
sensors

Article

PL-VIO: Tightly-Coupled Monocular Visual–Inertial
Odometry Using Point and Line Features

Yijia He 1,2,* ID , Ji Zhao 3, Yue Guo 1,2, Wenhao He 1 and Kui Yuan 1

1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
guoyue2013@ia.ac.cn (Y.G.); wenhao.he@ia.ac.cn (W.H.); kui.yuan@ia.ac.cn (K.Y.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 The ReadSense Ltd., Shanghai 200040, China; zhaoji84@gmail.com
* Correspondence: heyijia2013@ia.ac.cn; Tel.: +86-186-1387-5058

Received: 23 March 2018; Accepted: 9 April 2018; Published: 10 April 2018
����������
�������

Abstract: To address the problem of estimating camera trajectory and to build a structural
three-dimensional (3D) map based on inertial measurements and visual observations, this paper
proposes point–line visual–inertial odometry (PL-VIO), a tightly-coupled monocular visual–inertial
odometry system exploiting both point and line features. Compared with point features, lines provide
significantly more geometrical structure information on the environment. To obtain both computation
simplicity and representational compactness of a 3D spatial line, Plücker coordinates and orthonormal
representation for the line are employed. To tightly and efficiently fuse the information from inertial
measurement units (IMUs) and visual sensors, we optimize the states by minimizing a cost function
which combines the pre-integrated IMU error term together with the point and line re-projection
error terms in a sliding window optimization framework. The experiments evaluated on public
datasets demonstrate that the PL-VIO method that combines point and line features outperforms
several state-of-the-art VIO systems which use point features only.

Keywords: sensor fusion; visual–inertial odometry; tightly-coupled; point and line features

1. Introduction

Localization and navigation have attracted much attention in recent years with respect to a
wide range of applications, particularly for self-driving cars, service robots, and unmanned aerial
vehicles, etc. Several types of sensors are utilized for localization and navigation, such as global
navigation satellite systems (GNSSs) [1], laser lidar [2,3], inertial measurement units (IMUs), and
cameras [4,5]. However, they have obvious respective drawbacks: GNSSs only provide reliable
localization information if there is a clear sky view [6]; laser lidar suffers from a reflection problem
for objects with glass surfaces [7]; measurements from civilian IMUs are noisy, such that inertial
navigation systems may drift quickly due to error accumulation [8]; and monocular simultaneous
localization and mapping (SLAM) can only recover the motion trajectory up to a certain scale and it
tends to be lost when the camera moves fast or illumination changes dramatically [9–11]. As a result,
sensor fusion methods, especially for visual–inertial navigation systems, have drawn widespread
attention [12]. The acceleration and angular velocity information from an IMU can significantly
improve the monocular SLAM system [13,14]. Furthermore, both IMUs and cameras are light-weight
and low-cost, and as such they are widely used in civilian applications.

According to directly or indirectly fused measurements from sensors, visual–inertial odometry
(VIO) systems can be divided into two main streams: loosely-coupled and tightly-coupled approaches.
Loosely-coupled approaches [15,16] process images and IMU measurements by two estimators that
estimate relative motion separately and fuse the estimates from two estimators to obtain the final

Sensors 2018, 18, 1159; doi:10.3390/s18041159 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-4358-7393
http://dx.doi.org/10.3390/s18\num [minimum-integer-digits = 2]{4}\num [minimum-integer-digits = 4]{1159}
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/1159?type=check_update&version=1

Sensors 2018, 18, 1159 2 of 25

result. Tightly-coupled approaches [17,18] use one estimator to find optimal estimates by fusing
raw measurements from the camera and IMU directly. Compared to loosely-coupled approaches,
tightly-coupled approaches are generally more accurate and robust. In this paper, the proposed
PL-VIO method is a tightly-coupled VIO system. Related works on tightly-coupled VIO approaches
can be categorized by the number of linearizations in the measurement model [14]. These approaches
based on the extended Kalman filter (EKF) process a measurement only once in the updating step,
while batch nonlinear optimization approaches linearize multiple times during the optimization
step. Filtering-based approaches [19,20] integrate IMU measurements to propagate/predict the
state, and then update/correct the latest state with visual measurements. Since the coordinates
of three-dimensional (3D) landmarks are included in the state vector, the computational complexity of
the EKF increases quadratically with the number of landmarks. To address this problem, Mourikis
and Roumeliotis [21] proposed the multi-state constraint Kalman filter (MSCKF) which marginalizes
out the landmark coordinates from the state vector. A drawback of this method is that the landmark
measurements used to update the state need to be moved out of view of the camera, which means that
not all the current visual measurements are used in the filter. Furthermore, the linearization errors
make the filter inconsistent [14].

Optimization-based approaches obtain the optimal estimate by minimizing a joint nonlinear cost
function with IMU measurement residuals and visual re-projection residuals. Thus, optimization-based
approaches can repeat the linearization of a state vector at different points to achieve higher accuracy
than filtering-based methods [14]. The IMU measurement constraints are computed by integrating IMU
measurements between frames. However, the standard IMU integration method is closely connected
with the initial IMU body state at the first frame. When the estimated state changes, all integrated IMU
measurements need to be re-calculated. Lupton and Sukkarieh [22] proposed an IMU pre-integration
technology which avoids such repeated integrations. IMU pre-integration has been widely used in
optimization-based VIO [18,23,24]. Forster et al. [14] reformulated the IMU pre-integration by treating
the rotation group on a manifold instead of using Euler angles. Liu et al. [13] proposed the continuous
pre-integration method. Although optimization-based approaches have achieved high accuracy,
computation becomes expensive with more and more landmarks being added into the optimization.
OKVIS [18] used a first-in-last-out sliding window method for bound computation by marginalizing
the measurements from the oldest state. Shen et al. [23] proposed a two-way marginalization to
selectively marginalize the body state and landmarks.

