
sensors

Article

Big Data Clustering via Community Detection and
Hyperbolic Network Embedding in IoT Applications

Vasileios Karyotis 1,*,†, Konstantinos Tsitseklis 1,†, Konstantinos Sotiropoulos 1,2,‡

and Symeon Papavassiliou 1,†

1 Institute of Communication and Computer Systems (ICCS), School of Electrical and Computer Engineering,
National Technical University of Athens (NTUA), Athens 157 80, Greece; ktsitseklis@netmode.ntua.gr (K.T.);
ksotirop@bu.edu (K.S.); papavass@mail.ntua.gr (S.P.)

2 Department of Computer Science, Boston University, Boston, MA 02215, USA
* Correspondence: vassilis@netmode.ntua.gr; Tel.: +30-210-772-1451
† Current address: Iroon Polytechniou 9, Zografou, Athens 157 80, Greece.
‡ The author was with the Institute of Communication and Computer Systems (ICCS), School of Electrical and

Computer Engineering, National Technical University of Athens (NTUA), Greece, for the main part of this work.
He is now with Boston University, MA, USA. Current address: 111 Cummington Mall, Boston, MA 02215, USA.

Received: 16 March 2018; Accepted: 13 April 2018; Published: 15 April 2018
����������
�������

Abstract: In this paper, we present a novel data clustering framework for big sensory data produced
by IoT applications. Based on a network representation of the relations among multi-dimensional
data, data clustering is mapped to node clustering over the produced data graphs. To address the
potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches,
we map the problem of data clustering to a community detection one over the corresponding data
graphs. Specifically, we propose a novel computational approach for enhancing the traditional
Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data
dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more
efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows
for more efficient clustering of the nodes of the data graph in terms of modularity, without
sacrificing considerable accuracy. In order to study the operation of our approach with respect
to enhancing GN community detection, we employ various representative types of artificial complex
networks, such as scale-free, small-world and random geometric topologies, and frequently-employed
benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection.
Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over
multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure
provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT)
testbed federation. It is shown that the proposed framework can be indeed used for community
detection/data clustering and exploited in various other IoT applications, such as performing more
energy-efficient smart-city/building sensing.

Keywords: data clustering; community detection; Girvan–Newman algorithm; hyperbolic network
embedding; Rigel embedding; edge-betweenness centrality; smart-cities/buildings

1. Introduction

Sensor networks in future smart-cities/buildings will be larger and more heterogeneous, collecting
information from radically different services and forming more complex topologies. In the advent
of the IoT era, such massive, and typically distributed, sensor networks are expected to generate
very large volumes of diverse types of data, raising the bar for processing efficiency and potential

Sensors 2018, 18, 1205; doi:10.3390/s18041205 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/1205?type=check_update&version=2
http://dx.doi.org/10.3390/s18041205

Sensors 2018, 18, 1205 2 of 21

exploitation of such datasets. Analytics for such datasets have already become challenging, requiring
further enhancements of the available techniques and at various capacities in order to sustain the
anticipated scales of operation and the associated requirements.

The existing and future IoT sensor topologies will generate different measurements at faster
rates, a tendency that is expected to become more demanding. Such data are cumulatively denoted
as “big sensory data” [1,2]. Similarly, the computation of several graph analysis metrics that are
extensively used in the study of complex topologies (e.g., Edge-Betweenness Centrality (EBC)) and
overlay applications (e.g., recommendation, privacy and trust establishment systems), in an efficient
and accurate manner, can be considered from a “big network data” analysis framework [3] perspective.
In the latter, both large network topologies and large datasets are required to be analyzed efficiently.

Big sensory data, such as those obtained in smart cities/building networks [4], vary in volume,
type and time scale, frequently forming multi-dimensional datasets, where co-located measurements
of diverse types constitute complex data of multiple dimensions. Furthermore, these datasets
traditionally exhibit various forms of redundancy. In order to palliate such trends, several data
clustering approaches [5] have been proposed, aiming at increasing the speed and accuracy of the
analysis of the data. However, as the volume of the generated sensor measurements increases at
unprecedented scales, sometimes in the order of petabytes [6], data clustering techniques will require
fundamental enhancements to ensure their sustainability. Various directions for this have been recently
pinpointed. Among others, assuming a network representation of the data under analysis that
depicts their interrelations allows one to address data clustering as a node clustering problem of the
corresponding data graph. In turn, network clustering techniques such as community detection [7]
can be employed, creating an alternative substrate to address data clustering. Relevant attempts
include [1,2]. However, the anticipated scales of big sensory data call for further enhancements of
the existing community detection approaches, ensuring proper accuracy and scaling, especially for
data clustering.

In this paper, we aim towards more efficient big sensory data analytics. We propose a modification
of the Girvan–Newman (GN) community detection algorithm [8] via hyperbolic network embedding,
making it suitable for big sensory data clustering. This enhancement of GN is based on a new
approximation approach for the computation of EBC, where node distances are computed in a graph
embedded in hyperbolic space. We denote the corresponding metric as Hyperbolic Edge-Betweenness
Centrality (HEBC) and modify the core idea of GN to compute HEBC rather than EBC to increase the
speed of community computation and the scaling potential for cases of very large datasets without
sacrificing considerable accuracy. Combining the computation of HEBC with an approach of removing
up to a certain number of edges (called a batch) before recomputing the embedding used in the
modified GN, we increase the speed of clustering and in certain cases the associated accuracy (in terms
of the modularity measure) compared to the original GN algorithm. We studied the performance of
our approach for various types of artificial benchmark datasets and networks, including topologies
from real social networks, thus showing that the hyperbolic GN method can be indeed used for
community detection and data clustering in various scenarios. Furthermore, we applied our scheme
over real datasets obtained from the Federated Interoperable Semantic IoT/cloud Testbeds and
Applications (FIESTA-IoT) platform consisting of various multi-dimensional measurements from
smart-city/building sensors, such as temperature, sensor battery level, etc. We demonstrate the
efficacy of our approach in such a real operational scenario and its potential benefits.

The rest of this paper has the following organization. Section 2 presents various relevant works
already available in the literature and distinguishes the unique contribution of our work, while
Section 3 describes our enhancement of the GN community detection algorithm via hyperbolic
network embedding. Section 4 explains the proposed data clustering scheme, while Section 5 provides
evaluation results over artificial datasets, benchmark topologies and real datasets. Finally, Section 6
recapitulates the essence of the proposed framework and outlines some potential directions for
further investigation.

Sensors 2018, 18, 1205 3 of 21

2. Related Work and Contribution

2.1. Background and Related Work

A frequently-used definition of data clustering considers it as the unsupervised classification of
various observations (data) into specific groups [5]. It emerges as a suitable approach for classifying
big sensor data and potentially discovering hidden correlations among them. Data clustering has been
applied in various diverse applications. Examples include recommender systems where users are
grouped according to their preferences [9] and healthcare applications classifying patients according
to their medical history [10]. There is a great variety of general-purpose clustering algorithms [5],
broadly segregated as centralized and distributed approaches. Centralized approaches may include
partitioning (e.g., k-means [11], CLARANS [12]), hierarchical (e.g., BIRCH [13], Chameleon [14]),
grid (e.g., STING [15], WaveCluster [16]) or density methods (e.g., DBSCAN [17]), among others.
Centralized approaches are usually simple to implement, but suffer from scaling issues with modern
big sensory datasets. Distributed methods mainly implement MapReduce or some variation of parallel
clustering. MapReduce approaches are modified versions of centralized algorithms like k-means [18],
MR-DBSCAN [19], DBCURE-MR [20], etc. Parallel clustering methods [21] typically consist of modified
centralized algorithms, aiming at distributing their execution over multiple machines.

