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Abstract: Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor
networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling
schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks.
Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on
the routing topology, but do not take into account the network traffic and packet forwarding delays.
In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with
RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along
the packet forwarding path to minimize the packet transmission delay. The schedule is generated
autonomously by utilizing only the local routing topology information without any additional
signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes
in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator
and evaluate its performance with existing autonomous scheduling schemes through a testbed and
simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and
higher packet delivery ratio compared to the existing schemes regardless of the network topology.
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1. Introduction

Time Division Multiple Access (TDMA) and channel hopping-based MAC protocols are being
developed for energy efficient and reliable communication in Wireless Sensor Networks (WSNs)
composed of low-power wireless devices [1–4]. These protocols perform synchronous and deterministic
communications based on timeslot schedules in units of the slotframe (or superframe), a group
of timeslots that continuously repeats over time. TDMA uses a deterministic schedule to reduce
idle listening and collisions in packet transmission. Channel hopping mitigates packet transmission
failures that might occur due to multipath fading or channel conflicts through frequency diversity [5].
These protocols perform channel hopping in timeslots along the hopping pattern and provide
simultaneous communications in a single timeslot using a channel offset. These protocols provide a
low duty cycle and high reliability compared to existing asynchronous protocols [6].

In the WSNs based on TDMA and channel hopping, routing and timeslot scheduling schemes
are important because they determine the performance of the entire network. Routing determines the
packet forwarding path of the network. Reliable link-based robust routing protocols provide reliability
for the end-to-end packet delivery. The timeslot schedule of the TDMA network determines the
end-to-end delay of the packet transmission and the bandwidth of the network. The timeslot schedules
that generate consecutive timeslots along the packet forwarding path minimize the end-to-end delay
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of the packet transmission. Furthermore, the timeslot schedules that minimize the slotframe size (or
length) increase the bandwidth of the network.

Several scheduling schemes have been proposed for WSNs based on TDMA and channel hopping.
Scheduling schemes could be classified by the entities that create and manage the schedules [7,8]. Firstly,
in centralized scheduling, a central entity performs the creation and management of the schedules.
The central entity collects properties such as traffic requirements, network topology information
and link status from the nodes to create schedules. Secondly, in the distributed scheduling, each
node in the network performs the creation and management of the schedules through schedule
information exchange and negotiations with neighbor nodes. Finally, in the autonomous scheduling,
there is no entity that performs the creation and management of the schedules [8]. Autonomous
scheduling determines the schedule according to the pre-established rules without information
collections or negotiations among nodes for schedule creation and management, thereby reducing the
collection overhead.

One of the common communication patterns in WSNs is convergecast, which means the data
collection from all nodes to the sink opposite to broadcast. In general, convergecast means that all
nodes in the network transmit data generated to the sink periodically. Event-driven data collection is
also a convergecast in a broad sense [9]. Because the data collection is one of the most typical WSN
applications, the convergecast could be considered as the main communication pattern of WSNs.
At the convergecast, all nodes must be able to forward packets to the sink until the next packet
generation cycle.

In this paper, we propose an autonomous scheduling scheme, named Escalator, for the
convergecast in a TSCH network with the RPL [10] routing protocol. The main advantage of Escalator
is that it creates a conflict-free schedule, which minimizes the end-to-end delay, without additional
information exchange for scheduling. In Escalator, each individual node generates and manages
a timeslot schedule in an autonomous manner for a convergecast based on the routing topology
generated by RPL. That is, each node manages a timeslot schedule as soon as the node receives the RPL
control messages such as DIO (Destination-Oriented Directed Acyclic Graph (DODAG) Information
Object) or DAO (Destination Advertisement Object) when the network topology changes. Escalator
generates a conflict-free schedule that allows all nodes in the network to send packets to the sink in
every slotframe cycle. Escalator minimizes the end-to-end delay by creating a consecutive timeslot
schedule along the packet forwarding path from a node to the sink.

We implement Escalator and evaluate the performance with the existing autonomous scheduling
schemes in a testbed. We also perform an extended evaluation in various aspects through simulations.
In the evaluation results, Escalator shows better performance in the packet delivery ratio and the
end-to-end delay than the existing autonomous schemes. In terms of the energy efficiency, the duty
cycle of a node is more susceptible to the size of the routing table entries compared to the existing
schemes. In other words, the duty cycle of the node in Escalator is generally similar to that of the
existing schemes, but the duty cycle becomes higher as the routing table entry increases.

The main contributions of this paper are as follows:

1. We propose Escalator, a new autonomous timeslot and channel scheduling scheme for the
convergecast in TSCH-based WSNs with RPL.

2. We prove that Escalator generates a conflict-free schedule.
3. We show through experiments that Escalator improves the packet delivery ratio, the end-to-end delay

and the average energy efficiency for the convergecast compared to the existing autonomous schemes.

The rest of this paper is organized as follows. In Section 2, we introduce TSCH and RPL,
which form the basis of this study. In Section 3, the existing timeslot scheduling algorithms
are discussed. Section 4 proposes the overall operation of Escalator. In Section 5, we prove the
conflict-freeness of the generated schedules and analyze the packet transmission delay and bandwidth.
In Section 6, we evaluate the performance of Escalator using a testbed and simulations compared to
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the existing autonomous scheduling schemes. Finally, the paper is concluded with future research
directions in Section 7.

2. Background

This section introduces TSCH and RPL, which are the basis for Escalator.

2.1. TSCH Overview

Time Slotted Channel Hopping (TSCH) is the MAC protocol defined in IEEE 802.15.4e-2012 [4].
The TSCH uses a slotframe to provide synchronized communications to the network. The slotframe is
a collection of timeslots that are repeated over time. The timeslot is the basic unit of communication in
TSCH, defined as a time sufficient for a pair of devices to exchange a frame and an acknowledgment.
In each timeslot, nodes could perform one of the following operations: transmit, receive and idle.
The communication between the nodes is established by the timeslot schedule, and the size of the
slotframe determines how often the timeslot schedule repeats. When a node transmits a packet over
a channel in a timeslot, one or more other nodes are scheduled to receive it over the same channel in
the timeslot.

The TSCH provides channel hopping so that the node can change the communication channel
for each timeslot. The channel hopping of the TSCH removes collisions due to wireless interference
and provides frequency diversity to mitigate multipath fading. A node in the TSCH network selects
a channel to use for communication along a predefined hopping pattern. In channel hopping, a channel
offset is used to change the communication channel. Two or more links occurring in the same timeslot
can communicate without overlap using different channel offsets.

TSCH provides a time synchronization mechanism using a beacon. The TSCH beacon consists
of the information required for the network joining including the network time. Nodes in the TSCH
network periodically advertise the beacon to one another. A TSCH node synchronizes its clock time
with other TSCH nodes via the advertised beacon.

Internet Engineering Task Force (IETF) standardizes 6TiSCH (IPv6 over the TSCH mode of IEEE
802.15.4e) [11] for IPv6 communication based on TSCH. 6TiSCH combines TSCH with the existing
well-defined IPv6 protocol stack for WSNs. 6TiSCH supports both centralized scheduling such as the
Path Computation Element (PCE) [12] and decentralized scheduling based on the 6top Protocol (6P)
[13] for scheduling of the MAC layer not covered by the TSCH standard. 6TiSCH uses RPL [10] as a
routing protocol.