Although significant achievements have been made in the VIO area, most VIO systems only use
the point features as the visual information. However, point detection in textureless environments
and point tracking in illumination-changing scenes are challenging [25,26]. In contrast, line segments
are a proper alternative solution in these scenes. Additionally, line segments provide more structural
information on the environment than points [27]. For visual-only SLAM, there are several works
combining point and line features to estimate camera motion [28,29]. The simplest way to integrate
line features in a SLAM system is to use two endpoints to represent the line. Matching the
endpoints of a line from different views is difficult. Furthermore, the 3D spatial line only has
four degrees-of-freedom (DoFs), while two 3D endpoints introduce six parameters, which results in
over-parameterization. Bartoli and Sturm [30] proposed the orthonormal representation, which
uses a three-DoF rotation matrix and a one-DoF rotation matrix to update the line parameters
during optimization. The orthonormal representation has been used in some stereo visual SLAM
systems [27,31]. For VIO approaches, Kottas and Roumeliotis [26] investigated the observability of
the VIO using line features only. Kong et al. [25] built a stereo VIO system combining point and line
features by utilizing trifocal geometry. However, these works involve filtering-based VIO. In our
proposed PL-VIO method, we integrate line features into the optimization framework in order achieve
higher accuracy than filtering-based methods.

Sensors 2018, 18, 1159 3 of 25

To build a structural 3D map and obtain the camera’s motion, we propose the PL-VIO system,
which optimizes the system states by jointly minimizing the IMU pre-integration constraints together
with the point and line re-projection errors in sliding windows. Compared to the traditional methods
which only use point features, our method utilizes the additional line feature, aiming to increase
the robustness and accuracy in an illumination-changing environment. Our main contributions are
as follows:

• To the best of our knowledge, the proposed PL-VIO is the first optimization-based monocular
VIO system using both points and lines as landmarks.

• To tightly and efficiently fuse the information from visual and inertial sensors, we introduce a
sliding window model with IMU pre-integration constraints and point/line features. To represent
a 3D spatial line compactly in optimization, the orthonormal representation for a line is employed.
All the Jacobian matrices of error terms with respect to IMU body states are derived for solving
the sliding window optimization efficiently.

• We compare the performances of the proposed PL-VIO with three state-of-the-art monocular VIO
methods including ROVIO [17], OKVIS [18], and VINS-Mono [32] on both the EuRoc dataset and
the PennCOSYVIO dataset, for which detailed evaluation results are reported.

The remainder of this paper is organized as follows. First, we describe the mathematical
preliminaries in Section 2, and then formulate the sliding window-based visual–inertial fusion method
in Section 3. Next, we describe our PL-VIO system and implementation details in Section 4. Section 5
shows the experimental results. Finally, conclusions and potential future works are given in Section 6.

2. Mathematical Formulation

2.1. Notations

Figure 1 illustrates the visual–inertial sensors, and the visual observations for point and line
features. We denote ci as the camera frame at time t = i and bi as the IMU body frame at the same time.
w is the Earth’s inertial frame. (·)c means the vector (·) is expressed in frame c. Quaternion qxy is used
to rotate a vector from frame y to frame x, and the corresponding matrix form is Rxy. We use pxy to
translate a vector from frame y to frame x. Quaternion qbc and vector pbc are the extrinsic parameters
between the camera frame and the body frame, and these extrinsic parameters are known in the
provided datasets or calibrated with the Kalibr calibration toolbox [33]. fj and Lj are the jth point
landmark and the line landmark, respectively, in the map. z represents a measurement; specifically
zci

fj
is the jth point feature observed by ith camera frame, and zbibj

represents a pre-integrated IMU
measurement between two keyframes.

Sensors 2018, 18, 1159 4 of 25

IMU Measurements Pre-integrated IMU Measuremtents

Figure 1. An illustration of visual–inertial sensors, point observations, and line observations. IMU:
inertial measurement unit.

2.2. IMU Pre-Integration

A 6-axis IMU, including a 3-axis accelerometer and a 3-axis gyroscope, can measure the
acceleration a and the angular velocity ω of the body frame with respect to the inertial frame [14].
The raw measurements ω̂ and â are affected by bias and white noise:

ω̂b = ωb + bb
g + nb

g (1)

âb = Rbw(a
w + gw) + bb

a + nb
a (2)

where bb
g, bb

a and nb
g, nb

a are the biases and white noises from gyroscope and accelerometer, respectively.
gw = [0, 0, g]> is the gravity vector in frame w. We use the following kinematics for IMU-driven
system [34]:

ṗwbt = vw
t , v̇w

t = aw
t , q̇wbt = qwbt ⊗

[
0

1
2 ωbt

]
(3)

where ⊗ denotes the quaternion multiplication operation.
Given the IMU body state at time t = i, namely pwbi

, vw
i , qwbj

, and series values of ω and a during
the duration t ∈ [i, j], we can obtain the body state at time t = j by integrating Equation (3):

pwbj
= pwbi

+ vw
i ∆t +

∫ ∫
t∈[i,j]

(Rwbt a
bt − gw)δt2

vw
j = vw

i +
∫

t∈[i,j]
(Rwbt a

bt − gw)δt

qwbj
=
∫

t∈[i,j]
qwbt ⊗

[
0

1
2 ωbt

]
δt

(4)

where ∆t is the time difference between i and j. In Equation (4), the body state propagation starts
from the ith frame bi. When the state of bi is changed, we need to re-propagate all the measurements.
Since body states are adjusted at each iteration during the optimization, Equation (4) is time-consuming.
By decomposing qwbj

to qwbi
⊗ qbibt , Equation (4) can be written as:

Sensors 2018, 18, 1159 5 of 25

pwbj
= pwbi

+ vw
i ∆t− 1

2
gw∆t2 + Rwbi

αbibj

vw
j = vw

i − gw∆t + Rwbi
βbibj

qwbj
= qwbi

⊗ qbibj

(5)

where

αbibj
=
∫ ∫

t∈[i,j]
(Rbibt a

bt)δt2

βbibj
=
∫

t∈[i,j]
(Rbibt a

bt)δt

qbibj
=
∫

t∈[i,j]
qbibt ⊗

[
0

1
2 ωbt

]
δt

(6)

zbibj
= [αbibj

, βbibj
, qbibj

]> are called pre-integration measurements [22] and can be calculated
directly without knowing the body states of bi, which means when body state is changed the
re-propagation is not necessary. We treat the pre-integrated measurements as constraint factors
between successive keyframes.

The pre-integration model (Equation (6)) is derived from continuous time and neglects the biases
and noises. In practice, IMU measurements are collected from discrete times, and noise should be
considered. In this work, we use mid-point integration to integrate the IMU measurements. The IMU
body propagation using measurements at discrete moments k and k + 1 is calculated by:

ω̂ =
1
2
((ω̂bk − bbk

g + nbk
g) + (ω̂bk+1 − bbk

g + nbk+1
g))

q̂bibk+1
= q̂bibk

⊗
[

1
1
2 ω̂δt

]

â =
1
2
(Rbibk

(âbk − bbk
a + nbk

a) + Rbibk+1
(âbk+1 − bbk+1

a + nbk+1
g))

α̂bibk+1
= α̂bibk

+ β̂bibk
δt +

1
2

âδt2

β̂bibk+1
= β̂bibk

+ âδt

(7)

At the beginning, k = i, we have qbibi
= [0, 0, 0, 1]>, and αbibi

, βbibi
are zero vectors. In Equation (7),

in order to compute the pre-integration measurements efficiently, we assume biases are constant
between two keyframes:

bbk
a = bbk+1

a , bbk
g = bbk+1

g , k ∈ [i, j− 1] (8)

In practice, biases change slowly. We model biases with random walk noises:

bbk+1
a = bbk

a + nba δt, bbk+1
g = bbk

g + nbg δt (9)

where the Gaussian white noises are defined as nba ∈ N (0, σ2
ba
) and nbg ∈ N (0, σ2

bg
). When bias

changes with a small increments, instead of computing pre-integrated measurements iteratively, we use
a first-order approximation to update q̂bibj

, α̂bibj
, β̂bibj

[14]:

Sensors 2018, 18, 1159 6 of 25

α̂bibj
← α̂bibj

+ Jα
bi

a
δbbi

a + Jα
bi

g
δbbi

g

β̂bibj
← β̂bibj

+ Jβ

bi
a
δbbi

a + Jβ

bi
g
δbbi

g

q̂bibj
← q̂bibj

⊗
[

1
1
2 Jq

bi
g
δbbi

g

] (10)

where Jα
ba

i
=

∂αbibj

∂δb
bi
a

, Jα
bi

g
=

∂αbibj

∂δb
bi
g

, Jβ

bi
a
=

∂βbibj

∂δb
bi
a

, Jβ

bi
g
=

∂βbibj

∂δb
bi
g

, Jq
bi

g
=

∂qbibj

∂δb
bi
g

are the Jacobian matrices

of pre-integrated measurements with respect to bias at time i. They can be derived with error
state transformation matrices, as shown in Appendix A. The covariance matrix of pre-integrated
measurements Σbibj

can be computed iteratively with IMU propagation, and more details are provided
in Appendix A.

2.3. Geometric Representation of Line

A straight line only has four DoFs. Thus, the compact parameterization of a straight line is with
four parameters. In our system, we treat a straight line in 3D space as an infinite line and adopt two
parameterizations for a 3D line as in [27]. Plücker line coordinates consisting of six parameters are used
for transformation and projection due to their simplicity. An orthonormal representation consisting of
four parameters is used for optimization due to its compactness.

2.3.1. Plücker Line Coordinates

In Figure 2a, a 3D spatial line L in Plücker coordinates is represented by L = (n>, d>)> ∈ R6,
where d ∈ R3 is the line direction vector, and n ∈ R3 is the normal vector of the plane determined by
the line and the coordinate origin. The Plücker coordinates are over-parameterized since there is an
implicit constraint between the vector n and d, i.e., n>d = 0. Therefore, the Plücker coordinates can
not be directly used in unconstrained optimization. However, with a 3D line represented by a normal
vector and a direction vector it is simple to perform triangulation from two views geometrically, and it
is also convenient to model the line geometry transformation.

(a) (b)

Figure 2. Plücker coordinates for line features. (a) Plücker line coordinates; (b) Initialization of a newly
observed line.

Sensors 2018, 18, 1159 7 of 25

For line geometry transformation, given the transformation matrix Tcw =

[
Rcw pcw

0 1

]
from the

world frame w to the camera frame c, we can transform the Plücker coordinates of a line by [30]

Lc =

[
nc

dc

]
= TcwLw =

[
Rcw [pcw]×Rcw

0 Rcw

]
Lw (11)

where [·]× is the skew-symmetric matrix of a three-dimensional vector, and Tcw is the transform matrix
used to transform a line from frame w to frame c.