Relations between multi-dimensional or other types of data observations can be represented via
a data graph, where data correspond to nodes and links between them represent their inter-relations.
Data clustering using the data graph model resembles node clustering emerging in community
detection in networks. The latter has become a prominent field of cross-disciplinary research.
Three main classes of methodologies can be identified, namely division based, label propagation based
and modularity optimization. The first suggests removing edges of the analyzed network according
to specific rules, resulting in various connected components, each corresponding to a different
community. The most popular representative of this category is the Girvan–Newman (GN) algorithm,
which removes edges according to the EBC metric. The main observation exploited by the GN
approach is that the number of edges connecting members within a community (intra-edges) is
significantly greater than the number of edges connecting nodes belonging in different communities
(inter-edges). These inter-community edges demonstrate a bridge-like property, and therefore,
they tend to have large EBC values. Thus, removing such edges will lead to revealing the emerging
communities in the network. The GN algorithm exhibits slow computational speed, since the
process of EBC computation-ordering-removal of high-EBC value edges has a significant cost, and it
needs to be repeatedly applied. Furthermore, in GN, the number of targeted communities is
pre-specified. Modularity optimization methods typically exhibit better performance when the number
of communities is unknown. Modularity is a measure used to evaluate the partition of a network in
communities. It quantifies the number of edges that exist inside the communities relative to a random
distribution of the total number of edges over the network. The mathematical expression of modularity

is: Q = 1
2m ∑k

l=1 ∑i∈Cl ,j∈Cl
(Aij −

didj
2m), where m is the total number of edges in the network, k is

the number of communities, Cl denotes the set of nodes in the l-th community, A is the adjacency
matrix from which Aij is obtained, corresponding to the actual number of edges between nodes i, j,
and di is the degree of node i. A large modularity score, where Q ∈ [−1, 1], indicates well-connected
communities, meaning that the edges inside the communities are more than those connecting different
ones. Modularity optimization methods aim to find the partition of the network into communities
that maximizes the total modularity score, summed over all communities. Since the problem of
determining the best partition according to modularity is an NP-hard problem [22], methods aiming at
Modularity Maximization (MM) apply heuristics to achieve communities, each yielding individually
high modularity score and, thus, cumulatively, a high modularity value, in a reasonable amount
of time.

At the same time, computing network metrics in large graphs, such as the length of shortest
paths between node pairs or the EBC values needed in GN, is rather costly. By embedding the

Sensors 2018, 18, 1205 4 of 21

network in a low dimensional space via assigning each node coordinates can aid in accomplishing the
computations more efficiently. The hyperbolic space is known to be a suitable choice when it comes
to large graphs that represent various complex/social networks. This is because such graphs have
been conjectured to have an underlying hyperbolic geometry [23]. There are several approaches for
hyperbolic network embedding in the literature [24], such as Rigel [25], greedy [24] and Hypermap [26].
In this paper, we rely on Rigel embedding. The latter maps the network graph in hyperbolic space
via multi-dimensional scaling. Rigel assumes the hyperboloid model of the n-dimensional hyperbolic
space [25]. In this model of hyperbolic geometry, the distance between two points with coordinates
x = (x0, ..., xn), y = (y0, ..., yn), is given by:

cosh dH(x, y) =
√
(1 + ||x||2) (1 + ||y||2)− < x, y >, (1)

In the above distance formula, || · || is the Euclidean norm and < ·, · > the inner product.
The solutions (dH(x, y)) of Equation (1) are denoted as hyperbolic distances in the hyperboloid model.

In brief, Rigel operates as follows. Assume a network with N nodes. Rigel defines a special subset
of L << N nodes, termed landmarks, which are used as reference points. The bootstrapping step
computes the proper hyperbolic coordinates of each landmark as solutions of a global optimization
problem, in which the distances for all pairs of landmarks in the hyperboloid match as closely as
possible their corresponding distances in the original graph measured in hops. The hyperbolic
coordinates of the rest of the nodes are computed according to the coordinates of the landmarks, hence
their name, so that each node’s hyperbolic distances to all landmarks are as close as possible to their
corresponding hop distances in the original graph. The selection of landmarks is key, and several
strategies for appropriate selection of landmark nodes are provided in [27]. Furthermore, the accuracy
of Rigel increases as the dimension of hyperbolic space increases. The number of landmarks should be
equal to, or even higher than the dimension of the embedding space [25]. Consequently, avoiding the
computation of shortest paths for all possible node pairs and leveraging on Rigel’s properties reduce
the time complexity to simple algebraic calculations of distance. This allows for faster computation of
HEBC, yielding faster community detection.

2.2. Contribution

In this paper, we introduce a novel framework for performing data clustering via community
detection. We identify the shortcomings of division-based community detection approaches, such as
GN, for the purpose of data clustering at large scales and suggest an enhancement that allows the
GN to run faster without significant loss of accuracy. Our proposed approach, denoted as hyperbolic
GN, belongs to the class of centralized clustering techniques and aims at addressing explicitly the
scaling issues emerging in other conventional centralized methods. For the first time, we suggest using
hyperbolic network embedding for performing the computations required in GN more efficiently and
enabling the use of this approach for big sensory data clustering, as well. We employ Rigel embedding
and show that this type of embedding is rather suitable when the data graph is of a scale-free
structure [28], allowing one to achieve higher accuracy than the traditional GN algorithm. This makes
the proposed framework rather appealing for the cases where the data graph exhibits power-law
features and other scale-free-like properties. By employing the modularity measure as a benchmark,
we show the efficacy of our approach using both artificial datasets and real networks/datasets.

The contributions of this paper can be summarized as follows:

• We enhance the GN community detection algorithm through hyperbolic network embedding
and by computing the HEBC of the embedded data graph, making it faster without significant
accuracy loss in terms of modularity, achieving even better results in some cases.

• We facilitate the use of the enhanced GN approach over very large networks and pinpoint
its potentials in various types of complex topologies representing communities or data
dependency graphs.

Sensors 2018, 18, 1205 5 of 21

• We introduce a framework for data clustering of big sensory data via the enhanced GN
community approach.

• We demonstrate the feasibility and performance potentials of the proposed framework with
benchmark and real datasets from the FIESTA-IoT testbed federation.

3. Community Detection Enhancement via Hyperbolic Network Embedding

Our framework for data clustering via community detection capitalizes on the Girvan–Newman
(GN) approach. It enhances it with hyperbolic network embedding of the associated data graph,
in order to speed-up computations and allow scaling in very large/dense data graphs. In this section,
we present the proposed enhancement of GN, while in the next, we incorporate the enhanced GN in
a broader framework for big sensor data clustering and parameter estimation.