2.2. RPL

The Routing Protocol for Low-power and lossy networks (RPL) [10] is a gradient-based distance
vector routing protocol for WSNs supporting diverse link layers. RPL uses a Destination-Oriented
Directed Acyclic Graph (DODAG) as a routing topology. The DODAG is a directional graph in which
all edges are directed at the root node. An RPL node could transmit packets towards the root node
using the DODAG topology. In RPL, nodes generate and manage routing information using the RPL
control messages such as the DODAG Information Object (DIO) and Destination Advertisement
Object (DAO). The node in the DODAG periodically advertises the DIO messages, which include
configuration attributes that all RPL nodes should have. The RPL node receiving the DIO message
advertised by the other node participates in the DODAG. At this time, the RPL node selects the source
node of the DIO message as the parent. When an RPL node participates in a DODAG, it transmits
the DAO messages to its parent. The RPL node receiving a DAO message generates the downward
routing information for the source node of the DAO message and then transmits the message to the
parent. This DAO message transfer is repeated until the DAO message reaches the root node, which
creates a downward path from the root node to the source node of the DAO message.
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3. Related Work

3.1. Scheduling of WSNs based on TDMA and Channel Hopping

TDM-A and channel hopping-based WSNs require scheduling to generate timeslot and channel
schedules for communication between nodes. The number and order of timeslots scheduled for a node
determine the throughput of the node and the end-to-end delay of the packet transmission. In addition,
the scheduling of timeslots and channels considering both the interference of wireless networks and
the conflicts of the schedule can improve the reliability of the network. Since scheduling determines
the performance of the network, an efficient scheduling scheme is required to improve the network
performance. Several schemes have been proposed for efficient scheduling. These schemes could be
classified into centralized, decentralized and autonomous scheduling schemes, depending on which
the scheduling is actually performed.

The centralized scheduling schemes aim at generating an optimal schedule by using the
information such as the link status and traffic requirements of the nodes collected by the central
entity of the network such as the system manager. The Industrial Wireless Sensor Networks (IWSNs)
such as Wireless HART and International Society of Automation (ISA) 100.11a, use the centralized
scheduling for high reliability and real-time performance. Ergen et al. [14] proved that the scheduling
problem is NP-complete and suggested both the node-based and the level-based heuristic scheduling
algorithms. Han et al. [15] proposed a reliable path generation algorithm based on Wireless HART.
The authors define reliability requirements of the graph and propose algorithms for graph generation
and timeslot assignment satisfying the requirements. In TASA (Traffic Aware Scheduling Algorithm)
[16], the central entity generates a schedule based on the network connectivity graph and traffic
requirements, taking into account the conflicts and interactions between links.

In the distributed scheduling schemes, unlike the centralized schemes, scheduling functions
are distributed across nodes. The nodes exchange information such as the link status and traffic
requirements and use this information to determine the schedule. Therefore, the distributed scheduling
can respond to network changes more quickly than the centralized schemes, which collect information
from the central entity and determine the schedule. Tinka et al. [17] proposes a decentralized scheduling
algorithm for mobile nodes in the TSCH network. Mobile nodes maintain their network connectivity
through advertisements and link creations using a rendezvous slot. DeTAS (Decentralized Traffic
Aware Scheduling) [18] generates a macro-schedule that assigns non-overlapping timeslot sections
per DODAG in a multi-sink topology. In addition, each DODAG root performs a micro-schedule
with respect to the traffic of the nodes for the assigned timeslot section. Domingo-Prieto et al. [19]
proposed a distributed scheduling scheme based on a Proportional, Integral and Derivative (PID)
control algorithm. Nodes calculate the required number of timeslots using the number of packets in
the queue at the start of the slotframe and perform the negotiation and reservation of timeslots with
neighbor nodes using the 6top protocol [13].

DeAMON (Decentralized Adaptive Multi-hop scheduling for 6TiSCH Networks) [20] gradually
creates a schedule in the direction toward the root node starting from a leaf node that has no children.
Through this, sequential schedules considering the packet forwarding path are generated to minimize
the end-to-end latency. Furthermore, each node collects the schedule information of neighboring
nodes through overhearing and generates a schedule capable of parallel communication using the
schedule information. The Leapfrog Collaboration [21] provided path diversity using redundant
paths. The nodes select an alternative parent in addition to the default parent and create a timeslot
schedule so that the same packet can be sent to both parents. Packets received in duplicate during
packet transmission are discarded. These multipath packet transmissions may improve the delay
and reliability of the packet transmission. Multihop and Blacklist-based Optimized TSCH protocol
(MABO-TSCH) [22] proposes a link-specific channel offset allocation scheme using graph coloring
and an improved channel blacklisting scheme. Blacklist information of the communication channel
is generated at one node of each parent/child pair, and this information is embedded in data or
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ACK frames exchanged between the two nodes. Hosni et al. [23] proposed a distributed scheduling
based on the spectrum, which means the node group of the same hop count from the root. This
scheme allocates a time-frequency block for each spectrum for collision avoidance. The time-frequency
blocks are arranged in a sequential manner to reduce the packet transmission delays. These studies
propose efficient distributed scheduling schemes that reduce delays through sequential schedules and
parallel transmission. However, these distributed scheduling schemes use signaling or overhearing for
information gathering from neighboring nodes. Our proposed scheme generates sequential schedules
that support parallel transmission, such as the distributed scheduling schemes, but uses only routing
information without additional overheads for scheduling. This is the difference between the existing
distributed scheduling schemes and Escalator.

The state of the art solution is autonomous scheduling. In autonomous scheduling, each node in
the network determines the communication schedule like distributed scheduling. However, unlike
distributed scheduling, each node schedules according to predefined rules without any signaling and
resources to the schedule creation or modification. The autonomous scheduling has the advantage
of less overheads for scheduling than the centralized and distributed schemes. However, there is
a disadvantage that it is difficult to generate an optimal schedule. Orchestra [8] is an autonomous
scheduling scheme based on the routing information. Orchestra uses multiple slotframes separated by
traffic types. Orchestra uses the node ID and routing information for the three slotframes to generate a
schedule that considers the routing topology. However, this schedule is not suitable for data collection,
which is a typical application of WSNs because the delay and traffic requirements are not considered.
6TiSCH-minimal [24] can be seen as an autonomous scheduling scheme in a large category because it
does not use a separate scheduler. 6TiSCH-minimal provides a schedule with a single shared timeslot
in that all nodes in the network use it in a slotted-aloha fashion. 6TiSCH minimal is used as the baseline
schedule of 6TiSCH and can be used with other scheduling schemes.

3.2. Timeslot Scheduling for Convergecast

The convergecast is a common communication pattern in WSNs and implies the data collection
from many or all nodes to a sink. There are many studies to minimize both the delay from nodes to the
sink and the total convergecast time in order to improve the convergecast performance of the TDMA
network. Gandham et al. [25] introduced a distributed scheduling algorithm for the convergecast in a
single channel TDMA-based WSN. The algorithm uses a slotframe of size N × 3 in a general network
with N nodes. Incel et al. [26] proved that the conflict-free scheduling problem using the least number
of channels in the multichannel TDMA WSNs is NP-complete. Zhang et al. [27] proposed a link
scheduling and channel assignment algorithm for the convergecast in a linear topology WirelessHART
network. The authors propose a polynomial time scheduling algorithm using a slotframe with the size
N × 2− 1 and the number of channels dN/2e for a linear topology network consisting of N single
buffer nodes. Soua et al. [28] proposed a distributed scheduling algorithm aimed at minimizing the
slotframe size required for the convergecast. This algorithm divides the slotframe with a unit called
the wave and generates waves repeatedly to form a schedule for all nodes in the network to transmit
packets generated at regular intervals to the sink.

We propose an autonomous scheduling scheme for the convergecast, which is different from
the previous studies. Our proposed scheme automatically generates a schedule considering both the
node’s traffic requirements and the delay of packet transmissions. In the next section, we describe the
proposed scheme in detail.