When a new line landmark is observed in two different camera views, the Plücker coordinates
are easily calculated. As shown in Figure 2b, the 3D line L is captured by cameras c1 and c2 as zc1

L
and zc2

L , respectively. The line segment zc1
L in the normalized image plane can be represented by two

endpoints, sc1 = [us, vs, 1]> and ec1 = [ue, ve, 1]>. Three non-collinear points, including two endpoints
of a line segment and the coordinate origin C = [x0, y0, z0]

>, determine a plane π = [πx, πy, πz, πw]>

in 3D space:
πx(x− x0) + πy(y− y0) + πz(z− z0) = 0 (12)

where πx

πy

πz

 = [sc1]×ec1 , πw = πxx0 + πyy0 + πzz0 (13)

Given the two plane π1 and π2 in camera frame c1, the dual Plücker matrix L∗ can be computed by

L∗ =

[
[d]× n
−n> 0

]
= π1π>2 −π2π>1 ∈ R4×4 (14)

The Plücker coordinates L in camera frame c1 are easily extracted from the dual Plücker matrix
L∗. It can be seen that n and d do not need to be unit vectors.

2.3.2. Orthonormal Representation

Since 3D spatial lines only have four DoFs, the orthonormal representation (U, W) ∈
SO(3) × SO(2) is more suitable than Plücker coordinates during optimization. Additionally, the
orthonormal representation and Plücker coordinates can be converted from each other, which means
we can adopt both of them in a SLAM system for different purposes. In this section, we will introduce
the details of orthonormal representation. As shown in Figure 2a, a coordinate system is defined on
the 3D line. The normalized normal vector and the normalized direction vector are the two axes of the
coordinate system. The third axis is determined by crossing the other two axes vectors. We can define
the rotation matrix between the line coordinate and the camera frame as U:

U = R (ψ) =
[

n
‖n‖

d
‖d‖

n×d
‖n×d‖

]
(15)

where ψ = [ψ1, ψ2, ψ3]
> consists of the rotation angles around the x-, y-, and z-axes of a camera frame.

The relationship between the Plücker coordinates and U is:

[
n d

]
=
[

n
‖n‖

d
‖d‖

n×d
‖n×d‖

] ‖n‖ 0
0 ‖d‖
0 0

 (16)

Since the combination of (‖n‖ , ‖d‖) in Equation (16) only has one DoF, we can use trigonometric
functions to represent it:

Sensors 2018, 18, 1159 8 of 25

W =

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

]
=

1√
(‖n‖2 + ‖d‖2)

[
‖n‖ − ‖d‖
‖d‖ ‖n‖

]
(17)

where φ is a rotation angle. Recall that the distance from coordinate origin to the 3D line is d = ‖n‖
‖d‖ ,

so W contains the information about the distance d. According to the definitions of U and W, these four
DoFs include three DoFs from the rotation matrix, which transforms the line coordinate to the camera
frame, and one DoF from the distance d. We use O = [ψ, φ]> as the minimal representation of a 3D
spatial line during optimization.

Once a 3D line L has been optimized with the orthonormal representation, the corresponding
Plücker coordinates for the line can be computed by:

L′ = [w1uT
1 , w2uT

2]
T =

1√
(‖n‖2 + ‖d‖2)

L (18)

where ui is the ith column of matrix U, w1 = cos(φ), and w2 = sin(φ). There is a scale factor between
L′ and L, but they represent the same 3D spatial line.

3. Tightly-Coupled Visual–Inertial Fusion

In visual SLAM, bundle adjustment is used to optimize the camera poses and 3D map points by
minimizing the re-projection error in image planes. Bundle adjustment by nonlinear optimization
can be treated as a factor graph [35] as shown in Figure 3a: round nodes are the camera poses or 3D
landmarks needed to be optimized; edges with square boxes represent the visual measurements as
constraints between nodes. For visual–inertial fusion, we can also use the tightly-coupled graph-based
framework to optimize all the state variables of the visual–inertial system [23]. As shown in Figure 3b,
the factor graph not only contains the visual measurements, but also takes the pre-integrated IMU
measurements as edges to constrain the successive IMU body states.

Landmarks
camera pose

IMU body state
visual measurements
Preintegrated IMU
measurements

(a) (b)

Figure 3. Factor graphs of (a) the visual simultaneous localization and mapping (SLAM) problem
versus (b) visual–inertial SLAM.

3.1. Sliding Window Formulation

In order to achieve both computation efficiency and high accuracy, we use the sliding window
formulation for factor graph optimization. The full state variables in a sliding window at time i are
defined as:

X = [xn, xn+1, ..., xn+N , λm, λm+1, ..., λm+M,Oo,Oo+1, ...,Oo+O]
>

xi =
[
pwbi

, qwbi
, vw

i , bbi
a , bbi

g

]>
, i ∈ [n, n + N]

(19)

where xi is described by the ith IMU body position, velocity, and orientation in the world frame,
and biases in the IMU body frame. Subscripts n, m, and o are the start indexes of body states, point
landmarks, and line landmarks, respectively. N is the number of keyframes in the sliding window.

Sensors 2018, 18, 1159 9 of 25

M and O are the numbers of point landmarks and line landmarks observed by all keyframes in the
sliding window, respectively. We only use one variable, the inverse depth λk, to parameterize the kth
point landmark from its first observed keyframe. Ol is the orthonormal representation of the lth line
feature in the world frame w.