3.1. Hyperbolic Edge-Betweenness Centrality

The original GN algorithm initially specifies the expected number of communities to be discovered.
Then, the edges of the graph are ranked according to their Edge-Betweenness Centrality (EBC) value.
The edge with the highest EBC value is removed from the graph. If the graph remains connected,
the previous step is repeated until the graph becomes disconnected. The process repeats by examining
the edges of the largest connected component. The algorithm completes when the number of connected
components matches the number of communities specified in the first step.

In the GN algorithm, the computation of EBC is typically rather costly. To alleviate this burden,
we suggest a new measure approximating EBC, which capitalizes on hyperbolic network embedding
and can be considered as the “hyperbolic” analog of EBC. This measure is denoted as Hyperbolic
Edge Betweenness Centrality (HEBC), and it is computed by utilizing the hyperbolic node coordinates
assigned to the embedded nodes. Similarly to EBC, HEBC refers to each edge of the network and
quantifies the number of greedy paths between any pair of nodes passing over the specific edge over the
total number of such greedy paths, for all node pairs. This computation is faster than the one proposed
by Brandes [29], while bearing the cost of not being 100% accurate. For the computation of HEBC,
we modify the algorithm for the computation of Hyperbolic Betweenness Centrality (HBC) described
in [30]. Algorithm 1 implements the new HEBC computation in pseudocode. The Supplementary
Material contains links to the source code of the key functions.

For the computation of HEBC, one needs to account for the number of shortest paths crossing
each edge of the data graph. In Line 2 of Algorithm 1, an outer loop sets each node as a potential
destination. Inside this loop, in Part I, the nodes are sorted in a non-increasing order according to
their hyperbolic distance from the node that is considered to be the destination. In this way, nodes
can be examined in the correct order in the following parts. In Part II, the number of greedy paths
between each node acting as source and each destination is calculated. A greedy path is a path
constructed by moving from a node to a destination choosing each time a node nearest to the final
destination [31]. Using greedy forwarding is another novelty of the proposed approach for speeding
up the computation. Greedy forwarding using hyperbolic coordinates (in our case obtained by Rigel
embedding) is known to produce greedy paths with a length close to the shortest path length [26].
In the last part of the algorithm, the dependencies δ, namely the number of greedy paths towards the
destination that pass through the other nodes, are calculated for every node of the graph and so is
HEBC for every edge that appears on a greedy path towards the destination node. Finally, when the
outer loop concludes, the value of HEBC of every edge has been calculated.

It must be noted that the number of greedy paths is not always the same as the number of the
actual shortest paths between a pair of nodes. This is the reason that the HEBC value of an edge differs
from the nominal EBC value that would be computed accurately in the original graph. Furthermore,
as the number of greedy paths between a node i and a node j differ from the number of greedy paths
from node j to node i, the value HEBC(ui, uj) would differ from the value HEBC(uj, ui). In this
paper, we consider that the full betweenness centrality of an edge (u, v) is the sum of the betweenness

Sensors 2018, 18, 1205 6 of 21

centralities of the directed edges (u, v) and (v, u). In any case, in terms of accuracy, the ranking of
edges according to HEBC is very close to the ranking according to EBC, which is the desired outcome
for the operation of HGN.

Algorithm 1: Hyperbolic Edge Betweenness Centrality (HEBC).

1 HEBC(u, v) = 0; ∀ u, v ∈ V, V the node set
2 for each node s ∈ V do
3 % Part I: Sort all nodes in order of decreasing hyperbolic distance towards the destination s,

vN = s
4 Obtain S as S = {v1 � v2 � ... � vN}, % “ � ” indicates the ordering of decreasing

hyperbolic distance from s, S1 = S
5 % Part II:
6 % σs(u): the number of greedy paths beginning at node u and finishing at node s
7 σs(u) = 0 ∀u ∈ V, σs(s) = 1
8 % NG(i, s): the greedy neighbors of i in S
9 for i = N:1 do

10 for each uj : ui ∈ NG(i, s) do
11 σs(uj) = σs(uj) + σs(ui);
12 remove ui from S1

13 % Part III: sum dependencies (δ), and compute HEBC values for all edges
14 δ(u) = 0, ∀ u ∈ V
15 for i = 1:N−1 do
16 for each uj ∈ NG(i, s) do

17 c =
σs(uj)

σs(u1)
∗ (1 + δ(ui));

18 HEBC(ui, uj) = HEBC(ui, uj) + c;
19 HEBC(uj, ui) = HEBC(uj, ui) + c;
20 δ(uj) = δ(ui) + c;
21 remove ui from S1

3.2. Hyperbolic Girvan–Newman for Community Detection

Our proposed approach develops a modified community detection algorithm, denoted as
Hyperbolic Girvan–Newman (HGN). HGN can be used for pure community detection over, e.g.,
social networks, or over data graphs with the penultimate goal of data clustering. In HGN, the graph
is embedded in the hyperbolic space using Rigel embedding [25] with a small number of landmarks.
The landmarks serve the purpose of anchor nodes, according to which the distances of all the rest
of the nodes in the embedding are determined. The distances among all landmarks are computed
with higher accuracy than the distances of the rest of the nodes from the landmarks. A small number
of landmarks, in the range of 6–10, is adopted in this work, following similar practices as in [30].
The next step employs Algorithm 1 to calculate the HEBC value of each edge. Based on the intuition
that an edge with a high EBC value is likely to act as a “bridge-like” edge, thus joining two potential
communities/clusters, and that such edges are a small fraction of the total, a fixed number of edges
with the highest HEBC values, called the batch, is determined. A suitable batch size b depends
heavily on the total number of edges in the graph. Then, instead of removing a single edge at a time,
as is the case with the original GN algorithm, a number of top-ranked edges equal to the batch is
removed as follows. Either the batch runs out of edges and the graph remains connected, or the graph
becomes disconnected. Subsequently, the largest connected component of the graph is embedded in
the hyperbolic space, and the same steps are repeated until the graph is split into the required number

Sensors 2018, 18, 1205 7 of 21

of connected components, each of which corresponds to a different community. The intuition behind
a batch is that by removing possibly more than one edge at a time, the critical edges will be removed
sooner, leading to faster community detection. However, this comes at the cost of some penalty on the
accuracy of our scheme, since some of the removed edges might not be the right ones to be removed.
Figure 1 provides a flowchart of the HGN algorithm.

Figure 1. Hyperbolic Girvan–Newman algorithm.