4. Proposed Autonomous Scheduling Scheme for Convergecast

In this paper, we propose Escalator, an autonomous scheduling scheme for convergecast in
TSCH-based WSNs with RPL. The basic idea of Escalator is to create a pipeline-like communication
schedule. Each node allocates two timeslots for each descendant node included in its sub-graph. In
one timeslot, a node receives a packet generated from a descendant node, and in the next timeslot, the
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node sends the received packet to its parent immediately. In addition, Escalator adjusts the schedule
and determines the communication channel so that the packet can be continuously transmitted in
chronological order from the source to the sink using the allocated timeslots.

Escalator, operating on each node of the network, generates and manages timeslot and channel
schedules for convergecast using only local routing information of the node without signaling or
negotiation with other nodes. The generated schedules of Escalator on every nodes have two main
characteristics: Firstly, it is conflict-free. Secondly, it is a consecutive timeslot schedule along the packet
forwarding path, thereby reducing the end-to-end delay.

Escalator uses routing topology information and hop counts for scheduling and operation. The hop
count of a node means the hop distance to the DODAG root, and we assume that the node may know
the hop count by the routing protocol. Since Escalator uses only the generated routing topology,
the routing topology generation method does not affect the operation of Escalator. In other words,
Escalator can be applied regardless of the Object Function (OF) of RPL.

In Escalator, there are two types of slotframes with their own sizes: convergecast and baseline
slotframes. The convergecast slotframe is used for carrying both TSCH beacons and the convergecast
data of nodes, while the baseline slotframe is for RPL route control messages and downward data
traffic (i.e., packets sent from the sink to nodes). Since RPL control messages are used to create and
update the routing topology in real time, Escalator gives the baseline slotframe a higher priority
than the convergecast slotframe. Figure 1 shows an example of a schedule generated by Escalator.
Each timeslot in Figure 1b shows a transmission of data, and its background color matches with the
color of the originating node of the transmitted data in Figure 1a. Convergecast and baseline slotframes
are also shown in Figure 1b, separately. The size of the two slotframes are not necessarily the same.
The generated schedules in the convergecast slotframe of Figure 1b are consecutive so that the data
could be delivered to the sink from any node in a single convergecast slotframe.

C
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Time
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ha

nn
el

Baseline Slotframe

Convergecast Slotframe

slotframe T T+1

slotframe T’ T’+1
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D→C

(a) (b)

Figure 1. An example of the Escalator schedule: (a) network topology of the example; (b) Escalator’s
generated schedule for the example

To explain the operation of Escalator, we define a network as follows. The network G = (V, E)
consists of N nodes, and all of the nodes vi ∈ V have unique ID {i|1 ≤ i ≤ N}. The ID of the node is
pre-installed, and we assume that the node ID is managed by a central entity such as the DODAG root.
Assigning a preconfigured unique ID to a node can be sufficiently assumed in a managed network,
so it would not be a challenge in practical applications and implementations. All nodes in the network
participate in DODAG using RPL, and the DODAG root acts as a sink. Each node vi has its preferred
parent p(vi), its direct child set C(vi) and its sub-graph’s nodes set SG(vi). For nodes vi, vj ∈ V, lij ∈ E
is defined as a link between the sender vi and the receiver vj. Hvi means the number of hops from
the sink to node vi. The network performs channel hopping using Ch orthogonal channels. Data
are generated from all nodes except the sink and are transmitted to the sink according to schedules
specified for each node. Table 1 summarizes the main notations in this paper.



Sensors 2018, 18, 1209 7 of 25

Table 1. Main notations.

Symbol Definition

G The network consisting of nodes V and links E
N The number of nodes in the network
V The set of nodes in the network
E The set of links in the network
DT Duration of timeslot
Ch The number of available orthogonal channel
CO The channel offset that is used for multiple channel usage at a single timeslot
COOp The channel offset used for Op
ASN The total number of timeslots that have elapsed since the start of the network
SConv The convergecast slotframe
SBase The baseline slotframe
L(S) The size of slotframe S in timeslot unit
vi A node with ID i
p(vi) The preferred parent of node vi
C(vi) The set of the direct child nodes of node vi
SG(vi) The set of nodes in the sub-graph of node vi, excluding vi itself
lij A link for which the sender is vi and the receiver is vj
Hvi Hop count of node vi, the number of hops from the sink to node vi
Op(S, ts) Operation at timeslot ts in slotframe S, which is one of the following four operations
BTi The operation in which vi broadcasts a beacon
BRij The operation in which vi receives a beacon sent by vj
TXij The operation in which vi transmits a unicast packet originated from vj

to the parent node p(vi)
RXij The operation in which vi receives a unicast packet, originated from vj,

from one of the child nodes C(vi)
[ts1, ts2] The timeslot section from ts1 to ts2
LCM(a, b) Least common multiple of a and b
Hmax(G) Maximum hop counts of the packet-forwarding path in network G
De2e(vi) Average end-to-end delay of node vi
B(G) Average bandwidth of node in network G
Q(G) Average required buffer capability of nodes in network G

The operation of Escalator consists of four parts: timeslot allocation, sliding slotframe,
channel offset selection and baseline slotframe size determination. Firstly, the timeslot allocation
mechanism allocates two dedicated timeslots to each node for the receive and transmit operations,
respectively. Secondly, the sliding slotframe mechanism shifts its allocated timeslots for pipelined
transmission between parent and child nodes. Thirdly, the channel offset selection mechanism
minimizes timeslot usage by parallelizing concurrent transmissions of packets. Finally, the baseline
slotframe size determination mechanism finds the optimal baseline slotframe size for minimizing the
conflicts between the convergecast and baseline slotframes. The detailed operation of each mechanism
is described in the next section.

4.1. Timeslot Allocation Mechanism

The timeslot allocation mechanism of Escalator in a node generates a timeslot schedule for the
convergecast slotframe that uses only the node ID and routing topology information without additional
signaling with other nodes. The generated Escalator schedule of node vi consists of the timeslots with
the following four operations for the TSCH beacon and convergecast traffic transmission.

• BTi: The operation in which vi broadcasts a beacon
• BRij: The operation in which vi receives a beacon sent by vj

• TXij: The operation in which vi transmits a unicast packet originated from vj to the parent node p(vi)

• RXij: The operation in which vi receives a unicast packet, originated from vj, from one of the child
nodes C(vi)
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The timeslot allocation mechanism consists of the following five allocation rules that set operations
to timeslots.

• SET_BT(i): Node vi sets BTi to i× 2− 1 timeslot (for example, BT1 = 1, BT2 = 3, BT3 = 5, BT4 = 7).
• SET_BR(i,j): Node vi, where vi 6= sink, sets BRij to j× 2 timeslot to receive a broadcast beacon

from vj = p(vi) (for example, BR21 = 2, BR32 = 4, BR42 = 4).
• SET_TX(i,i): Node vi, where vi 6= sink), sets TXii to i× 2 timeslot to send its unicast packet to

vi’s parent vj = p(vi) (for example, TX22 = 4, TX33 = 6, TX44 = 8).
• SET_RX(i,j): Node vi sets RXij to the j× 2− 1 timeslot to receive the unicast packet generated by

the node vj ∈ SG(vi) (for example, RX12 = 3, RX13 = 5, RX14 = 7, RX23 = 5, RX24 = 7).
• SET_TX(i,j): Node vi, where vi 6= sink, sets TXij to j× 2 timeslot to transmit the packet generated

by vj ∈ SG(vi) to vk = p(vi), the parent of vi (for example, TX23 = 6, TX24 = 8).