We optimize all the state variables in the sliding window by minimizing the sum of cost terms
from all the measurement residuals:

min
X

ρ
(∥∥rp − JpX

∥∥2
Σp

)
+ ∑

i∈B
ρ

(∥∥∥rb(zbibi+1
,X)

∥∥∥2

Σbibi+1

)

+ ∑
(i,j)∈F

ρ

(∥∥∥r f (z
ci
fj

,X)
∥∥∥2

Σ
ci
fj

)
+ ∑

(i,l)∈L
ρ

(∥∥∥rl(z
ci
Li

,X)
∥∥∥2

Σ
ci
Li

) (20)

where rb(zbibi+1
,X) is an IMU measurement residual between the body state xi and xi+1. B is the set of

all pre-integrated IMU measurements in the sliding window. r f (z
ci
fj

,X) and rl(z
ci
Li

,X) are the point
feature re-projection residual and the line feature re-projection residual, respectively. F and L are
the sets of point features and line features observed by camera frames. {rp, Jp} is prior information
that can be computed after marginalizing out a frame in the sliding window [23], and Jp is the prior
Jacobian matrix from the resulting Hessian matrix after the previous optimization. ρ is the Cauchy
robust function used to suppress outliers.

We use Levenberg–Marquard algorithm to solve the nonlinear optimization problem (20).
The optimal state estimates X can be found by iteratively update from an initial guess X0 as:

X ′t+1 = Xt ⊕ δX (21)

where ⊕ is the operator used to update parameters with increment δX . For position, velocity, bias,
and inverse depth, the update operator and increments δ are easily defined:

p′ = p + δp, v′ = v + δv, λ′ = λ + δλ, b′ = b + δb (22)

However, the update operator and increments δ for state attitude q are more complicated.
Four parameters are used in quaternion to represent the three-DoF rotation, so it is over-parameterized.
The increment for rotation should only be three-dimensional. Similar to [18], we use a perturbation
δθ ∈ R3 in the tangent space as the rotation increment. Thus, rotation q can be updated by the
quaternion multiplication:

q′ = q⊗ δq, δq ≈
[

1
1
2 δθ

]
(23)

We can also write it as a rotation matrix form:

R′ ≈ R(I + [δθ]×) (24)

where I is a 3× 3 identity matrix. Similarly, we can update the orthonormal representation as:

U′ ≈ U(I + [δψ]×)

W′ ≈ W

(
I +

[
0 −δφ

δφ 0

])
(25)

The increment for the orthonormal representation is δO = [[δψ]×, δφ]>. Finally, the increment
δX during the optimization can be defined as:

Sensors 2018, 18, 1159 10 of 25

δX = [δxn, δxn+1, ..., δxn+N , δλm, δλm+1, ..., δλm+M, δOo, δOo+1, ..., δOo+O]
>

δxi =
[
δp, δθ, δv, δbbi

a , δbbi
g

]>
, i ∈ [n, n + N]

(26)

At each iteration, the increment δX can be solved by Equation (20):

(Hp + Hb + H f + Hl)δX = (bp + bb + b f + bl) (27)

where Hp, Hb, H f , and Hl are the Hessian matrices for prior residuals, IMU measurement residuals,
and point and line re-projection residuals, respectively. For residual r(·), we have H(·) = J>(·)Σ

−1
(·) J(·)

and b(·) = −J>(·)Σ
−1
(·) r(·), where J(·) is the Jacobian matrix of residuals vector r(·) with respect to δX ,

and Σ(·) is the covariance matrix of measurements. Formulations of residuals and Jacobian matrices
will be defined in the following subsections.

3.2. IMU Measurement Model

Since the pre-integrated IMU measurement computed by Equation (10) is a constraint factor
between two successive keyframes bi and bj, the IMU measurement residual can be defined as:

rb(zbibj
,X) =

rp

rθ

rv

rba
rbg

 =

Rbiw(pwbj
− pwbi

− vw
i ∆t + 1

2 gw∆t2)− α̂bibj

2[q̂bjbi
⊗ (qbiw ⊗ qwbj

)]xyz

Rbiw(v
w
j − vw

i + gw∆t)− β̂bibj

b
bj
a − bbi

a

b
bj
g − bbi

g

15×1

(28)

where [·]xyz extracts the real part of a quaternion which is used to approximate the three-dimensional
rotation error [18].

During the nonlinear optimization, the Jacobian matrix of the IMU measurement residual with
respect to the body state xi and xj is computed by:

Jb =
[

∂rb
∂δxi

∂rb
∂δxj

]

∂rb
∂δxi

=

−Rbiw [Rbiw(pwbj
− pwbi

− vw
i ∆t + 1

2 gw∆t2)]× −Rbiw∆t −Jα
bi

a
−Jα

bi
g

0
⌊
−[q−1

wbj
⊗ qwbi

]L[q̂bibj
]R
⌋

3×3
0 0 Jrθ

bi
g

0 [Rbiw(v
w
j − vw

i + gw∆t)]× −Rbiw −Jβ

bi
a
−Jβ

bi
g

0 0 0 −I 0
0 0 0 0 −I

15×15

∂rb
∂δxj

=

−Rbiw 0 0 0 0

0
⌊
−[q̂−1

bibj
⊗ q−1

wbi
⊗ qwbj

]L
⌋

3×3
0 0 0

0 0 Rbiw 0 0
0 0 0 I 0
0 0 0 0 I

15×15

(29)

where [q]L and [q]R are the left- and right- quaternion-product matrices, respectively [36]. The operator
b·c3×3 is used to extract a 3× 3 matrix from the bottom right block of (·). The Jacobian matrix is

calculated by Jrθ

bi
g
= ∂rθ

∂δb
bi
g
=
⌊
−[q−1

wbj
⊗ qwbi

⊗ qbibj
]L
⌋

3×3
Jq

bi
g
.

