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Abstract: Light absorption gas sensing technology has the characteristics of massive parallelism,
cross-sensitivity and extensive responsiveness, which make it suitable for the sensing task of an
electronic nose (e-nose). With the performance of hyperspectral resolution, spatial heterodyne
spectrometer (SHS) can present absorption spectra of the gas in the form of a two dimensional
(2D) interferogram which facilitates the analysis of gases with mature image processing techniques.
Therefore, a visual e-nose system based on SHS was proposed. Firstly, a theoretical model of the visual
e-nose system was constructed and its visual maps were obtained by an experiment. Then the local
binary pattern (LBP) and Gray-Level Co-occurrence Matrix (GLCM) were used for feature extraction.
Finally, classification algorithms based on distance similarity (Correlation coefficient (CC); Euclidean
distance to centroids (EDC)) were chosen to carry on pattern recognition analysis to verify the
feasibility of the visual e-nose system.

Keywords: visual e-nose; SHS; gas sensing; feature extraction; pattern recognition

1. Introduction

As a representative of artificial olfactory technology, e-nose can provide an objective assessment
of smell which is widely used in food safety [1–5], disease diagnosis [6–10], environmental
monitoring [11–16], public safety [17,18], etc. Artificial olfactory technology [19,20] has made great
achievements in the past two decades, but compared with human olfactory system, there is still a
gap, mainly due to the imperfections of the e-nose system, such as small number of sensing units,
narrow response range and so on [21–23]. Light absorption gas sensing technology [24,25] has the
characteristics of massive parallelism, cross-sensitivity, extensive and fast responsiveness, which make
it suitable for the sensing task of an e-nose. So, if light absorption gas sensing technology is applied to
e-nose system, the problems of fewer units, long response time, short life, poor repeatability and harsh
environmental requirements of typical e-nose (such as PEN3, Alpha MOS, etc.) will be solved.

At present, almost all light absorption gas detection systems [26–30] use a grating spectrometer
to detect gases [31–33], but the system has a problem that must be considered: there are constraints
between the spectral range and the resolution of spectrometer. With the performance of hyperspectral
resolution, lack of moving parts, low requirements for components and high etendue, spatial
heterodyne spectrometer (SHS) [34,35] is widely used in trace gasses detection [36], astrophysical
observation [37]. However, the output of the SHS is a 2D interferogram, and the target spectral
information is implicit in the interferogram. According to the traditional data processing method,
the interferogram needs to be baseline removed, apodized, phase corrected and inverse Fourier
transformed to reconstruct the input spectrum [38,39]. According to the basic principle of e-nose [19,20],
the gas’s response can be replaced by its corresponding feature instead of raw data. Therefore, under
the premise of a one-to-one correspondence between the interferogram and the target spectrum, using
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the characteristics of the interferogram to replace the original gas information as the sensor response
of the e-nose can not only apply the mature image processing technology to the data processing of the
e-nose, but also reduce the complexity of data processing and improve the efficiency of the e-nose.

An innovative visual e-nose system based on SHS was proposed. Firstly, a mathematical model
of a visual gas sensing mechanism was built and the feasibility of the model appropriate to the sensing
task of e-nose was demonstrated. Secondly, one dimensional (1D) spectral data of different test gases
were obtained by light absorption experiment and their 2D response interferograms were obtained
by simulation. Thirdly, image feature extraction algorithms, principal component analysis (PCA) and
classifiers were used for processing of the interferogram.

2. Visual Gas Sensing Mechanism Based on SHS

2.1. Wide Spectral Spatial Heterodyne Spectrometer

2.1.1. Wide Spectral Spatial Heterodyne Spectrometer

The structure of wide spectral SHS (WS-SHS) is shown in Figure 1. A WS-SHS is essentially a
Michelson interferometer with the mirrors replaced by echelle gratings that are fixed at the zero-path
difference position for a series wave-numbers (σ0m) at the Littrow angle (θ) of the echelle gratings
(see Figure 1). The recombined wave-fronts at σ0m are parallel; however, other wave-numbers are
dispersed by the echelle gratings and rotated in opposite directions by an angle γ. In order to
remove the ambiguity of multi-dispersion orders in recovered spectra, the echelle gratings are tilted
perpendicular to the dispersion plane with the angle α/2. The interferential fringes become two
dimensional patterns. Using the small-angle approximation, the ideal WS-SHS interferogram can be
written as [34,37]:

I(x, y) = ∑
m

∫ ∞

0
B(σ)Fm(σ)(1 + cos(2π(4(σ − σ0m) tan θ · x + ασ · y)))dσ, (1)

where B(σ) is the wavenumber-dependent spectral radiances, σ0m is the Littrow wavenumber for
order m which corresponds to the grating angle θ, x is the pixel location of detector along dispersion
direction, y is the pixel location of detector perpendicular to dispersion direction, and Fm(σ) is the
diffractive efficiency of grating for order m. The fringes recorded for arbitrary wavenumber are rotated
with respect to the x axis by an angle η where tan η = − fx/ fy ( fx = 4(σ − σ0) tan θ, fy = ασ).

Figure 1. Structure diagram of 2D spatial heterodyne spectrometer (SHS).
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2.1.2. Basic Properties of the WS-SHS System

(1) Spectral resolution

The spectral resolution for WS-SHS depends on the optical path difference between two
interfering beams. As shown in Figure 1, the maximum optical path difference along axis x is
Uxmax = 2W sin θ. Then the theoretical spectral resolution of WS-SHS is [37]:

δσ = 1/2Uxmax = 1/4W sin θ, (2)

where W is the effective width of the grating perpendicular to the dispersion direction.

(2) Spectral range

At the same time, the spectral range for every order diffraction of the gratings is 2σ01, and the
lower limit of the numbers for pixel of detectors along the direction of x is [37]:

Nx ≥ 2σ01/δσ. (3)

In the same way, the resolution of the transform in y must be high enough to distinguish adjacent
orders from one another by a differential of at least one fringe. If the maximum diffraction order
is mmax, then a lower limit of the numbers for pixel of detectors along the direction of y is [37]:

Ny ≥ 4mmax. (4)

Equations (3) and (4) limit the minimum number of samples in each direction. At this point,
the spectral range of the WS-SHS is:

∆σ = ∑
m
(σ0m ± σ01). (5)

When m is from one to hundreds, the spectrum detection range of WS-SHS will be from ultraviolet
to infrared.

2.2. Sensing Mechanism of the Visual E-Nose

The visual gas sensing mechanism based on SHS combines the basic principles of spectroscopy
and SHS. One-dimensional characteristic spectra of the test gas are obtained by light absorption gas
detection system. Then, the characteristic spectra are presented in the form of 2D interferogram by SHS.
The mathematical model is as follows:

Absorption spectrum of the test gas are obtained from Lambert–Beer law [40],

Bout(σ) = Bin(σ)e−α(σ)CL, (6)

where Bin(σ), Bout(σ) represent input spectrum and absorption spectrum of the light absorption
system respectively. If they are input into the SHS system, and fx = 4(σ − σ0) tan θ, fy = ασ,
the output of SHS is obtained as follows:

Iin(x, y) = ∑
m

∫ ∞

0
Bin(σ)Fm(σ)(1 + cos(2π( fx · x + fy · y)))dσ, (7)

Iout(x, y) = ∑
m

∫ ∞

0
Bout(σ)Fm(σ)(1 + cos(2π( fx · x + fy · y)))dσ. (8)
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Taking Equation (6) into Equation (8), the response of absorption spectrum is obtained as follows:

Iout(x, y) = ∑
m

∫ ∞

0
Bin(σ)e−α(σ)CLFm(σ)(1 + cos(2π( fx · x + fy · y)))dσ. (9)

Comparing Equations (7) and (9), it is found that the input interferogram of the system is the
Fourier transform of the input spectrum Bin(σ) and the absorption interferogram is the Fourier
transform of absorption spectrum Bout(σ). Set G(σ, x, y) = Bin(σ)Fm(σ)(1 + cos(2π( fx · x + fy · y))),
and define a transmittance map (T-map) as:

T(x, y) =
Iout(x, y)
Iin(x, y)

=
∑
m

∫ ∞
0 G(σ, x, y)e−α(σ)CLdσ

∑
m

∫ ∞
0 G(σ, x, y)dσ

, (10)

where T(x, y) is a function of pixel position which reflects characteristic information of the test gas.
Meanwhile, from the definition of SHS, it can be found that I(x, y) is formed by the superposition of
interference fringes of different diffraction orders, and fringe structure and fringe period depend on
the spectral distribution of the test gas. For Equation (10), if the system is determined, L is a constant.
Then for different kinds of gases, α(σ) is different and assume that C is a constant, the difference of
T(x, y) is reflected in fringe structure, fringe period of the T-map which can be used as the basis of
gas type judgment. For the same kind of gas, α(σ) is same, so the fringe structure and fringe period
is unchanged. When C is different, there is a difference of T(x, y) in brightness, which can be the basis
of gas concentration judgment. Therefore, it is feasible in theory to use T(x, y) as a sensing mechanism
for constructing an e-nose system. In such condition, each pixel of T(x, y) plays a role of virtual sensor,
then the huge number of pixels obviously increases the number of sensing units in the system.

3. Visual E-Nose System Based on SHS

A theoretical model of the visual e-nose system was established in Section 2. In order to verify the
effectiveness of the system, T-maps are obtained through experiments and objective parameters are
selected to evaluate the system performance in this section.

3.1. Construction of Visual E-Nose System

3.1.1. System Structure

Structure of the visual e-nose system is shown in Figure 2.

Figure 2. Structure of the visual e-nose system.

Light source is the sensing medium of the system providing the energy and characteristic spectral
lines required by the system. Chamber is the place where light source and gases react with each other.
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Sampling control module controls the type and concentration of test gas. SHS is used to generate and
collect 2D interferogram. Computer realizes the analysis of interferograms.

3.1.2. Flowchart of the Visual E-Nose

Flowchart of the visual e-nose system is shown in Figure 3.

Figure 3. Flowchart of the visual e-nose system.

Firstly, a light source was input into the SHS system to get its 2D input interferogram. Then, the
light source was input into light absorption gas detection system to get 1D absorption spectrum and it
was input into the SHS system to get the 2D absorption interferogram. Finally, the T-map was obtained
by taking the input interferogram and the absorption interferogram into Equation (10).

3.2. Experiment

From the basic principle of visual e-nose, we can see that with the increase of the diffraction order
of Echelle gratings, the system can be used not only in UV–visible but also in infrared band, while
in this article, UV–visible band is selected to verify the feasibility and effectiveness of the system.
In addition, NO2, SO2, mixture of NO2 and SO2 (NO2 + SO2), C6H6, C7H8 were selected taking into
account the effective working range of the spectrum and the gas performance in this band.

3.2.1. Experimental Steps

The experimental platform of light absorption gas detection system is shown in Figure 4, and the
technical parameters of the system are as shown in Table 1.

Figure 4. Experiment platform of light absorption gas detection system.
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The technical parameters in Table 1 show that the light absorption gas detection system is more
suitable to study the gas that has absorption in the spectral range of 200–1100 nm, and the detection
range of the system is mainly limited by the detection range of the spectrometer. From Section 2.1, it is
noticed that the proposed visual e-nose system can be also applied in other wavelength ranges as long
as the device is coincident.

Table 1. Technical parameters of light absorption gas detection system.

Category Parameters

Technical principle Light absorption sensing technology
Response range 200–1100 nm

Size of sensing unit 0.54 nm
Lower limit of detection NO2: 0.2‰; SO2: 0.1‰; C6H6: 0.2‰

Sensitivity NO2: 0.2‰; SO2: 0.1‰; C6H6: 0.1‰

Test gases Inorganic gas: NO, NH3, O3, SO2, CS2, NO2, O2, etc.
Organic gas: C6H6, C7H8, C8H10, CH2O etc.