Figure 2 shows a schedule with a convergecast slotframe size L(SConv) = 8 in a network consisting
of four nodes with sink v1. In Figure 2, the gray timeslots are used to broadcast the beacon, and the
red, green and blue timeslots are used to deliver packets generated by v2, v3 and v4, respectively.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

v 1 BT1 RX12 RX13 RX14 BT1 RX12 RX13 RX14

v 2 BR21 BT2 TX22 RX23 TX23 RX24 TX24 BR21 BT2 TX22 RX23 TX23 RX24 TX24

v 3 BR32 BT3 TX33 BR32 BT3 TX33

v 4 BR42 BT4 TX44 BR42 BT4 TX44

: timeslots related to broadcast BTi : The operation where vi broadcasts a beacon

: timeslots related to packets from v2 BRij : The operation in which vi receives a beacon sent by vj

: timeslots related to packets from v3 TXij : The operation in which vi transmits the unicast packet

: timeslots related to packets from v4 originated from vj to the parent node p(vi)
RXij : The operation in which vi receives the unicast packet

,originated from vj , from one of the children nodes

slotframe L(S) = 8

Timeslot

v1

v2

v3 v4

N
od

e

slotframe T T+1

Figure 2. An example of timeslot allocation for the convergecast slotframe.

The timeslot allocation mechanism uses the above-mentioned allocation rules when a node
receives RPL control messages to reflect changes in the DODAG topology into the node’s timeslot
schedule. Algorithm 1 shows the application of the allocation rules when a node receives RPL control
messages. When a node participates in a DODAG through the reception of a DIO, the node adds TX,
BT (Broadcast Transmission) and BR (Broadcast Reception) operations for transmitting the node’s own
packets and beacons to the convergecast slotframe. If a node already participating in the DODAG
receives a DIO, the node checks whether the routing topology has changed. If the routing topology has
changed, the node removes the BR operation that was used in the previous topology and adds a new
BR operation for the new topology to the convergecast slotframe. When a node receives a DAO, the
node adds TX and RX operations to the convergecast slotframe for forwarding packets originating
from a node that sent the DAO. In Figure 2, node v4 sends a DAO to v2. When node v2 receives the
DAO of node v4, node v2 allocates RX24 and TX24 to Timeslots 7 and 8, respectively, and delivers
the DAO to node v1. Node v1 that has received the DAO of node v4 from node v2 allocates RX14 to
Timeslot 7.
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Algorithm 1 RPL callback handler for timeslot allocation.

1: procedure RPL CALLBACK HANDLER(cm, j) . j is a sender of the RPL control message cm
2: i← ID of vi . set i to node’s own ID
3: k← ID of p(i) . get parent ID of node vi
4: s← ID of sink . get ID of sink
5: if cm = DIO then
6: if route updated then
7: if first joining of DODAG then
8: if i 6= s then
9: SET_TX(i, i)

10: SET_BR(i, j)
11: end if
12: SET_BT(i)
13: else if j 6= k then
14: UNSET_BR(i, k)
15: SET_BR(i, j)
16: end if
17: end if
18: else if cm = DAO then
19: SET_RX(i, j)
20: if i 6= s then
21: SET_TX(i, j)
22: end if
23: end if
24: end procedure

4.2. Sliding Slotframe Mechanism

The sliding slotframe mechanism, which is responsible for running schedules in Escalator, forms
a communication link between the parent and child nodes using the timeslot schedule assigned to
the convergecast slotframe. In the TSCH network, a node forms a communication link with another
node using the current slot number calculation. However, the timeslot schedule of the convergecast
slotframe generated by the timeslot allocation mechanism in Section 4.1 could not form links using the
existing slot number calculation. Through the new slot number calculation provided by the sliding
slotframe mechanism, the operation assigned to the timeslot of one node’s convergecast slotframe
could form a link with the operation of the other node.

The TSCH node determines the operation of the current timeslot by calculating the current slot
number for each slotframe using the Absolute Slot Number (ASN). ASN is the total number of timeslots
that have elapsed since the start of the network. The current slot number tsS at the slotframe S could
be obtained with Equation (1) in TSCH [4].

tsS = ASN mod L(S), (1)

where L(S) is the size of slotframe S.
The current slot number calculation of Escalator adds the hop count of the node to Equation (1).

The current slot number, tsSConv(vi), at the convergecast slotframe SConv at a node vi could be obtained
as Equation (2).

tsSConv(vi) = (ASN + Hvi ) mod L(SConv), (2)

where SConv is the convergecast slotframe, L(SConv) is the size of SConv and Hvi is the hop count of
vi.That is, the timeslot schedule of the convergecast slotframe for a node with the sliding slotframe
mechanism is shown as being left shifted by the hop count of the node.

Figure 3 shows an example of applying the sliding slotframe mechanism to the schedule in
Figure 2. The schedule for node v2 is left shifted by Hv2 = 1. The schedules for node v3 and v4 are left
shifted by Hv3 = Hv4 = 2. These schedule shifts allow the TX and RX operations of the nodes in the
example to be paired with each other, and communication links are formed between them.
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Figure 3. An example of the sliding slotframe.

4.3. Channel Offset Selection Mechanism

This section describes the channel offset selection mechanism that determines the concurrent
communication channel usage in Escalator. That is, the selection mechanism assigns different channels
to the communication links that could be in conflict with each other for concurrent communication
by utilizing the rank of the links. The rank of a link means the distance from the sink to the link
and is determined by the smaller value between the hop counts of the two nodes constituting the
link. Figure 4 shows the ranks of links. The channel offset selection mechanism allocates a channel
offset for the links with two adjacent ranks (for example, links with Ranks 0 and 1 use Channel Offset
0, and links with Ranks 2 and 3 use Channel Offset 1). Due to the nature of this channel allocation,
Escalator has the following network extension range: When the number of available channels in the
network is Ch, the maximum hop count of nodes in the network is less than or equal to Ch× 2.

7

6

Sink

1

2

8

3

4 5

Rank of link = 1

Rank of link = 2

Rank of link = 0

Figure 4. An example of the rank of links.

The channel offset selection mechanism determines the channel offset by the rank of the link
and the link communication type. There are two different link communication types in Escalator:
unicast and broadcast. The unicast link of a node is used to receive packets from the child nodes and
to transmit packets to the parent node, and the broadcast link of a node is used to advertise beacons to
the child nodes. The direction of unicast and broadcast links in the same rank is opposite. Notice that
the convergecast slotframe of Escalator deals with only upward unicast links and downward broadcast
links because the downward unicast links are covered in the baseline slotframe. We define the channel
offset calculation formulas for each link type so that links of the same rank use the same channel offset
regardless of the type and direction of the link. Equations (3) and (4) are used to calculate the channel
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offset of the broadcast link of node vi. Equations (5) and (6) are used to calculate the channel offset of
the unicast link of node vi.

COBTi =

⌊
Hvi

2

⌋
(3)

COBRij =

⌊
(Hvi − 1)

2

⌋
, ∀vj ∈ V (4)

COTXij =

⌊
(Hvi − 1)

2

⌋
, ∀vj ∈ V (5)

CORXij =

⌊
Hvi

2

⌋
, ∀vj ∈ V (6)

Algorithm 2 shows the pseudocode of the function that determines the operation and channel
offset at the current timeslot, which is executed on every node at every timeslot. This function uses
ASN to calculate the timeslot of both convergecast and baseline slotframes (see Equations (1), (2) and
Lines 2, 11 of the algorithm) and selects the operation accordingly. This function then calculates the
channel offset to use for the selected operation (see Equations (3)–(6) and Lines 5–8 of the algorithm).
That is, when a node executes the operation of the convergecast slotframe, it uses the channel offset
selection mechanism to determine the channel offset according to the type of links. When the node
executes the operation of the baseline slotframe, the channel offset is set to zero.

Algorithm 2 Decide current timeslot operation and channel offset selection of the convergecast
slotframe.