Sensors 2018, 18, 1159 11 of 25

3.3. Point Feature Measurement Model

For point features, the re-projection error of a 3D point is the image distance between the projected
point and the observed point. In this work, we deal with the point and line feature measurements in
the normalized image plane. Given the kth point feature measurement at frame cj, z

cj
fk
= [u

cj
fk

, v
cj
fk

, 1]>,
the re-projection error is defined as:

r f (z
ci
fk

,X) =

 xcj

zcj − u
cj
fk

ycj

zcj − v
cj
fk

f

cj
k =

xcj

ycj

zcj

 = R>bc(R
>
wbj

(Rwbi
((Rbc

1
λk

uci
fk

vci
fk

1

+ pbc) + pwbi
)− pwbj

)− pbc)

(30)

where zci
f = [uci

fk
, vci

fk
, 1]> is the first observation of the feature in camera frame ci, and the inverse depth

of the feature λk is also defined in camera frame ci.
In order to minimize the point’s re-projection error (30), we need to optimize the rotation and the

position of frame bi, bj, and the feature inverse depth λ. The corresponding Jacobian matrix can be
obtained by the chain rule:

J f =
∂r f

∂fcj

[
∂fcj

∂xi
∂fcj

∂xj
∂fcj

∂δλ

]
(31)

With

∂r f

∂fcj
=

 1
zcj 0 − xcj

(zcj)2

0 1
zcj − ycj

(zcj)2

∂fcj

∂xi
=
[
R>bcR>wbj

−R>bcR>wbj
Rwbi

[fbi]× 0 0 0
]

3×15

∂fcj

∂xj
=
[
−R>bcR>wbj

RT
bc[f

bj]× 0 0 0
]

3×15

∂fcj

∂δλ
= − 1

λ
R>bcR>wbj

Rwbi
Rbcfci

(32)

where fbi is the 3D point vector in the ith IMU body frame. We define the covariance matrix of point
measurement Σci

fk
as a 2× 2 diagonal matrix by assuming that the detected point features have pixel

noise on both the vertical and horizontal directions in the image plane.

3.4. Line Feature Measurement Model

The re-projection error of a line measurement is defined as the distance from endpoints to the
projected line. For a pin-hole model camera, a 3D spatial line L = [n, d]> can be projected to the
camera image plane by [27]:

l =

l1
l2
l3

 = Knc =

 fy 0 0
0 fx 0

− fycx − fxcy fx fy

 nc (33)

where K is the projection matrix for a line feature. When projecting a line to the normalized image
plane, K is an identity matrix. From the projection Equation (33), the coordinates of the line segment
projected by a 3D line are only related with the normal vector n.

Sensors 2018, 18, 1159 12 of 25

Given a 3D line Lw
l and the orthonormal presentation Ol in a world frame, we firstly transform it

to camera frame ci by Equation (11). Then, we project it to the image plane to get the projection line lci
l .

The re-projection error in camera frame i is defined as

rl(z
ci
Ll

,X) =

[
d(sci

l , lci
l)

d(eci
l , lci

l)

]
(34)

With d(s, l) indicating the distance function from endpoint s to the projection line l:

d(s, l) =
s>l√
l2
1 + l2

2

(35)

The ith body state and lth line parameters are optimized by minimizing the line re-projection
error rl(z

ci
Ll
). The corresponding Jacobian matrix can be obtained by the chain rule:

Jl =
∂rl
∂lci

∂lci

∂Lci

[
∂Lci

∂δxi
∂Lci
∂Lw

∂Lw

∂δO

]
(36)

With

∂rl
∂lci

=

−l1(s

ci
l)>l

(l2
1+l2

2)
(3

2)
+ us

(l2
1+l2

2)
(1

2)

−l2(s
ci
l)>l

(l2
1+l2

2)
(3

2)
+ vs

(l2
1+l2

2)
(1

2)
1

(l2
1+l2

2)
(1

2)

−l1(e
ci
l)>l

(l2
1+l2

2)
(3

2)
+ ue

(l2
1+l2

2)
(1

2)

−l2(e
ci
l)>l

(l2
1+l2

2)
(3

2)
+ ve

(l2
1+l2

2)
(1

2)
1

(l2
1+l2

2)
(1

2)

2×3

∂lci

∂Lci
=
[
K 0

]
3×6

∂Lc

∂δxi =

[
T −1

bc

[
R>wb[d

w]×
03×3

]
T −1

bc

[
[R>wb(n

w + [dw]×pwb)]×
[R>wbdw]×

]
0 0 0

]
6×15

∂Lci

∂Lw
∂Lw

∂δO = T −1
wc

[
0 −w1u3 w1u2 −w2u1

w2u3 0 −w2u1 w1u2

]
6×4

(37)

The derivation details are provided in Appendix B. Similar to the point measurement covariance
matrix, the covariance matrix of line measurement Σci

Ll
is defined by assuming the endpoints of a line

segment have pixel noise.

4. Monocular Visual Inertial Odometry with Point and Line Features

As shown in Figure 4, the proposed PL-VIO system has two main modules: the front end and
the back end. The front-end module is used to pre-process the measurements from IMU and camera.
The back-end module is used to estimate and optimize the body states. We will introduce the details in
the following subsections.

Sensors 2018, 18, 1159 13 of 25

Figure 4. Overview of our point–line visual–inertial odometry (PL-VIO) system. A is the front end
module is used to extract information from the raw measurements; B is the back end module is used to
estimate and optimize the body states.

4.1. Front End

The front end extracts information from the raw measurements of the camera and IMU. The body
state is updated by propagation with each new IMU measurement, and the newest body state is used
as the initial value in sliding window optimization. Additionally, the new IMU measurements are
pre-integrated to constrain the successive IMU body states during optimization.