4. Big Sensor Data Clustering

One of the most challenging characteristics of data obtained from large sensor network topologies,
such as the FIESTA-IoT smart-city/building platform [4], is the existence of multi-dimensional
observations, namely measurements of various types, e.g., temperature, humidity, battery level,
etc., collected at the same location by a single or multiple co-located sensors. We refer to each
different type of measurement as a feature. Thus, a feature can be any type of measurement
produced by the sensors, e.g., temperature, humidity, soil moisture, etc., and the number of
features f is equal to the dimension of the multi-dimensional dataset considered in the general
case. The sensors collect observations that potentially consist of a large number of features. Each
observation Xi(t) is described by its features, Xi(t) = [X(1)

i (t), X(2)
i (t), X(3)

i (t), ..., X(f)
i (t)]T , where f

denotes the dimension, i.e., number of types of different measurements collected at time moment t.
Each component X(j)

i (t) of an observation i is a sample of the corresponding feature j, e.g., temperature,
at time t. Let X(t) = {X1(t), X2(t), X3(t), ..., Xn(t)} be the set of data/observations produced by
a multi-dimensional sensor network at time t, consisting of observations Xi(t), where n is the number
of sensors of the network.

Each observation Xi(t) of the dataset can be perceived as a point in a Euclidean space of size f .
A very large number of features f probably will impose problems in the analysis of the dataset in
terms of execution time and scaling. This problem, often referred to as the “curse of dimensionality”,
can be treated by dimensionality reduction techniques [32]. It is essential for these techniques to
maintain useful information, such as which observations are similar to each other. In this context,

Sensors 2018, 18, 1205 8 of 21

we employ a graph representation of data, which allows maintaining those relations among data that
are considered valuable, suppressing the rest of the information.

Graphs that are constructed by linking observations in a metric space using a distance metric are
called proximity graphs [33]. A careful selection of a methodology for the formation of the proximity
graph, as well as the choice of a suitable community detection algorithm leads to communities that
resemble a natural clustering of the original data points. To construct the proximity graph, we employ
a method that makes use of minimum spanning trees in the graph. The approach employed in this
work is the one based on Disjoint Minimum Spanning Trees (DMST), described in [34]. This method
yields a graph that is the union of the first k minimum spanning trees, where k is a parameter defined
by the user. As mentioned in [34], a relatively small k is sufficient for the graph to capture the spatial
information of the dataset with a standard number of edges. This approach outweighs the ε-ball
approach [34], which heavily relies on the choice of radius ε, denoting the maximum distance between
two connected nodes.

Before community detection is applied, the initial dataset is cleaned, and any observations with
“out-of-range” or missing values are removed. Then, every observation is considered as a node in
a metric space with dimensions equal to the features of each observation, and the full weighted
graph is produced. Each edge of the graph has weight equal to the distance of the nodes it joins.
Then, the DMST graph is produced from the full graph for a small number of trees. This graph is
then embedded in the hyperbolic space using the Rigel embedding, and finally, the communities are
produced by the HGN algorithm with the appropriate selection of the batch size and the number of
communities to be discovered.

5. Evaluation

In this section, we evaluate the proposed framework with artificial and real datasets. Section 5
is divided into three subsections. In the first, results regarding the computation of HEBC for real
and artificial topologies are provided. The second focuses on the evaluation of the proposed data
clustering approach with respect to the involved parameters over various benchmark and real datasets.
Finally, the third part investigates the application of the proposed methodology on datasets obtained
from operational large-scale smart-city/building sensor networks, obtained from the FIESTA-IoT
testbed. For the performed analyses, a desktop with Intel Core i5-4570 3.20 GHz CPU, 8 GB RAM
(Intel, Santa Clara, CA, USA) and Windows 10 (64 bit) OS (Microsoft, Seattle, WA, USA) was used for
executing all computations.

5.1. Evaluation and Performance Assessment of HEBC Computation

In this subsection, we present the accuracy of computing HEBC metric in large scale-free
artificial networks and some real social networks obtained from [35]. We have analyzed the degree
distribution of the employed networks. Table 1 shows the form of the fitting models we obtained,
while Figures 2 and 3 show the curve fitting over the degree distributions for the artificial and real
networks employed in the following evaluations of our approach. Knowledge of the actual structure
of each network allows better explanation of the benefits of our approach.

Table 1. Fitting models for the degree distribution of the employed networks.

Model Expression

Exp(1) a ∗ eb∗x

Exp(2) a ∗ eb∗x + c ∗ ed∗x

Power(1) a ∗ xb

Power(2) a ∗ xb + c

Sensors 2018, 18, 1205 9 of 21

20 25 30 35 40 45 50
0

2

4

6

8

N
um

be
r

O
f N

od
es

Node Degree

(a) Power(1) with a = 7044, b = −2.235

15 20 25 30

5

10

15

N
um

be
r

O
f N

od
es

Node Degree

(b) Exp(1) with a = 111, b = −0.1451

8 10 12 14
5

10

15

20

N
um

be
r

O
f N

od
es

Node Degree

(c) Power(2) with a = 1.118 × 104, b = −3.313, c = 5.032

12 14 16 18 20

40

60

80

100

120

Node Degree

N
um

be
r

O
f N

od
es

(d) Power(2) with a = 1.798 × 1012, b = −9.607, c = 38.9

5 10 15 20 25
0

50

100

Node Degree

N
um

be
r

O
f N

od
es

(e) Exp(2) with a = 5.929× 104, b =−1.472, c = 160.4, d =−0.1652

4 6 8 10 12 14
0

50

100

150

N
um

be
r

O
f N

od
es

Node Degree

(f) Exp(2) with a = 1343, b = −0.7821, c = 62.87

Figure 2. Curve fitting for the degree distribution of artificial networks. (a) Dense100; (b) Mid100;
(c) Sparse100; (d) Dense500; (e) Mid500; (f) Sparse500. The parameters provided in each panel’s caption
correspond to the fitting models summarized in Table 1.

2 4 6 8 10 12 14 16
0

5

10

Node Degree

N
um

be
r

O
f N

od
es

(a) Power(2) with a = 29.87, b = −1.334, c = −0.6332

0 5 10 15 20 25 30 35
0

5

10

15

Node Degree

N
um

be
r

O
f N

od
es

(b) Exp(1) with a = 13.7, b = −0.1673

5 10 15 20 25
0

5

10

15

20

Node Degree

N
um

be
r

O
f N

od
es

(c) Power(1) with a = 766.1, b = −2.257

2 4 6 8 10 12

2

4

6

8

10

Node Degree

N
um

be
r

O
f N

od
es

(d) Exp(1) with a = 8.437, b = −0.008008

Figure 3. Curve fitting for degree distribution of real networks. (a) Karate; (b) lesmis; (c) polbooks;
(d) dolphins. The parameters provided in each panel’s caption correspond to the fitting models
summarized in Table 1.

Figure 4 presents the percentage of correct prediction of the top-k edges ranked according to
EBC and HEBC and shows that notable scores of accuracy are achieved for these types of scale-free
and exponential topologies. EBC ranking is used as a reference. Figure 4 quantifies the percentage of
accuracy achieved by the ranking according to HEBC with respect to the ranking of the top-k edges by
EBC. This happens because using Rigel embedding for power-law and power-law-like (exponential)

Sensors 2018, 18, 1205 10 of 21

networks yields less distortion of the distances in the embedded network, i.e., they are closer to
the original ones. The satisfactory results for the social networks examined are justified, since such
networks are known to follow a power-law or a power-law-like degree distribution [28].