1: procedure GET CURRENT OPERATION AND CHANNEL OFFSET(ASN, i)
2: ts← (ASN + Hvi ) mod L(SConv) . relative timeslot number in current SConv
3: op← OP(SConv, ts) . get operation for ts from SConv
4: if op 6= idle then
5: if op = TX then CO← (Hvi − 1)/2
6: else if op = RX then CO← Hvi /2
7: else if op = BT then CO← (Hvi − 1)/2
8: else if op = BR then CO← Hvi /2
9: end if

10: end if
11: ts′ ← (ASN) mod L(SBase) . relative timeslot number in current SBase
12: op′ ← OP(SBase, ts′) . get operation for ts′ from SBase
13: if op′ 6= idle then . if the operation of SBase is not idle
14: op← op′ . the operation of SConv is suppressed
15: CO← 0
16: end if
17: return op, CO
18: end procedure

Figure 5 shows an example of a schedule for the convergecast slotframe. For a network consisting
of seven nodes as shown in Figure 5a, Figure 5b is a schedule for each node of the convergecast
slotframe with L(SConv) = 20 (i.e., N = 10). Figure 5c shows a schedule of the convergecast slotframe
with the selected channel offsets. In Figure 5c, links with Ranks 0 and 1 use Channel Offset 0, while links
with Rank 2 use Channel Offset 1. Notice that we can see at Timeslots 5, 10, 11 and 19 that two or more
communications in one timeslot are executed concurrently using different channel offsets.

The convergecast slotframe provides a schedule for delivering packets generated from all nodes
in the network to the sink with minimal delay. Using the schedule shown in Figure 5c, a node can
transmit packets to the sink using the same number of consecutive timeslots as the hop count of the
node. The packet at node v7 is delivered to the sink using three consecutive timeslots (green cells
at Timeslots 11, 12 and 13 of Figure 5c). For packet delivery to the sink, nodes v3 and v9 use only
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one timeslot based on their hop counts as shown in Timeslots 5 and 17 of Figure 5c, respectively.
Nodes v1, v4 and v6 each use two consecutive timeslots based on their hop counts. Our proposed
channel scheduling scheme was named Escalator because the packets generated in the nodes are sent
up the stairs along the autonomously-generated consecutive timeslot based on the network topology.

6

9

Sink
A

3

4

7

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

v A RXA1 RXA3 RXA4 RXA6 RXA7 RXA9 BTA

v 3 TX31 BT3 TX33 RX34 TX34 BR3A RX31

v 4 BR43 BT4 TX44

v 1 BR13 BT1 TX11

v 9 RX96 TX96 RX97 TX97 BT9 TX99 BR9A

v 6 BT6 TX66 RX67 TX67 BR69

v 7 BR76 BT7 TX77

Timeslot

N
od

e 
ID

(a) DODAG topology (b) Timeslot schedule per node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 v3→vA BT3 v3→vA v4→v3 v3→vA v6→v9 v9→vA v6→v9 v9→vA BT9 v9→vA BTA v1→v3

1 BT4 BT6 BT7 v7→v6 BT1

Channel
Offset

Timeslot

(c) Link schedule with channel offset

Figure 5. An example of the Escalator schedule. DODAG, Destination-Oriented Directed Acyclic Graph.

4.4. Baseline Slotframe Size Determination

In Escalator, the baseline slotframe is used to transmit routing messages and downward traffic.
The baseline slotframe SBase of length L(SBase) consists of a single shared timeslot for all traffic and idle
timeslots. All nodes in the network use this shared timeslot to create the DODAG topology with RPL.
We give the baseline slotframe a higher priority than the convergecast slotframe, because the schedule
of the convergecast slotframe depends on the DODAG topology information, which is generated from
the baseline slotframe.

The baseline and convergecast slotframes are executed simultaneously in Escalator, and thus,
a collision may occur between the two slotframes’ schedules. The collision between the two schedules
means that the number of operations that a node must perform in one timeslot is two or more.
If a collision occurs between the two simultaneous schedules of the two slotframes at any timeslot,
the operation of the convergecast slotframe is suppressed, because its priority is lower than that of the
baseline slotframe. The transmission of the convergecast traffic scheduled in the timeslot where the
collision occurred is delayed until the next cycle of the convergecast slotframe. If a collision occurs at
the same timeslot in the next cycle again, the convergecast traffic scheduled in the timeslot is delayed
again. In order to deliver data packets to the sink with minimal delay, this schedule delay from the
schedule collisions should be bound to the minimum. We set the size of the baseline slotframe so
that convergecast traffic can be transmitted with minimal delay even if there is a collision between
schedules. If the size of the baseline slotframe is the same as the convergecast slotframe, the operation
using a particular timeslot of the convergecast slotframe might be continuously suppressed due to
collisions at the specific timeslot of the baseline slotframe. Then, links that use the timeslot will not be
able to send traffic. To solve this problem, we define conditions for the size of the baseline slotframe to
prevent the continuous suppression of certain timeslots.

Before describing the conditions for the size of the baseline slotframe, we define the maximum
hop counts of the packet forwarding path Hmax(G) of the network G in Escalator as follows:

Hmax(G) ≤ min (N − 1, Ch× 2), (7)
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where N is the number of nodes in the network and Ch is the number of available channels. For graph
Gl in a linear topology consisting of N nodes, the hop counts of the packet forwarding path from
a node to the sink can be as long as N − 1 hops. Escalator allocates one channel per two hops using the
channel offset selection mechanism of Section 4.3, so the hop counts of the packet forwarding path
for the number of available channels Ch can be as long as Ch× 2 hops. In summary, the maximum
hop counts of the packet forwarding path for graph G is less than or equal to the smaller value of the
two cases.

If a collision occurs at timeslot ts of the convergecast slotframe T, collisions should be avoided in
the timeslots [ts, ts + Hmax(G)− 1] of the next slotframe T + 1 so that the delayed packets could be
transmitted to the sink without a collision. Figure 6 shows the timeslots of the convergecast slotframe
where collisions should be avoided in network G with N = 6. In Figure 6, the maximum hop counts
of the packet forwarding path Hmax(G) are five. If the transmission of packets is delayed due to a
collision with the baseline slotframe at timeslot ts = 3 in convergecast slotframe T, collisions should be
avoided in the timeslots from 3–7 of convergecast slotframe T + 1 to transmit the delayed packets to
the sink. If a collision occurs in the timeslots from 3–7 of slotframe T + 1, the packets not transmitted
in the slotframe T is delayed until the slotframe T + 2.

9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11
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avoided (surrounded by the do�ed lines)

Figure 6. Timeslots of the convergecast slotframe where collisions should be avoided.

The length of the slotframe and the number of channels should be relatively prime to allow each
timeslot to communicate using all available channels [3,11]. In addition, L(SConv) and L(SBase) should
be satisfying the following three conditions, so that all nodes can send one packet to the sink within
two cycles of the convergecast slotframe, even if a collision occurs. First, when the remainder obtained
by dividing L(SConv) by L(SBase) is defined as m in Equation (8), m should not be equal to zero; because
if m is zero, a specific timeslot of SConv at every cycle is suppressed by the shared timeslot of SBase.

m = (L(SConv) mod L(SBase)) 6= 0. (8)

As a second condition, if L(SBase) is greater than L(SConv), L(SBase) should be greater than
or equal to L(SConv) + Hmax(G) as in Equation (9). When L(SBase) is greater than or equal to
L(SConv) + Hmax(G), if a collision occurs at timeslot ts of convergecast slotframe T, then the next
collision occurs after ts + Hmax(G)− 1 timeslots of slotframe T + 1. Therefore, a collision does not
occur in the timeslot section [ts, ts + Hmax(G)− 1] of slotframe T + 1, so delayed packets in slotframe
T could be transmitted to the sink.