As for image processing, the point and line features are detected in two separate threads. When a
new frame comes, the point features are tracked from the previous frame to the new frame by the KLT
optical flow algorithm [37]. Then, we use the RANSAC framework with an essential matrix test to
remove outliers. If the number of tracked point features is less than a threshold after outlier rejection,
new corner features which are detected by the FAST detector [38] will be added. As to the line features,
line segments in new frame are detected by the LSD detector [39] and matched with those in the
previous frame by the appearance-based descriptor LBD [40]. We use geometric constraints to remove
outliers of line matches. For example, the distance between the midpoints of two matched lines should
be no more than δth

dist pixels, and the angle difference should be no more than δth
angle degrees. After the

feature detection and matching, the point features and the endpoints of line segments are projected
onto the normalized image plane. Additionally, a frame is selected as a new keyframe if the average
parallax of the tracked point features is larger than a threshold.

4.2. Back End

In the back-end thread, the points and lines are firstly triangulated to build re-projection residuals.
In order to get good landmark estimations, the inverse depth of a point feature is estimated with all
the observations. For line triangulation, we only choose two frames with the furthest spatial distance
in the sliding window to initialize the Plücker coordinates.

After we get the initial estimation of map points/lines and the IMU body state predicted from
IMU measurements, the sliding window optimization described in Section 3 is used to find the optimal
states. To limit the size of the state vector X , a two-way marginalization strategy is adopted to

Sensors 2018, 18, 1159 14 of 25

remove states from the sliding window [23]. When the second newest frame xn+N−1 is a keyframe,
we marginalize out the earliest frame xn with all its measurements. Otherwise, if the second newest
frame is not a keyframe, we discard the visual measurements from this frame and reserve its IMU
measurements in the pre-integration measurements. New prior information is gained based on the
marginalized measurements, reserving the constraint information from the removed states.

Lastly, we cull the invalid map points and lines. If the inverse depth of a point is negative, we will
delete this point from the map. If the re-projection residuals of a line exceed a threshold it will be
removed from the map.

4.3. Implementation Details

To bootstrap the VIO system, we adopt the visual–inertial alignment method [41] to recover the
scale, gravity vector, initial biases, and velocity of the IMU initial body state. The sliding window
is with N = 10 keyframes. Each frame has at most 150 point features, and 150 line segments.
The thresholds used in line matching are set with δth

dist = 60 pixels and δth
angle = 30◦. Since the

visual–inertial system has only four unobservable DoFs (the yaw direction and the absolute position),
the optimization methods for six DoFs may introduce illusory information into the roll and pitch
directions by automatically taking steps along these directions to minimize the cost function. After the
sliding window optimization, we reset the body state by rotating it back with the increments along the
roll and pitch directions. All the numerical optimizations are solved using the Levenberg–Marquardt
method in the Ceres solver library [42]. The line detection and matching codes are provided by
OpenCV 3 [43].

5. Experimental Results

We evaluated our PL-VIO system using two public benchmark datasets: the EuRoc MAV
Dataset [44] and the PennCOSYVIO Dataset [45].The accuracy of the PL-VIO method is compared
with that of three state-of-the-art monocular VIO methods to validate the advantages of the PL-VIO
method: ROVIO [17] and OKVIS [18] in monocular mode, and VINS-Mono [32] without loop closure.
ROVIO is a tightly-coupled form of VIO based on the extended Kalman filter (EKF). It directly uses
the intensity errors from images to find the optimal state during the update step. OKVIS is a sliding
window optimization algorithm with point features which can work with monocular or stereo modes.
VINS-Mono is a complete VIO-SLAM system employing point features to optimize IMU body states in
a sliding window, and performs loop closure. All of the experiments were performed on the computer
with an Intel Core i7-6700HQ CPU with 2.60 GHz, 16 GB RAM, and the ROS Kinetic [46].

5.1. EuRoc MAV Dataset

The EuRoc micro aerial vehicle (MAV) datasets were collected by an MAV in two indoor
scenes, which contain stereo images from a global shutter camera at 20FPS and synchronized IMU
measurements at 200 Hz [44]. Each dataset provides a ground truth trajectory given by the VICON
motion capture system. All the extrinsic and intrinsic parameters are also provided in the datasets.
In our experiments, we only used the images from the left camera.

The main advantage of line features is that they provide significant geometry structure information
with respect to the environment. As an example, we show the reconstructed map built by PL-VIO
from the MH_05_difficult sequence in Figure 5. The four images in Figure 5a–d were captured by
an MAV flying in a machine hall, which showed the room’s structure. As shown in Figure 5d, the
line segment detection in the weak illumination scene was more robust than point feature detection.
From the reconstructed 3D map, it can be seen that the geometry of the environment is described by
the line segments, and thus semantic information could be extracted from the map. This is useful for
robot navigation.

Sensors 2018, 18, 1159 15 of 25

(a) (b) (c) (d)

(e)

(f)

Figure 5. Mapping results in the MH_05_difficult sequence. (a–d) Detected point and line features
for different frames. (e) The reconstructed line map (red) and the trajectory (green). The scenes with
rich line features (such as the window, baluster, and cabinet) are clearly reconstructed from the map.
(f) The reconstructed point map (blue). As compared to the line map, the structure is hard to identify
in the point map.

For quantitative evaluation, we compared our PL-VIO with three state-of-the-art monocular
visual–inertial methods: ROVIO [17], OKVIS [18] in monocular mode, and VINS-Mono [32] without
loop closure. For the fair comparison, default parameters provided by the authors of these comparison
methods were used. We chose the absolute pose error (APE) as the evaluation metric, which directly
compared the trajectory error between the estimate and the ground truth [47]. The open-source
package evo (https://michaelgrupp.github.io/evo/) provides an easy-to-use interface to evaluate the

https://michaelgrupp.github.io/evo/

Sensors 2018, 18, 1159 16 of 25

trajectories of odometry and SLAM algorithms. We employed this tool to evaluate these methods in
this section. Table 1 shows the root mean square error (RMSE) of translation and rotation along all the
trajectory, and their histograms are also provided as shown in Figure 6.