Figure 4. Percentage of correct prediction in the top-k ranked edges for the networks presented in
Table 2. Blue columns denote the accuracy achieved for the top 10 (first of each triplet of bars), red for
the top k = 3 (second of each triplet of bars) and yellow for the top k = 2 edges (third of each triplet
of bars).

In Table 2, the HEBC metric is compared to the EBC value obtained by Brandes’ computation,
described in [29], in terms of execution time. Although the time needed for the completion of HEBC
value is less for every benchmark graph, the unavoidable overhead imposed by the embedding makes
the HEBC algorithm practically faster for large graphs with more than a few hundred nodes, as shown
in the last column of Table 2.

Table 2. Time comparison (in sec.) between Brandes’ EBC and HEBC.

Networks Nodes Edges EBC HEBC Rigel (Landmarks) HEBC + Rigel (Total) Time

scf1 1000 5788 39.03 4.07 18.10 (15) 22.17
scf2 1000 5821 121.76 3.84 8.41 (15) 12.25

karate 34 78 0.03 0.01 9.68 (15) 9.69
dolphins 62 166 0.09 0.02 4.28 (10) 4.30

lesmis 77 258 0.15 0.04 5.87 (10) 5.91
polbooks 105 442 0.31 0.04 20 (15) 20.04

By the last observation, a pattern emerges indicating that each approach is suitable for a different
range with respect to the size of the data graph. GN appears more appropriate for smaller sizes,
while HGN for the larger topologies. In the sequel, in Section 5.2.2, we provide additional relevant
results, which not only demonstrate the effectiveness of HGN in very large topologies, but also delimit
the more appropriate operational scales for each scheme (GN-HGN).

5.2. Data Clustering Framework via Hyperbolic Network Embedding

5.2.1. Known Communities

To evaluate the performance and accuracy of the proposed algorithm for clustering via community
detection, a number of graphs was utilized. Initially, we examined proximity graphs, which were
generated from artificial 2-dimensional datasets. In this case, community detection can be verified
visually (known ground truth). The employed datasets can be viewed in Figure 5 (consisting of all data
points), over which the HGN algorithm detected communities (the discovered communities are shown
using different colors for the data points). In addition, benchmark graphs for testing the GN algorithm
were used, produced by the algorithm described in detail in [36]. For these graphs, the communities

Sensors 2018, 18, 1205 11 of 21

are known beforehand (ground truth), so a direct evaluation of the proposed algorithm’s accuracy
is possible based on the modularity measure, and this is shown in the following parts of the paper.
Information about these graphs is provided in Table 3.

(a)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

40

(b)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(c)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

(d)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 5. Artificial datasets employed. (a) Outliers; (b) corners; (c) fullmoon; (d) cluster in cluster.
The colors denote the discovered communities, demonstrating 100% accuracy.

Table 3. Characteristics of the GN benchmark graphs.

Network Nodes Edges Mean Degree Max. Degree Communities

Dense100 100 1493 29.86 49 4
Mid100 100 954 19.08 30 3

Sparse100 100 496 9.92 15 4
Dense500 500 3781 15.12 30 7
Mid500 500 2398 9.59 25 7

Sparse500 500 1389 5.55 15 7

The effect of the batch size on the execution time of the algorithm is important. In Tables 4 and 5,
we present the effect of the batch size on the clustering time required over the proximity graphs.
For brevity, only the configurations that result in 100% success are presented. From these tables, it can
be seen that, in most cases, as the batch size increases, the execution time decreases. This behavior is
expected because a bigger batch size ensures that more edges are removed from the graph before the
re-embedding and the HEBC phases begin. As the embedding phase is the most time-consuming part
of the algorithm, fewer embeddings yield faster execution times. At the same time, one must be careful
with the batch size, because a large value will drive the algorithm to produce faster results, possibly
resulting in a penalty on the accuracy, since removing many edges at a time may involve removing
edges that would not be removed by the original GN algorithm in that order.

Sensors 2018, 18, 1205 12 of 21

Table 4. Effect of batch size on the execution time (in sec.) of the HGN algorithm for the proximity
graphs. Dashes denote results that were not possible to obtain with the respective batch size.

Batch Size Outliers Corners Fullmoon Cluster in Cluster

25 - 512.36 187.28 111.5
50 195.39 233.40 119.25 107.37
100 58.89 - 236.02 79.62
200 - - - 119.34
500 - - - 61.64

1000 - - - 34.88

Table 5. Effect of batch size on the execution time (in sec.) of the HGN algorithm for the benchmark
graphs. Dashes denote results that were not possible to obtain with the respective batch size.

Batch Size Dense100 Mid100 Sparse100

10 78.48 46.54 9.69
20 55.45 25.04 8.02
30 44.52 23.08 6.64
40 40.34 16.77 -
50 35.53 - 6.44
60 32.04 - 6.67
70 28.56 - -

Furthermore, we compare the execution time of the GN and HGN algorithms. In Table 6,
the execution time for each of the graphs of Table 3 is presented. It must be noted that with the
exception of two graphs, namely Dense500 and Mid500, HGN yielded 100% accurate results for all
the other graphs. For the two graphs mentioned before, in the case of Dense500, only two nodes are
assigned wrongly, while in the case of Mid500, 50% accuracy was achieved. It is noteworthy to mention
that for the outlier graph, the traditional GN algorithm fails to discover correctly the four communities
shown in Figure 5, while the HGN algorithm succeeds. Figure 6 provides the information of Table 6
visually for the graphs for which HGN correctly discovered their communities.

Table 6. Comparison of execution time (in sec.) of GN and HGN algorithms.

Network GN Time HGN Time (Batch Size)

Dense100 236.93 28.63 (60)
Mid100 86.18 40.78 (10)

Sparse100 13.86 10.62 (10)
Dense500 9634.99 3754.02 (10)
Mid500 2838.15 2575.79 (5)

Sparse500 2752.45 3221.47 (2)
outliers 416.69 130.41 (50)

fullmoon 1048.82 119.25 (50)
corners 442.29 233.40 (50)

cluster in cluster 227.27 120.70 (100)

Sensors 2018, 18, 1205 13 of 21

Figure 6. Execution time of GN and HGN algorithms for graphs with known communities
(logarithmic scale).

5.2.2. Unknown Communities

Except from networks with distinct and known communities, we examine networks for which
the ground truth is unknown. To assess the level of accuracy achieved, we employ the Modularity
Maximization (MM) method, as described in [37]. The application of the MM algorithm produces
a partition of nodes in modules (communities), assigning a modularity score to each community.
The higher the modularity score, which ranges in [−1, 1], the better the community partition according
to this measure. With respect to the modularity measure, MM achieves the maximum score obtained
for any partition of the given nodes (data points), serving as a benchmark of the best achievable
community partition in the following evaluations. Both the classic GN and the HGN algorithms are
executed with input the number of communities equal to the number found by MM. The intuition
behind this comes from the fact that if MM achieves the best possible partition according to the
modularity measure, the other approaches must yield at least the same number of communities
in order to approach the modularity score achieved by MM. Their partitions into communities are
assessed by computing the corresponding cumulative modularity value.