L(SBase) ≥ (L(SConv) + Hmax(G)), i f L(SBase) > L(SConv). (9)

Figure 7a shows an example where L(SBase) is greater than L(SConv). In the example, a collision
occurs at timeslot ts = 1 of slotframe T and timeslot ts = 6 of slotframe T + 1. Since collisions do not
occur in timeslot Sections 1–5 of slotframe T + 1, the packets delayed at timeslot ts = 1 of slotframe
T could be transmitted to the sink.
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In the last condition, if L(SBase) is less than L(SConv), then L(SBase) should be greater than
Hmax(G) + m − 1 as in Equation (10). If a collision occurs at ts timeslot of slotframe T, collision
will occur at ts + L(SBase) − m timeslot of slotframe T + 1. Since no collision should occur at
[ts, ts + Hmax(G)− 1] of slotframe T + 1, L(SBase) − m should be less than zero or greater than
Hmax(G)− 1. m cannot be larger than L(SBase) since m is the remainder obtained by dividing L(SConv)

by L(SBase) as in Equation (8). Therefore, L(SBase) should be larger than Hmax(G) + m− 1.

L(SBase) > Hmax(G) + m− 1, i f L(SBase) < L(SConv). (10)

Figure 7b shows an example where L(SBase) is less than L(SBase). In the example, collisions occur
at timeslot ts = 1, 12 in slotframe T and timeslot ts = 11 in slotframe T + 1. Since there is no collision
in the timeslot section [1, 5] of slotframe T + 1, a packet delayed at timeslot ts = 1 in slotframe T can
be transmitted from slotframe T + 1 to the sink.

9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

Convergecast slotframe T T+1T-1

Baselise slotframe T' T'+1T'-1

(a)

9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

Convergecast slotframe T T+1T-1

Baselise slotframe T' T'+1T'-1 T'+2

: Timeslot with a collision                                              : Timeslots of the convergecast slo�rame
: Timeslot sec�on for transmi�ng delayed packets : Shared �meslot with the baseline slo�rame

(b)

Figure 7. Timeslot section where collisions should be avoided. (a) A case where the baseline slotframe
size (17) is greater than the convergecast slotframe size (12); (b) a case where the baseline slotframe size
(11) is smaller than the convergecast slotframe size (12).

5. Analysis of Escalator

This section analyzes the performance and limitations of Escalator. Firstly, we prove the
conflict-freeness of the convergecast slotframe schedule using the wireless conflict model. Then,
we evaluate the performance of Escalator through the analysis of the end-to-end delay and bandwidth.

5.1. Conflict Definition

Wireless communications of nodes using a single wireless interface may cause conflicts.
Wireless conflicts are distinguished by primary (explicit) and secondary (implicit) conflicts [14,16,29].
A node with a single wireless interface cannot transmit and receive at the same time and cannot
simultaneously receive from two or more nodes. We call a conflict caused by the limitation of the single
wireless interface a primary conflict.

Definition 1. A primary conflict occurs in the following cases: 1. If a node simultaneously transmits and
receives, 2. When a node simultaneously receives from two or more nodes.
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Communications among nodes in a wireless environment have an interference area that can affect
other communications. When some nodes are communicating, conflicts may occur if other nodes
simultaneously communicate using the same channel in the interference area. A conflict resulting from
interference between communications using the same channel and the same timeslot is referred to as
secondary conflict. Figure 8a,b show primary and secondary conflicts, respectively.

Definition 2. A secondary conflict means a conflict that may occur among communications using the same
channel and the same timeslot.

v1

v2 v3

v1

v2 v3

v1

v2 v3

v4
Link

Interference

(a) primary conflicts (b) secondary conflicts

Figure 8. Conflicts in TDMA wireless networks.

5.2. Proof of the Conflict-Freeness of Convergecast Schedule

We prove that the schedule of the convergecast slotframe is conflict-free using the wireless conflict
model. First, we prove that the schedule of the convergecast slotframe does not cause the primary
conflict defined in Definition 1. The convergecast slotframe creates unicast and broadcast links between
the parent and child nodes along the DODAG topology. We prove that the schedule generated by
Escalator does not cause a primary conflict by showing that there is no conflict in the links between the
parent and children.

Theorem 1. The unicast and broadcast links generated by the schedule of the convergecast slotframe do not
cause the primary conflict.

Proof. We show the orthogonality of the unicast and broadcast links generated by the convergecast
slotframe, proving that the primary conflict does not occur. A schedule for the convergecast slotframe
of a node consists of the four operations assigned by the timeslot allocation mechanism, as described
in Section 4.1. For node vi, SET_BT(i) and SET_RX(i,i) assign BTi and RXii operations to the same
timeslot of i × 2 − 1. However, since vi does not receive vi packets, RXii is not used. SET_BR(i,j)
and SET_TX(i,j) assign BRij and TXij operations to the same timeslot of j × 2 for nodes vi and
vj = p(vi). However, since vj is the parent of vi, TXij is not used. In the convergecast slotframe,
the broadcast links are always assigned to the timeslot for which unicast links are not used via SET_BT
and SET_BR. Thus, unicast and broadcast links generated by the schedule of the convergecast slotframe
are orthogonal.

Theorem 2. There is no primary conflict among nodes with the same parent in the convergecast slotframe.

Proof. We show the orthogonality of the schedule among nodes with the same parent in the
convergecast slotframe, proving that the primary conflict does not occur. Let nodes vi and vj (i 6= j)
have the same parent, then SG(vi)

⋂
SG(vj) = ∅. Therefore, the schedules of vi and vj assigned by

the timeslot allocation mechanism do not use the same timeslot except BR operations. Furthermore,
since Hvi = Hvj , the schedule of vi and vj is not influenced by the sliding slot frame. Therefore, the
schedules of vi and vj are orthogonal to each other.

Theorem 3. There is no primary conflict between the parent and child nodes in the convergecast slotframe.
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Proof. We show that in the convergecast slotframe, it is impossible for the parent and the child nodes
to transmit or receive data simultaneously, thus proving that the primary conflict does not occur. Let
nodes vi and vj ∈ C(vi). By the timeslot allocation mechanism, vi and vj assign TX and BR to even
timeslots and assign RX and BT to odd timeslots. Since Hvj = Hvi + 1, the schedule of vj is shifted one
more left than the schedule of vi by the sliding slotframe mechanism. Therefore, if vi executes TX in
even timeslots and executes RX in odd timeslots, vj executes TX in odd timeslots and executes RX in
even timeslots. As with unicast, if vi executes BT in odd timeslots and executes BR in even timeslots,
vj executes BT in even timeslots and executes BR in odd timeslots. Therefore, it is not possible to
transmit or receive data simultaneously in one timeslot between two nodes that have a parent child
relation.

Corollary 1. The schedule of the convergecast slotframe does not cause the primary conflict.

Proof. The convergecast slotframe creates unicast and broadcast links only between the parent and
child nodes along the DODAG topology. The unicast and broadcast links of the convergecast slotframe
do not cause the primary conflict by Theorem 1. There is no primary conflict between parent and child
nodes by Theorem 2 and Theorem 3. Therefore, the schedule of the convergecast slotframe does not
cause the primary conflict.

The secondary conflict may occur when two or more links are communicating simultaneously on
the same channel, as defined in Definition 2. Escalator uses the channel offset selection mechanism to
isolate channels between links using the same timeslot to prevent the secondary conflict. Theorem 4
proves that the convergecast slotframe does not generate the secondary conflict.

Theorem 4. There is no secondary conflicts between the links generated by the convergecast slotframe.

Proof. By the channel offset selection mechanism in Section 4.3, the communication channels used by
the two links having a rank difference of two or more are different. Furthermore, by Theorem 2 and
Theorem 3, the communication of two links whose rank difference is one or less does not execute in
the same timeslot. Therefore, since the links using the same timeslot generated by the convergecast
slotframe communicate using different channels, the secondary conflict does not occur.

We prove that the schedule of the convergecast slotframe is conflict-free through Corollary 1 and
Theorem 4.