The detailed experimental processes were as follows:

(1) Obtained 1D spectrum

Step 1: When the light source (EQ-99X, Energetiq, Woburn, MA, USA, spectral range is
190–2100 nm) is off, use the grating spectrometer (Maya 2000Pro, Ocean Optics, Largo, FL, USA,
spectral range is 200–1100 nm, resolution is 0.54 nm) to record the background spectrum. Then turn on
the light source and record the input spectrum.

Step 2: Fill the chamber with the test gases (NO2, SO2, NO2 + SO2, C6H6, C7H8) by Vacuum pump
and MFC (The concentrations of NO2 are 0.2‰, 0.4‰, 0.6‰ respectively; The concentrations of SO2

are 0.3‰, 0.6‰, 0.9‰ respectively; The concentrations of NO2 + SO2 are 3.2‰ + 0.1‰, 3.5‰ + 0.3‰,
3.0‰ + 0.6‰ respectively; The concentrations of C6H6 and C7H8 are all 3‰). In addition, the 1D
background spectrum, input spectrum and absorption spectrum were collected, respectively.

Step 3: Background interference was removed by subtracting the background spectrum from the
input spectrum and the absorption spectrum. Then, take the processed input spectrum and absorption
spectrum into Equation (6) to obtain the characteristic curve of the corresponding gas as shown
in Figure 5.

Figure 5. One-dimensional characteristic curve of test gases (a) NO2 (b) SO2 (c) NO2 + SO2 (d) C6H6

(e) C7H8.



Sensors 2018, 18, 1188 7 of 14

Step 4: According to the characteristic spectral range of the test gases provided in the
HITRAN standard database [41], 240–650 nm is chosen as the effective range of the WS-SHS system
input spectrum.

(2) Obtained 2D T-maps

Step 5: Assume that the blazed angle of the Echelle grating is 63◦, the groove density is 31.6l/mm,
the effective width is 20 mm, and the input spectral range is 240–650 nm. Then the resolution of
WS-SHS calculated by Section 2.1.2 is 0.014 mm−1, the minimum detector’s pixel size is 600 × 1400,
the maximum diffraction order is 150. However, the spectral resolution in the interferogram is 0.54 nm
because of the limitations brought by the simulation experiment.

Step 6: Take the processed input spectrum input into WS-SHS to get 2D input interferogram.
The interferogram size is 600 × 1400, which means that the number of sensors for this visual e-nose
system is 600 × 1400.

Step 7: Take the processed absorption spectrum of the test gases with different types and
concentrations into WS-SHS to obtain 2D absorption interferograms. For each kind of gas, 32 sets of
data were collected and only the first one was shown in Figure 6.

Figure 6. Interferograms of test gases (a) NO2 (b) SO2 (c) NO2 + SO2 (d) C6H6 (e) C7H8.

Observing Figure 6, the contrast of the interferogram is low, and the main reasons for this is
that [32] the interferogram of WS-SHS is formed by the superposition of interferograms of different
diffraction orders. The lager the number of the superposition is, the lower the contrast of the
interferogram is. In this system, the input spectrum (240–650 nm) of WS-SHS covers the UV–visible
band at the same time, and the diffraction order of the Echelle grating is 150. That is, the above
interferogram is composed of 150 interferograms with different diffraction orders, which seriously
reduce the contrast of the interferogram.

3.2.2. Acquisition and Analysis of Sensing Data

The interferograms of input spectrum and absorption spectrum of different gases at different
concentrations were acquired by Section 3.2.1. Then the T-maps could be acquired by bringing the
above data into Equation (10) (shown in Figure 7).
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Figure 7. T-maps of test gases (a) NO2 (b) SO2 (c) NO2 + SO2 (d) C6H6 (e) C7H8.

According to the T-maps shown in Figure 7, it was found that different spectra have different
T-maps. The difference is reflected in interference fringe structure, fringe period. However, because
of the wide spectral range of the input light, the fringe contrast of the T-map is low which affects
the subjective observation. To acquire objective analysis of the results, correlation coefficient [42] is
chosen to evaluate the sensing data of the visual e-nose. Results of the sensing data using correlation
coefficient are shown in Table 2.