The batch size is chosen in each case to be the one that produces the best modularity scores.
For this evaluation, we employ two different types of graphs, namely scale-free (scf) and random
geometric (rgg), representative of the relational and spatial graph paradigms, respectively [28]. We use
artificial and real topologies. For the first, the Barabasi-Albert method was employed [38]. The basic
characteristics of the artificial networks used for this evaluation are presented in Table 7 for the
scale-free topologies and Table 8 for the random geometric ones, respectively. Similar features were
introduced for the real social networks previously employed in Section 4.

Table 7. Characteristics of the employed scale-free networks.

Network Nodes Edges Min. Degree Max. Modularity

scf3 100 356 4 0.31
scf4 100 427 5 0.27
scf5 100 557 7 0.22

Sensors 2018, 18, 1205 14 of 21

Table 8. Characteristics of random geometric networks.

Network Nodes Edges Threshold Max Modul

rgg1 100 612 0.2 0.65
rgg2 100 1152 0.3 0.51
rgg3 100 1732 0.4 0.40
rgg4 100 2394 0.5 0.30

As seen in Table 9, the GN algorithm completes in most cases faster than the HGN, but HGN
achieves better modularity scores, corresponding to better community detection (clustering accuracy).
However, it should be noted that many of these graphs are relatively small in size. As the size increases,
the computational efficiency of HGN emerges. Regarding the cases in which the produced modularities
differ significantly, this is due to the fact that in these topologies, the edges that connect low degree
nodes to nodes of high degree have high EBC values. Eventually, these edges are removed from the
graph. This leads to the formation of a large community accompanied by very small communities
of a few nodes, thus explaining the low modularity score achieved by the GN algorithm. Table 10
shows the size of the communities formed by the GN algorithm, applied over scale-free graphs. It can
be seen that for every network, almost all the communities, except for the one discovered by the
HGN algorithm, have at most four nodes. Moreover, these nodes have a low degree, and this can be
verified by examining the mean degree of the nodes composing each community. This verifies our
hypothesis for the formation of one “giant” community accompanied by many small ones. On the
other hand, since the HEBC accuracy for these topologies is higher, this means that different edges
were removed. These were edges that connect nodes of high degree between them, leading to the
formation of communities that result in greater modularity scores.

Table 9. Modularity and time (in sec.) comparison of HGN and GN.

Network GN Time Modularity of GN HGN Time Modularity of HGN

karate 0.54 0.34 14.14 0.42
dolphins 1.92 0.36 29.99 0.45

lesmis 6.42 0.44 52.10 0.55
polbooks 15.17 0.51 42.85 0.51

scf3 37.52 0.096 384.14 0.28
scf4 44.92 0.0031 659.30 0.21
scf5 79.02 −0.00032 1229.35 −0.062
rgg1 15.23 0.63 19.74 0.63
rgg2 98.31 0.49 34.17 0.51
rgg3 31.68 0.00017 56.89 0.40
rgg4 141.45 −0.00068 174.97 0.28

Sensors 2018, 18, 1205 15 of 21

Table 10. Mean node degree of each community after GN clustering. The size of each community is
given in the parentheses, i.e., single, double or quad node communities. The first three topologies have
7 communities, while the fourth 8.

Topology Scf3 Scf4 Scf5 Scf6

Community 1 5 (1) 5 (2) 4 (1) 5 (1)
Community 2 4 (1) 5.25 (4) 4 (1) 5 (1)
Community 3 4 (1) 5.6 (2) 4 (1) 6 (1)
Community 4 6 (1) 4.33 (4) 5 (2) 6 (1)
Community 5 7 (1) 4.5 (2) 4 (1) 6 (1)
Community 6 10.67 (94) 7.61 (80) 8.85 (93) 6 (1)
Community 7 7 (1) 5.25 (4) 5 (1) 11.55 (93)
Community 8 - - - 6 (1)

Mean Network Degree 10.04 7.12 8.54 11.14

To further investigate the performance differences with respect to execution time and modularity
score (accuracy) between the HGN and GN approaches at larger scales, we consider topologies of
increasing cardinality (number of nodes) for two different network types, namely small-world and
random geometric. Firstly, a number of small-world graphs was generated with nodes ranging from
200–800. As can be confirmed from Figure 7, there exists a threshold around 300 nodes, beyond
which the HGN algorithm terminates significantly faster, while achieving good results of modularity,
relatively close to those of the GN algorithm (Figure 8). Furthermore, for these types of graphs,
and especially for very large topologies, the accuracy of HGN can be greater than that achieved by GN
with respect to the modularity metric. This strengthens our assumption that one can safely use the
proposed method, saving time without compromising the involved accuracy considerably.

200 300 400 500 600 700 800
0

1

2

3

4x 10
4

Number Of Nodes

T
im

e
(s

ec
)

GN
HGN

Figure 7. Execution time of the GN and HGN algorithms in scale-free networks.

200 300 400 500 600 700 800

0.7

0.8

0.9

1

Number Of Nodes

M
od

ul
ar

ty

GN
HGN

Figure 8. Modularity scores achieved by GN and HGN in scale-free networks.

We have repeated this evaluation for random geometric graphs in the same range of 200–800 nodes.
The results are provided in Figures 9 and 10. Similarly to the case of small-world graphs, our algorithm
completed its execution faster, especially for larger topologies (Figure 9). The threshold above which
HGN executes significantly faster than GN is now 400 nodes. The accuracy performance measured in
terms of modularity is comparable for both approaches (Figure 10). Consequently, even though HGN
offers the same fidelity, its computational performance makes it more appropriate for big sensor data
environments, ensuring the required scaling in these cases.

Sensors 2018, 18, 1205 16 of 21

200 300 400 500 600 700 800
10

2

10
4

10
6

Number Of Nodes
T

im
e

(s
)

GN
HGN

Figure 9. Execution time of the GN and HGN algorithms in random geometric networks.

200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Number Of Nodes

M
od

ul
ar

ity

GN
HGN

Figure 10. Modularity scores achieved by GN and HGN in random geometric networks.

We should stress that the number of edges in the above random geometric and small-world
topologies ranged in the order of thousands, e.g., 3000–4000 edges for a typical scenario. In real
scenarios, the number of edges may grow even faster, signifying the importance of good computational
scaling in these operational ranges. From the above results, HGN shows remarkable scaling adaptation
in terms of computational time, without considerable accuracy penalty, constituting a very suitable
alternative for big sensor data analytics.

5.3. Real Evaluation on FIESTA-IoT Datasets

In this subsection, we evaluate the proposed clustering framework over data graphs constructed
from real dataset, which were obtained from the FIESTA-IoT federation and more specifically the
SmartSantander testbed [39]. This testbed allowed us to collect large sets of multi-dimensional
data, reaching up to approximately 500 nodes. Each node corresponds to co-located sensor data for
various features, such as GPS coordinates, temperature, battery levels, etc. It should be highlighted that
SmartSantander is among the very few testbeds allowing the collection of that many multi-dimensional
data (up to 500 distinct co-located sensor points), uniquely allowing a realistic evaluation of HGN that
is closer to the anticipated big sensor data scales of the future.