5.3. Performance Analysis

5.3.1. End-to-End Delay Analysis by the Overlap of Convergecast and Baseline Slotframes

We analyze the average end-to-end delay of packets transmitted from a node to the sink in
Escalator. The convergecast slotframe provides a consecutive timeslot schedule where nodes can
send packets to sinks with minimal delay. However, the packet transmission delay may increase
due to a collision caused by slotframe overlap. We calculate the average end-to-end delay of the
packet transmission from a node to the sink considering the delay due to the slotframe overlap.
The SConv and SBase combined schedule is repeated for each Least Common Multiple (LCM)
timeslot of both L(SConv) and L(SConv). We define r, the number of times SConv is repeated during
LCM(L(SBase), L(SConv)) timeslots, as in Equation (11).

r =
LCM(L(SBase), L(SConv))

L(SConv)
. (11)

The end-to-end delay of packet transmission from node vi to the sink using the convergecast
slotframe is Hvi timeslots. If a slotframe collision occurs while a packet is being delivered to the sink,
the end-to-end delay of this packet increases to Hvi + L(SConv) timeslots. Let d be the number of
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packets delayed by collision during LCM(L(SBase), L(SConv)) timeslots. In Escalator, node vi can send
one packet to the sink in two cycles of the convergecast slotframe, so d cannot exceed r/2. Each node
transmits r− d packets to the sink during LCM(L(SBase), L(SConv)) timeslots by schedule collision,
and the collision-induced delay increase occurs in d packets. Therefore, we sum up the delays in r− d
packet transmissions and use them to calculate the average end-to-end delay. Equation (12) represents
the average end-to-end delay of node vi.

De2e(vi) =
(r− 2d)× Hvi + d× (Hvi + L(SConv))

r− d
timeslots. (12)

5.3.2. Bandwidth and Buffering Capability

In Escalator, The bandwidth of the node is determined by the size of the convergecast slotframe.
In a network with N nodes, the size of the convergecast slotframe L(SConv) should be greater than
N × 2. The node then transmits r− d packets to the sink while SConv repeats r times. The bandwidth
Escalator provides to each node in network G is computed as follows:

B(G) =
1

L(SConv)× Dt
× r− d

r
packets/second, (13)

where Dt is the duration of the timeslot. As N increases, L(SConv) increases, and bandwidth B(G) per
node decreases. Conversely, when N decreases, B(G) increases.

We analyze the amount of buffer used to transmit convergecast traffic at each node. A node
receives and transmits a packet using consecutive links. Thus, each node uses one buffer to transmit
convergecast traffic. If a packet is delayed due to a collision, it will remain in the buffer until the next
cycle of the convergecast slotframe. Each node has a delay of packet transmission due to collision of
up to d L(SConv)

L(SBase)
e times for each cycle of the convergecast slotframe. Therefore, the minimum buffer

amount for each node of network G for the convergecast traffic transmission in Escalator is calculated
as follows:

Q(G) = 1 + d L(SConv)

L(SBase)
epackets. (14)

6. Evaluation

We implement Escalator using Contiki [30], an open source platform for IoT. We verify the
operation of the implemented Escalator using a simulator and hardware devices. We measure the
performance factors of Escalator and existing autonomous scheduling schemes using a simulation and
a testbed. After that, we evaluate the performance of Escalator using the measured performance factors.

6.1. Experimental Setup

We measure the performance of Escalator with 6TiSCH-minimal [24] and Orchestra [8].
6TiSCH minimal uses a slotframe containing a shared timeslot and idle timeslots. All nodes
of 6TiSCH-minimal perform contention-based communication using the shared timeslot. In the
evaluation, 6TiSCH minimal is expressed as minimal, and the size of the slotframe is 5.

Orchestra uses three slotframes separated by the traffic type. The EB slotframe is used for the
transmission of the beacon, and its size is 397. The broadcast slotframe is used for transmission
of the RPL control messages, and its size is 31. The unicast slotframe is used for the transmission
of application traffic and consists of a sender-based shared timeslot in the evaluation. Orchestra is
expressed as OrchestraX, and X is the size of the unicast slotframe.

Escalator uses the baseline and convergecast slotframes. The size of the baseline slotframe is 31,
equal to the size of the broadcast slotframe of Orchestra. The maximum hop counts of the network are
20. In evaluation, Escalator is expressed as EscalatorX, and X is the size of the convergecast slotframe.
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We use a testbed and a simulation to measure the performance of Escalator and existing
autonomous scheduling schemes. First, the testbed consists of 11 devices using the NXP JN5168
platform. The devices of the testbed are divided into a sink and 10 source nodes. Figure 9a shows the
network topology used in the testbed. In the testbed, we use the following settings for each scheduling
scheme. 6TiSCH-minimal uses a slotframe size of 5 (minimal). Orchestra uses a unicast slotframe size
of 29 (Orchestra29). Escalator uses a convergecast slotframe size of 73 (Escalator73). We use the packet
transmission interval of 20 s and 5 s for each scheduling scheme. In the experimental, all nodes send
2000 packets at the same interval up to the sink.

Second, we run the simulation using Cooja [31]. Cooja is a Contiki network simulator that provides
hardware-level emulation based on Mspsim (Java-based instruction level simulator for the MSP430
microcontroller) [32]. In the simulation, the network topology uses 16 and 36 nodes arranged in a
square grid as shown in Figure 9b,c. We run the simulation using the settings for each scheduling
scheme described below. 6TiSCH-minimal uses a slotframe size of 5 (minimal). Orchestra uses two
settings; the size of the unicast slotframe for each setting is 37 and 53, respectively (Orchestra37,
Orchestra53). Escalator uses two settings; the size of the convergecast slotframe for each setting is 73
and 107, respectively (Escalator73, Escalator107). The simulation also uses the packet transmission
interval of 20 s and 5 s as in the case of the testbed.

(a) A testbed topology

Source node

Sink

(b) 4× 4 grid (16 nodes) (c) 6× 6 grid (36 nodes)

Figure 9. Testbed and simulation topologies.

We use the following network settings for the testbed and the simulation. The channel hopping
uses 16 channels. The timeslot duration of TSCH uses 20 ms so that the reception processing of the
packet could be completed within one timeslot. The packet buffer size of the node in the testbed is
16. In the simulation, the packet buffer size of the node is 12. Each node can retransmit packets up to
8 times. The application traffic of the nodes uses UDP packets of a 24-byte payload.

6.2. Performance Metric

We use the following performance factors to measure the performance of Escalator and existing
scheduling schemes.
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• The packet delivery ratio (PDR) is the percentage of packets successfully delivered to the sink.
The PDR is measured as the ratio of the number of packets received by the sink to the total number
of packets transmitted by nodes.

• The end-to-end delay means the number of timeslots that a packet takes to reach from a source
node to the sink. We measure the ASN when the packet leaves from the source node and the ASN
when the packet arrives at the sink. The difference between these two ASNs is used to calculate
the end-to-end delay. We evaluated the performance by measuring the average of the end-to-end
delay by the number of hops of the packet.

• The duty cycle means the ratio of the radio usage time to the total operation time of nodes.
The duty cycle is measured only in the simulation, and CPU usage time and radio transmit and
receive times are measured while transmitting 2000 packets for each node. We evaluated the
performance by measuring the duty cycle by the number of routes in the node.

6.3. Testbed Results

Figure 10 represents the end-to-end delay and PDR for each scheduling scheme in the testbed.
Figure 10a shows the end-to-end delay for each packet delivery hop counts in 20-s intervals.
Experimental results show that Orchestra has the largest increase in end-to-end delay with increasing
packet delivery hop counts. Orchestra can receive packets from multiple child nodes within a single
slotframe, but only one packet can be sent to the parent. Thus, when a packet is transmitted across
multiple hops, the end-to-end delay increases proportionally to the slotframe size. On the other hand,
Escalator shows a smaller end-to-end delay than Orchestra because packet transmission from the
source to sink is performed in one slotframe.
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Figure 10. Testbed results: (a) end-to-end delay by packet transmission hop when the packet
transmission interval is 20 s; (b) end-to-end delay by packet transmission hop when the packet
transmission interval is 5 s; (c) PDR per the packet transmission interval.

