points of a line segment, N should be at least in the
order of 10.

Figure 7 shows the results when simulating a range-bearing scan with a constant angular offset
∆θ = (θmax − θmin)/(N−1) between adjacent measurements. Each measurement is distorted by
adding normally-distributed noise with standard deviations σr =5 cm and σθ = 0.1◦. This is a more
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challenging situation, since now that the measurements are not equispaced, each data point exhibits
individual variances σx,i, σy,i dependent on φ, and moreover, a covariance σxy,i exists. As can be seen,
the errors of the estimated φ and d as depicted in Figure 7b,c exhibit the same order of magnitude as
before; yet, both analytic results differ slightly from each other and are less accurate compared to the
numerical solutions. Both numerical methods yield quasi-identical results, since for the chosen small
noise amplitudes, the differences between both algorithms have no impact on the resulting accuracy.
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Figure 6. Variance of ρ dependent on the number N of measured data points, using the same simulation
parameters as indicated in Figure 5a.
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Figure 7. Results from simulated range-bearing scans superimposing low noise in the r- and θ-direction.

Regarding the error models, Figure 7d–f reveal that in spite of unequal distances between the
measurement points and varying σρ,i, the results of the closed-form model match well with the analytic
and numeric results. Only σd shows a certain deviation at steep and flat lines with φ below 30◦ or
above 80◦. This is related to errors in xo f f , since in this range of φ, the points on the lines measured
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with constant ∆θ have clearly varying distances, and thus, (49) yields just an approximation of the
effective offset of the straight line.

The next Figure 8 shows the results with the models applied to short lines measured in the
angular range of 30◦≤ θ≤40◦ with N=20, while all other parameters are identical to those depicted
in Figure 7a. As can be seen from Figure 8b,c, now, the analytical algorithms based on (3) and (4) are
no longer adequate since these, independent of applying weights or not, yield much higher errors
than the numerical approaches. All error models however still provide accurate results. Actually,
the closed-form model even yields better accuracy than before, since the distances of the data points
on the line between adjacent measurement and also σρ,i are more uniform compared to the simulations
with long lines.
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Figure 8. Results from simulated range-bearing scans of short lines superimposing low noise in the r-
and θ-direction.

In order to check the limits of the models, Figure 9 depicts the results when applying large
angular noise with σθ = 2◦. In this extreme case, also the numerical algorithms show systematic
errors dependent on φ since the noise of ρi can no longer be assumed to be normally distributed.
However, according to Figure 8b,c the iterative method as presented in Section 2 shows clear benefits
in comparison to the KA algorithm proposed in [35], caused by the more accurate modeling of σρi .

With respect to the outcome of the noise models in Figure 9d–f, now, only the analytic algorithm
as presented in Section 3 still yields reliable results, while the KA-method based on matrix inversion
reveals numerical instability. Due to the clear uneven distribution of measurements along the line, also
the simplified error model in this case shows clear deviations, although at least the order of magnitude
is yet correct.

Finally, Figure 10 shows typical results, if the sensor noise is not exactly known. In this example,
the radial standard deviation was assumed to be 10 cm, whereas the exact value, applied when
generating the measurements, was only 5 cm. The simulation parameters correspond to those in
Figure 7, only the number of data points has been reduced to N=10. According to Figure 10b,c, now,
for calculating φ and d, the numerical methods yield no benefit over the analytical formulas with or
without weights. Due to the only approximately known variance, the analytic error model, as well as
the KA-method in Figure 10d–f reveal clear deviations from the reference results. Only the model in
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closed-form is still accurate, since it does not require any a priori information regarding sensor noise.
In addition, these results prove the bias-free estimation of σ2

ρ with (39) also if N is low, as depicted
in Figure 6.
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Figure 9. Results from simulated range-bearing scans superimposing high noise only in the θ-direction.
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Figure 10. Results from simulated range-bearing scans with a low number of data points and only an
approximately known noise level of the sensor.
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6. Conclusions

In this study, the performance of linear regression is evaluated, assuming both coordinates as
random variables. It is shown that, especially with range-bearing sensors, frequently used in mobile
robotics, a distinct covariance of the noise in the x- and y-direction at each measurement point exists.
In this case, analytical formulas assuming identical and uncorrelated noise will only provide accurate
line parameters φ and d if the detected line segments are sufficiently long and the noise level stays
below a certain limit. If these prerequisites are not fulfilled and if the sensor noise is known, numerical
algorithms should be applied, which consider the reliability of each measurement point as a function of
φ. For this, the performance of prior work can be improved by means of modeling the independence of
the single data points exactly and by paying attention also to second order effects of the angular noise.

The main focus of this paper is on the derivation of the covariance matrix Rdφ of straight lines.
This information has a crucial impact on the performance of SLAM with line features, since for
both, data association and sensor fusing, Rdφ must be estimated precisely. For this purpose, the first
analytical error models are reviewed, which however need exact knowledge of the measurement
noise, although in many applications, this is not available. In addition, these approaches require high
computational effort and do not allow one to comprehend the effect of measurement parameters on the
resulting accuracy of an estimated straight line. Thus, a new error model in closed form is proposed,
depending only on two geometric parameters, as well as on the number of points of a line segment.
Besides, a single variance must be known, which is determined easily and reliably from the same
measurements as used for line fitting. By means of this model, the covariance matrix can be estimated
quickly and exactly. Moreover, it allows one to adapt measurement conditions in order to achieve the
maximum accuracy of detected line features.
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Appendix A. Analytic Derivation of Straight Line Parameters With Errors in Both Coordinates

For the derivation of the perpendicular distance d, the partial derivative of Equation (2) with
respect to d is taken and set to zero, which directly gives Equation (4) using (8)–(10). In order to calculate
φ, first the partial derivation of (2) with respect to φ must be calculated and set to zero, yielding:

1
N

N

∑
i=1

si

[
xiyi

(
cos2φ− sin2φ

)
+
(

y2
i − x2

i

)
sin φ cos φ

]
+

1
N

N

∑
i=1

sid (xi sin φ− yi cos φ) = 0 (A1)

Now, the distance d can be replaced by (4), and after inserting the definitions of x̄, ȳ, σ2
x , σ2

y and
σxy according to (5)–(9) considering (10), it follows from (A1) after reordering:

σxy

(
cos2 φ− sin2 φ

)
+ sin φ cos φ

(
σ2

y − σ2
x

)
= 0 (A2)

Applying the theorem of Pythagoras and the addition theorems of angles, the terms with the sine
and cosine can be rewritten:

cos2 φ− sin2 φ = 2 cos2 φ− 1 = cos 2φ (A3)

sin φ cos φ =
1
2

sin 2φ (A4)
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Inserting these formulas into (A2) finally yields for φ:

φ =
1
2

arctan

(
−2σxy

σ2
y − σ2

x

)
(A5)

Equation (A5) calculates φ always in the range −π/4 < φ < π/4, although according to Figure 1,
this is only correct if σ2

y > σ2
x , while in the case σ2

y < σ2
x , an angle π/2 must be added to φ. Thus,

as general solution (3) should be taken also avoiding a special consideration if σ2
y equals σ2

x .
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