The datasets were obtained at different sampling instances, using different sampling rates, e.g.,
1 sample/5 min, 1 sample/20 min, etc. After the raw data were obtained, a cleaning process followed
to ensure that any missing or damaged data were removed. Then, data from co-located sensors
(i.e., sharing the same latitude and longitude values) were considered as multi-dimensional data and
treated as described in Section 4. We were able to collect around 500 distinct multi-dimensional data
points at each time. Hence, for each sampling instance, the corresponding data graph of around
500 nodes was obtained and embedded in the hyperbolic space. Then, the HGN algorithm was
applied in order to produce data clusters corresponding to specific sampling instances. We compared
the performance of our scheme against the other two (GN, MM) employed before in terms of the
modularity metric.

As before, the comparison took place using as input the number of communities resulting from
the MM approach. Figures 11–15 present the modularity score obtained for each of the obtained
community clusterings. Each figure corresponds to different sampling rates of the testbeds’ resources.
Each sample in each figure corresponds to a distinct proximity graph. Taking into account the scale

Sensors 2018, 18, 1205 17 of 21

of the modularity score in each data series (different sampling rate), it can be deduced that all three
approaches are relatively close, yielding data clusters that in turn yield similar scores with respect to
the modularity metric employed for their evaluation. Thus, the proposed HGN approach can match
closely the accuracy of the conventional GN and MM approaches, sacrificing a very small percentage of
it. In fact, the corresponding performance can be attained for any sampling rate employed, signifying
the practical potentials of HGN in various energy-efficiency smart-city/building applications.

Figure 11. Modularity comparison/5 min sampling (15 December 2017, 11:00–12:00).

Figure 12. Modularity comparison/10 min sampling (15 December 2017, 11:00–12:00).

Figure 13. Modularity comparison/20 min sampling (15 December 2017, 11:00–13:00).

Sensors 2018, 18, 1205 18 of 21

Figure 14. Modularity comparison/30 min sampling (15 December 2017, 11:00–18:00).

Figure 15. Modularity comparison/60 min sampling (15 December 2017, 11:00–18:00).

Combined with analogous results for artificial networks and benchmark datasets provided earlier
in Section 5.2.2, we can conclude that the proposed methodology can be safely employed for data
clustering in unknown and operational scenarios, expecting approximately the same accuracy level
as with previously employed approaches (GN, MM), while offering more computational efficiency
over GN.

6. Conclusions

In this paper, we proposed a novel data clustering approach for measurements obtained from large
IoT sensor topologies. Starting with a graph representing data dependencies, we suggested embedding
it in the hyperbolic space and modified the Girvan–Newman community detection algorithm so that
the edge-betweenness centrality of each link required for community detection is computed faster
in the hyperbolic space and sometimes with better accuracy. We demonstrated the potentials of the
proposed approach in terms of scaling and computational efficiency with synthetic and real datasets.
We showed that the proposed framework can yield accurate results for datasets that potentially exhibit
very big data scales and quantified its performance against typically employed benchmark approaches.

Our future work will focus on developing an adaptive approach for determining the optimal
batch size and the optimization of the parameters of Rigel embedding, pertinent to the type and scale
of the involved data graph. Furthermore, we will apply the HGN approach in an energy-efficient
clustering application over FIESTA-IoT, exploiting it to reduce the number of sensors needed at each

Sensors 2018, 18, 1205 19 of 21

time in indoor and outdoor environments, thus reducing the associated energy cost while maintaining
monitoring accuracy.

Supplementary Materials: The basic functions for the computation of HEBC are available online at: https://github.
com/netmode/CREDIT_FIESTA-IoT_OC1_experiment.

Acknowledgments: This work was partially funded by the European project “Federated Interoperable Semantic
IoT/cloud Testbeds and Applications (FIESTA-IoT)” of the EC Horizon 2020 Programme under Grant Agreement
No. CNECT-ICT-643943.

Author Contributions: All authors contributed extensively to the work presented in this paper. V.K., K.T. and S.P.
conceived of and designed the proposed framework. K.T. and K.S. conceived of and designed the experiments.
K.T. performed the experiments. V.K., K.T. and S.P. analyzed the data. All authors contributed to the writing of
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DMST Disjoint Minimum Spanning Trees
EBC Edge-Betweenness Centrality
GN Girvan–Newman
HBC Hyperbolic Betweenness Centrality
HEBC Hyperbolic Edge-Betweenness Centrality
HGN Hyperbolic Girvan–Newman
MM Modularity Maximization
RGG Random Geometric Graph
SCF Scale-free

References

1. Cheng, S.; Cai, Z.; Li, J.; Fang, X. Drawing Dominant Dataset from Big Sensory Data in Wireless Sensor
Networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Hong Kong,
China, 26 April–1 May 2015.

2. Cheng, S.; Cai, Z.; Li, J.; Gao, H. Extracting Kernel Dataset from Big Sensory Data in Wireless Sensor
Networks. IEEE Trans. Knowl. Data Eng. 2017, 29, 813–827. [CrossRef]

3. Stai, E.; Karyotis, V.; Papavassiliou, S. A Hyperbolic Space Analytics Framework for Big Network Data and
their Applications. IEEE Netw. Mag. 2016, 30, 11–17. [CrossRef]

4. FIESTA-IoT Project, Federated Interoperable Semantic IoT Testbeds and Applications. Available online:
http://www.fiesta-iot.eu/ (accessed on 22 January 2018).

5. Jain, A.K.; Murty, M.N.; Flynn, P.J. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264–323.
[CrossRef]

6. Cheng, B.; Longo, S.; Cirillo, F.; Bauer, M.; Kovacs, E. Building a Big Data Platform for Smart Cities:
Experience and Lessons from Santander. In Proceedings of the IEEE International Congress on Big Data,
New York, NY, USA, 27 June–2 July 2015; pp. 592–599.

7. Fortunato, S. Community Detection in Graphs. Phys. Rep. 2010, 486, 75–174. [CrossRef]
8. Girvan, M.; Newman, M.E.J. Community Structure in Social and Biological Networks. Proc. Natl. Acad.

Sci. USA 2002, 99, 7821–7826. [CrossRef]
9. Sarwar, B.M.; Karypis, G.; Konstan, J.; Riedl, J. Recommender Systems for Large-scale E-commerce: Scalable

Neighborhood Formation using Clustering. In Proceedings of the 5th International Conference on Computer
and Information Technology, Dhaka, Bangladesh, 27–28 December 2002; Volume 1.

10. Koh, H.C.; Tan, G. Data Mining Applications in Healthcare. J. Healthc. Inf. Manag. 2005, 19, 64–72.
11. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means Clustering Algorithm. J. R. Stat. Soc. Ser. C 1979,

28, 100–108. [CrossRef]
12. Ng, R.T.; Jiawei, H. CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Trans. Knowl.