Table 2. Objective evaluation parameters of sensing data.

Class
Correlation Coefficient

NO2 SO2 NO2 + SO2 C6H6 C7H8

NO2 1 0.55 0.67 0.95 0.92
SO2 0.55 1 0.44 0.53 0.50

NO2 + SO2 0.67 0.44 1 0.61 0.58
C6H6 0.95 0.53 0.61 1 0.94
C7H8 0.92 0.50 0.58 0.94 1

Comparing the correlation coefficient parameters in Table 2, it can be found that there are obvious
differences among the sensing data of different gases, and that even the difference between the mixed
gas and the single gas is large with correlation coefficients less than 1, which preliminarily verifies the
feasibility of the visual e-nose system.

4. Analysis of the Visual E-Nose Sensing Data

4.1. Feature Extraction of Experiment Sensing Data

4.1.1. Feature Extraction

Based on the theory of visual e-nose, the sensing data acquired by the system are images which
are formed by the superposition of interferograms of different diffraction orders. Usually the scale of
the image is very large, so the complexity of the system will be increased if the image is used directly
as the input of pattern recognition. However, if characteristics of T-maps are extracted in the form of
1D vector and used as input of pattern recognition, the processing complexity of data will be reduced
and the efficiency of the e-nose is going to be improved. At present, typical image feature extraction
algorithms include local binary pattern (LBP), GLCM etc.
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(1) Local binary pattern (LBP)

LBP [43] is defined as a grayscale invariant texture measure and is a useful tool to model texture
images. The original LBP operator labels the pixels of an image by thresholding the three by three
neighborhood of each pixel with the value of the central pixel and concatenating the results binomially
to form a number. Figure 8 shows an example of obtaining an LBP micropattern when the threshold is
set to zero. The histograms of these micropatterns contain information of the distribution of the edges,
spots, and other local features in an image.

Figure 8. Example of obtaining the local binary pattern (LBP) micropattern for the region in the
dotted box.

(2) Gray-Level Co-occurrence Matrix (GLCM)

GLCM is the statistical method of examining the textures that considers the spatial relationship
of the pixels. The GLCM functions characterize the texture if an image by calculating how often
pairs of pixel with specific values and in a specified spatial relationship occur in an image, creating
a GLCM, and then extracting statistical measures from this matrix [44]. The common statistical
parameters include angular second moment (ASM), contrast (CON), inverse difference moment (IDM),
Entropy (ENT), Correlation (COR), Variance (VAR), Sum Average (SA) and Sum Entropy (SE) [45].

The features of T-maps extracted by LBP and GLCM are shown in Figure 9.

Figure 9. Results of different feature extraction algorithms. GLCM: Gray-Level Co-occurrence Matrix.
(a) Feature extraction based on LBP (b) Feature extraction based on GLCM.

In Figure 9a, the feature dimension of LBP is 59, which represent 59 local binary patterns of
T-maps and the vertical axis represents the number of occurrence of features. In Figure 9b, the feature
dimension of GLCM is 8, which respectively represent ASM, CON, IDM, ENT, COR, VAR, SA and SE,
the vertical axis indicates the amplitude of the feature. According to the analysis of Figure 9, compared
with GLCM features, the data extracted by LBP have higher dimension, but its features are too similar,
and the curves in the figure almost coincide.

4.1.2. PCA Analysis

PCA [46] is a multivariate statistical technique that transforms multiple variables into a few
principal components by dimensionality reduction. The principal components after PCA analysis can



Sensors 2018, 18, 1188 10 of 14

reflect most of the information of the original variables. In practical application, the researcher can
select corresponding principal component by the cumulative contribution rate for subsequent data
processing. In this section, PCA was used to analyze the features extracted by LBP and GLCM (shown
in Figure 10).

Figure 10. Principal component analysis (PCA) scattergram of different feature extraction algorithms.
(a) PCA scatter diagram of the feature extracted based on LBP, (b) PCA scatter diagram of the feature
extracted based on GLCM.