Figure 10b shows the end-to-end delay for each packet transmission hop counts in 5-s intervals.
In the experimental results, 6TiSCH-minimal shows a higher end-to-end delay increase compared to
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the case of the 20-s interval. 6TiSCH-minimal performs contention-based communication unlike the
other two scheduling schemes. Therefore, if collision increases due to node traffic increase, end-to-end
delay increases by packet retransmission.

Figure 10c shows the PDR per packet transmission cycle. When the packet transmission interval
is 20 s, all three scheduling schemes show a PDR of more than 98%. When the packet transmission
interval is 5 s, the PDR of 6TiSCH-minimal and Orchestra is reduced to 96%. Due to the increase of
retransmission and the lack of timeslots for packet transmission, the time for the packet to remain in
the buffer of the node becomes longer and the packet is dropped due to the lack of the buffer of the
node. However, Escalator shows 99% or more PDR regardless of the packet transmission interval due
to the collision-free schedule and the use of fewer buffers by consecutive timeslots.

6.4. Simulation Results

Figure 11 shows the end-to-end delay per packet delivery hop counts in packet transmission in
the simulation. In the simulation, the maximum number of packet delivery hop counts is five hops
in the 4× 4 grid and eight hops in the 6× 6 grid. Figure 11a,b shows the end-to-end delay when
the interval of packet transmission is 20 s and 5 s on the 4× 4 grid. 6TiSCH-minimal and Orchestra
increase the end-to-end delay as node traffic increases. In contrast, the end-to-end delay of Escalator
can be seen to remain constant with increasing traffic of the node.
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Figure 11. End-to-end delay per packet delivery hops in the simulation: (a) a packet transmission
interval of 20 s on the 4× 4 grid; (b) a packet transmission interval of 5 s on the 4× 4 grid; (c) a packet
transmission interval of 20 s on the 6× 6 grid; (d) a packet transmission interval of 5 s on the 6× 6 grid.

Figure 11c,d shows the end-to-end delay when the interval of packet transmission is 20 s and 5 s
in the 6× 6 grid. In Figure 11c,d, we can see results similar to those of the testbed for the end-to-end
delay. 6TiSCH-minimal shows that the end-to-end delay increases as the node traffic increases due to
contention. Orchestra provides a conflict-free schedule, but does not provide enough timeslots for the
number of child nodes and traffic growth of the node since only one packet per slotframe cycle can be
sent to the parent. As a result, Orchestra shows an increase in the end-to-end delay as the number of
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network nodes and the traffic of nodes increase. Escalator shows that the end-to-end delay remains
constant even as the number of nodes in the network increases and the traffic of the nodes increases.

Figure 12a shows the PDR when the interval of packet transmission is 20 s and 5 s in the 4× 4 grid.
If the interval of packet transmission of the 4× 4 grid is 20 s, the PDR of Orchestra37 and Orchestra53
is 100%. However, if the interval of packet transmission in the 4× 4 grid is 5 s, the PDR of Orchestra37
and Orchestra53 is reduced to 74% and 76%, respectively. Orchestra cannot process the increased traffic
of the nodes, resulting in packet loss due to the packets accumulating in the node’s buffer.
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Figure 12. PDR per packet transmission interval in the simulation.

Figure 12b shows the PDR in the 6 × 6 grid. In this case, a packet drop occurs not only in
Orchestra, but also in 6TiSCH-minimal. In contrast, Escalator shows a PDR of 100% even when the
number of nodes in the network and the traffic of the nodes increase. Escalator can transmit application
traffic within a limited end-to-end delay regardless of the number of transmitted packets within the
available bandwidth.

Table 2 shows the average and maximum duty cycle of the nodes measured in the simulation.
6TiSCH-minimal shows an average duty cycle of 2.4% under all simulation conditions. This is because
all the nodes in 6TiSCH-minimal use the same schedule of the shared communication method
regardless of the network condition and the traffic requirement. The average duty cycle of Orchestra
increased from 0.89%–1.31% depending on the number of nodes and packet transmission period.
The average duty cycle of Escalator increased from 0.78%–1.54%. Although Escalator shows better
performance in the packet delivery ratio and the end-to-end delay than Orchestra, the average duty
cycle does not increase significantly.

The maximum duty cycle of Escalator in the simulation increases to 6.85%. We can see in Figure 13
that the duty cycle increase for the number of routing entries in the Escalator node is greater than that
of Orchestra. In Escalator, the amount of scheduled timeslot increases in proportion to the number of
routing entries. Therefore, the number of routing entries increases with the node closer to the sink,
which increases the use of the radio to transmit packets received from the child nodes to the sink.
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Table 2. Measured average and max duty cycle in the simulations.

Duty Cycle (%)

4 × 4 grid, 20 s 4 × 4 grid, 5 s 6 × 6 grid, 20 s 6 × 6 grid, 5 s

Average Max Average Max Average Max Average Max

minimal 2.40 2.47 2.44 2.77 2.41 2.61 2.48 2.96
Orchestra 37 1.06 1.65 1.20 2.56 1.15 2.46 1.31 2.83
Orchestra 53 0.89 1.34 1.02 1.96 0.96 1.68 1.08 2.10
Escalator 73 0.92 2.67 1.12 3.65 1.20 3.05 1.54 5.31
Escalator 107 0.78 1.64 0.98 2.39 0.99 4.01 1.32 6.85
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Figure 13. Duty cycle per number of routing entries in a node: (a) a packet transmission interval of 20 s
on the 4× 4 grid; (b) a packet transmission interval of 5 s on the 4× 4 grid; (c) a packet transmission
interval of 20 s on the 6× 6 grid; (d) a packet transmission interval of 5 s on the 6× 6 grid.

7. Conclusions

In this paper, we propose a new autonomous scheduling scheme for the convergecast.
Escalator provides a slotframe schedule for a network in which all nodes can send packets to the
sink in every slotframe cycle, regardless of the network topology. Escalator minimizes the end-to-end
delay from a source node to the sink by creating a schedule that considers multichannel and packet
forwarding order. Escalator schedules using only the DODAG topology and node IDs and does not
generate traffic overhead used for network information collection and scheduling negotiation between
nodes. We prove the conflict-freeness of the schedule generated by Escalator using the wireless conflict
model. Furthermore, we analyze the average end-to-end delay of packet transmission and the available
bandwidth for each node in the network.

We implement Escalator based on Contiki, which is widely used as the OS platform of IoT.
The performance is evaluated by comparing with the existing autonomous scheduling schemes using
a testbed and simulation. As a result, it is confirmed that Escalator maintains the delay of the packet
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transmission at a constant level irrespective of the increase of the number of nodes and the increase of
the traffic. In addition, Escalator shows lower end-to-end delay and a higher packet delivery ratio for
the convergecast compared to existing autonomous scheduling schemes.

Experimental results show that Escalator does not significantly increase the average duty cycle,
even for better performance in the PDR and the end-to-end delay compared to the existing autonomous
scheduling schemes. In addition, we can see that the duty cycle increase for the number of routing
entries of the node is higher in Escalator than in the other scheduling schemes. This phenomenon means
that the energy consumption of the nodes around the sink is increased, and as a result, the network
lifetime can be reduced. We will study the routing considering the balance of the remaining energy
and routing topology for the increase of the network lifetime [33–35]. In addition, Escalator provides
a conflict-free schedule for convergecast traffic only. We consider not only the monitoring, but also the
reliability improvement through the conflict-free schedule for the control plane. To this end, we will
continue to work on the creation of schedules for downward traffic that can be used with Escalator.
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