Data Eng. 2002, 14, 1003–1016. [CrossRef]

https://github.com/netmode/CREDIT_FIESTA-IoT_OC1_experiment
https://github.com/netmode/CREDIT_FIESTA-IoT_OC1_experiment
http://dx.doi.org/10.1109/TKDE.2016.2645212
http://dx.doi.org/10.1109/MNET.2016.7389825
http://www.fiesta-iot.eu/
http://dx.doi.org/10.1145/331499.331504
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.2307/2346830
http://dx.doi.org/10.1109/TKDE.2002.1033770

Sensors 2018, 18, 1205 20 of 21

13. Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An Efficient Data Clustering Method for Very Large
Databases. In ACM Sigmod Record; ACM Digital Library: New York, NY, USA, 1996; Volume 25, No. 2.

14. Karypis, G.; Han, E.-H.; Kumar, V. Chameleon: Hierarchical Clustering using Dynamic Modeling.
IEEE Comput. Mag. 1999, 32, 68–75. [CrossRef]

15. Wang, W.; Yang, J.; Muntz, R. STING: A Statistical Information Grid Approach to Spatial Data Mining.
In Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB), Athens, Greece,
25–29 August 1997; pp. 186–195.

16. Sheikholeslami, G.; Chatterjee, S.; Zhang, A. Wavecluster: A Multi-resolution Clustering Approach for Very
Large Spatial Databases. In Proceedings of the 24th International Conference on Very Large Data Bases
(VLDB), New York, NY, USA, 24–27 August 1998; pp. 428–439.

17. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining (KDD), Portland, Oregon, 2–4 August 1996; pp. 226–231.

18. Zhao, W.; Ma, H.; He, Q. Parallel k-means Clustering based on MapReduce. In Proceedings of the IEEE
International Conference on Cloud Computing (CloudCom), Beijing, China, 1–4 December 2009; pp. 674–679.

19. He, Y.; Tan, H.; Luo, W.; Feng, S.; Fan, J. MR-DBSCAN: A Scalable MapReduce-based DBSCAN Algorithm
for Heavily Skewed Data. Front. Comput. Sci. 2014, 8, 83–99. [CrossRef]

20. Kim, Y.; Shim, K.; Kim, M.-S.; Lee, J.-S. DBCURE-MR: An Efficient Density-based Clustering Algorithm for
Large Data using MapReduce. Inf. Syst. 2014, 42, 15–35. [CrossRef]

21. Li, X.; Fang, Z. Parallel Clustering Algorithms. Parallel Comput. 1989, 11, 275–290. [CrossRef]
22. Brandes, U.; Delling, D.; Gaertler, M.; Goerke, R.; Hoefer, M.; Nikoloski, Z.; Wagner, D. Maximizing

Modularity is Hard. arXiv 2006, arXiv:physics/0608255.
23. Papadopoulos, F.; Krioukov, D.; Boguna, M.; Vahdat, A. Greedy Forwarding in Dynamic Scale-Free Networks

Embedded in Hyperbolic Metric Spaces. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA,
14–19 March 2010; pp. 14–19.

24. Cvetkovski, A.; Crovella, M. Hyperbolic Embedding and Routing for Dynamic Graphs. In Proceedings of
the IEEE INFOCOM, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 1647–1655.

25. Zhao, X.; Sala, A.; Zheng, H.; Zhao, B.Y. Efficient Shortest Paths on Massive Social Graphs. In Proceedings
of the 2011 7th International Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), Orlando, FL, USA, 15–18 October 2011; pp. 77–86.

26. Papadopoulos, F.; Psomas, C.; Krioukov, D. Network Mapping by Replaying Hyperbolic Growth. IEEE/ACM
Trans. Netw. 2015, 23, 198–211. [CrossRef]

27. Zhao, X.; Sala, A.; Wilson, C.; Zheng, H.; Zhao, B.Y. Orion: Shortest Path Estimation for Large Social
Graphs. In Proceedings of the 3rd Conference on Online Social Networks, Boston, MA, USA, 22 June 2010;
USENIX Association: Berkeley, CA, USA, 2010.

28. Karyotis, V.; Stai, E.; Papavassiliou, S. Evolutionary Dynamics of Complex Communications Networks;
CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2013.

29. Brandes, U. On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Soc. Netw.
2008, 30, 136–145. [CrossRef]

30. Stai, E.; Sotiropoulos, K.; Karyotis, V.; Papavassiliou, S. Hyperbolic Embedding for Efficient Computation of
Path Centralities and Adaptive Routing in Large-Scale Complex Commodity Networks. IEEE Trans Netw.
Sci. Eng. 2017, 4, 140–153. [CrossRef]

31. Stojmenovic, I. Position based Routing in Ad Hoc Networks. IEEE Commun. Mag. 2002, 40, 128–134.
[CrossRef]

32. Fodor, I.K. A Survey of Dimension Reduction Techniques; Technical Report: UCRL-ID-148494; Livermore
National Laboratory: Livermore, CA, USA, May 2002.

33. Bose, P.; Dujmovic, V.; Hurtado, F.; Langerman, S.; Meijer, H.; Sacristan, V.; Saumell, M.; Wood, D.R.
Proximity Graphs: E, δ, χ and ω. Int. J. Comput. Geom. Appl. 2012, 22, 439–469. [CrossRef]

34. Zemel, R.S.; Carreira-Perpinán, M.A. Proximity Graphs for Clustering and Manifold Learning.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada,
5–8 December 2005.

35. Network Data Repository. Available online: http://www-personal.umich.edu/~mejn/netdata/ (accessed on
22 January 2018).

http://dx.doi.org/10.1109/2.781637
http://dx.doi.org/10.1007/s11704-013-3158-3
http://dx.doi.org/10.1016/j.is.2013.11.002
http://dx.doi.org/10.1016/0167-8191(89)90036-7
http://dx.doi.org/10.1109/TNET.2013.2294052
http://dx.doi.org/10.1016/j.socnet.2007.11.001
http://dx.doi.org/10.1109/TNSE.2017.2690258
http://dx.doi.org/10.1109/MCOM.2002.1018018
http://dx.doi.org/10.1142/S0218195912500112
http://www-personal.umich.edu/~mejn/netdata/

Sensors 2018, 18, 1205 21 of 21

36. Lancichinetti, A.; Fortunato, S.; Radicchi, F. Benchmark graphs for testing community detection algorithms.
Phys. Rev. E 2008, 78, 046110. [CrossRef]

37. Blondel, V.D.; Guillaume, J.-L.; Lambiotte1, R.; Lefebvre, E. Fast Unfolding of Communities in Large
Networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [CrossRef]

38. Barabasi, A.-L.; Albert, R. Emergence of Scaling in Random Networks. Science 1999, 286, 509–512.
39. SmartSantander Testbed. Available online: http://www.smartsantander.eu/index.php/testbeds/ (accessed on

22 February 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://www.smartsantander.eu/index.php/testbeds/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Contribution
	Background and Related Work
	Contribution

	Community Detection Enhancement via Hyperbolic Network Embedding
	Hyperbolic Edge-Betweenness Centrality
	Hyperbolic Girvan–Newman for Community Detection

	Big Sensor Data Clustering
	Evaluation
	Evaluation and Performance Assessment of HEBC Computation
	Data Clustering Framework via Hyperbolic Network Embedding
	Known Communities
	Unknown Communities

	Real Evaluation on FIESTA-IoT Datasets

	Conclusions
	References