In Figure 10, PC1, PC2, PC3 respectively represent the percentages of the original information
contained in each principal component of PCA analysis, while the axes reflect the distribution of
scattered points. From the first three PCA results (cf. Figure 10) we can see, in the PCA scattergram of
LBP, that NO2 and NO2 + SO2 can be separated obviously, but the distribution of characteristic data
of SO2, C6H6 and C7H8 overlaps seriously. In the PCA scattergram of GLCM, NO2 and SO2 can be
separated obviously, the distribution of NO2 and NO2 + SO2 overlaps slightly, the discrimination of
SO2, C6H6 and C7H8 is a little better than that of LBP, but the overlap still exists.

4.2. Type Recognition of the Experiment Sensing Data

4.2.1. Classifiers and Experimental Data

(1) Classifiers

Correlation coefficient (CC) [47] and Euclidean distance to centroids (EDC) [48] were chosen to
determine the gas type.

(2) Experimental data

In Section 3.2, the sensing data of test gases with different types and concentrations are obtained
by experiment. In this section, Dataset is selected from the 2D T-maps (shown in Figure 7) for pattern
recognition analysis. The specific dataset is shown in Table 3.

Table 3. Dataset consisting of 2D T-maps.

Gas NO2 SO2 NO2 + SO2 C6H6 C7H8

Concentration (‰) 0.2 0.4 0.6 0.3 0.6 0.9 3.2 + 0.1 3.5 + 0.3 3.0 + 0.6 3 3
Number 10 10 12 10 10 12 10 10 12 32 32

Total 32 32 32 32 32

4.2.2. Recognition and Analysis of Gas Type

Feature extraction and PCA dimension reduction were performed and the first three principal
components of the feature vector (of which the accumulated contribution > 99%) were selected to
construct the new dataset. Then Kennard–Stone sequential (KSS) algorithm [49] was used to allocate
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the new sample set to the training set and the test set according to the proportion of 7:3 and classification
analysis was performed at last.

The classification accuracy of pattern recognition of Dataset using the CC and EDC algorithms is
shown in Table 4.

Table 4. Classification accuracy of Dataset.

Class

Classification Accuracy (%)

CC EDC

LBP GLCM LBP GLCM

NO2 100 100 100 100
SO2 50 70 80 80

NO2 + SO2 90 30 100 60
C6H6 60 70 90 90
C7H8 60 50 80 80
Mean 72 64 90 82

CC: Correlation coefficient; EDC: Euclidean distance to centroids.

Comparing the results of Dataset in Table 4, the following conclusions can be obtained: (1) the
sensing data obtained by the visual e-nose system reflect the information of the input spectrum well;
(2) the visual e-nose system can not only detect a single gas, but also has a good detection result for
mixed mixture; (3) the classification accuracy of EDC is higher than that of CC, which shows that it is
better for EDC algorithm to classify the test data; (4) the average classification accuracy of different
algorithms reaches 77%, which verified the effectiveness of the system.

5. Conclusions

In this paper, an innovative visual e-nose system based on SHS was proposed. The core of the
article was to introduce a WS-SHS into the e-nose system taking its core gas sensing tasks. Additionally,
according to the characteristics of the response map derived by the visual e-nose, mature image
processing technologies (such as LBP, GLCM) were applied to the data processing of the e-nose to
provide a new idea for the development of the e-nose. In addition, the visual e-nose system has the
following advantages: Firstly, it has a larger sensor array, faster response time and a wider sensing
range which can improve the accuracy and application range of e-nose effectively. Secondly, the use of
an optical system can overcome the limitations of the traditional e-nose on high temperature, humidity,
corrosivity and provide a useful reference for the research of e-noses. Thirdly, it has good classification
results for single gas and mixed gas, indicating that the system has high universality. However, there
are still some shortcomings in the article that need to be studied further. On the one hand, there is a
need to build a real wide-spectrum visual e-nose prototype; on the other hand, the use of the e-nose
prototype to detect a wider range of single or mixed gases should be explored.
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