Table 1. The root mean square error (RMSE) results on the several EuRoc MAV dataset. The translation
(m) and rotation (rad) error are listed as follows. The numbers in bold represent the estimated trajectory
is more close to the benchmark trajectory.

Seq. ROVIO OKVIS-Mono VINS-Mono PL-VIO
Trans. Rot. Trans. Rot. Trans. Rot. Trans. Rot.

MH_02_easy 0.59075 2.21181 0.36059 0.06095 0.25663 0.04802 0.23274 0.04204
MH_03_medium 0.40709 1.92561 0.21534 0.02622 0.11239 0.02027 0.11224 0.02016
MH_04_difficult 0.88363 2.30330 0.23984 0.01943 0.15366 0.02173 0.13942 0.01915
MH_05_difficult 1.17578 2.27213 0.39644 0.01987 0.30351 0.01038 0.25687 0.00892

V1_01_easy 0.18153 2.03399 0.08583 0.09665 0.05843 0.09995 0.05916 0.09869
V1_02_medium 0.19563 1.93652 0.12207 0.04073 0.06970 0.03022 0.07656 0.02871
V1_03_difficult 0.17091 2.02069 0.19613 0.06591 0.14531 0.08021 0.13016 0.04382
V2_02_medium 0.60686 1.84458 0.18253 0.04773 0.10218 0.04558 0.09450 0.04177
V2_03_difficult 0.18912 1.92380 0.30513 0.07527 0.26446 0.06162 0.26085 0.06098

M
H_0

2

M
H_0

3

M
H_0

4

M
H_0

5

V1_
01

V1_
02

V1_
03

V2_
02

V2_
03

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
M

S
E
 [

m
]

RMSE of translation on EuRoC dataset

ROVIO
OKVIS-Mono
VINS-Mono
PL-VIO

(a)

M
H_0

2

M
H_0

3

M
H_0

4

M
H_0

5

V1_
01

V1_
02

V1_
03

V2_
02

V2_
03

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
M

S
E
 [

ra
d
]

RMSE of rotation on EuRoC dataset

OKVIS-Mono
VINS-Mono
PL-VIO

(b)

Figure 6. RMSEs for ROVIO, OKVIS-Mono, and Vins-Mono without loop closure, and for the proposed
PL-VIO using the EuRoc dataset. (a) RMSEs in translation. (b) RMSEs in rotation. The rotation errors
of ROVIO are one order of magnitude higher than those of other three methods, so its result is not
reported in (b).

Table 1 shows that our PL-VIO which jointly optimizes point and lines provided the best
performance on eight sequences for the rotation, except for V1_01_easy. Our method also performed the
best on six sequences for the translation, except for V1_01_easy, V1_02_medium, and V1_03_difficult.
However, the difference with respect to the best results was only at the submillimeter level. The results
in Table 1 show that integrating line features into VIO could improve the accuracy of motion estimation.
To demonstrate the results intuitively, several heat map of trajectories estimated by PL-VIO and
VINS-Mono are shown in Figure 7. The redder the color is, the larger the translation error is. Comparing
the three trajectories, we came to the conclusion that PL-VIO with line features gave smaller errors
than VINS-Mono when the camera was moved with rapid rotation. Furthermore, we found that these
sequences with rapid rotation caused large changes in the viewing direction, and the lighting conditions
are especially challenging for tracking point features [25,26,28]. As shown in Figure 8, 27 point pairs
(including 10 outliers) were matched successfully, while 33 lines were matched successfully and all the
matches are correct.

Sensors 2018, 18, 1159 17 of 25

(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparison of the proposed method versus VINS-Mono. The three colorful trajectories
of the left column are run with VINS-Mono on the (a) MH_05_difficult; (c) MH_04_difficult; and
(e) V1_03_difficult sequences. The right three trajectories are the results of the proposed PL-VIO on
the (b) MH_05_difficult; (d) MH_04_difficult; and (f) V1_03_difficult sequences. Colors encode
the corresponding absolute pose errors.

Sensors 2018, 18, 1159 18 of 25

(a) (b)

(c) (d)

Figure 8. Tracked point/line features with rapid rotation in V1_03_difficult. Lighting conditions
and view directions changed in successive frames. Matched point features are marked with the same
color in frame (a,b). Matched line segment features are marked with the same color in frame (c,d).

Besides, the computation times of different methods are listed in Table 2. The computation
efficiency of filter-based ROVIO was the highest, while its accuracy was the lowest. The proposed
PL-VIO system was the most time-consuming method, but its computation time was mainly restricted
by the line detection and matching step. In Section 5.3, the computation times of different modules
in PL-VIO are independently estimated in the V1_03_difficult sequence, and it was found that the
computation efficiency of the PL-VIO system directly depended on the line detection and matching.

Table 2. Average running times of different methods on the EuRoc dataset (unit: millisecond).

Seq. ROVIO OKVIS-Mono VINS-Mono PL-VIO

MH_02_easy 15 31 63 127
MH_03_medium 15 30 62 112

MH_04_difficult 15 24 54 108
MH_05_difficult 15 27 58 102

V1_01_easy 14 26 45 93
V1_02_medium 15 23 37 86

V1_03_difficult 15 20 29 82
V2_02_medium 15 22 33 86

V2_03_difficult 15 21 27 85

5.2. PennCOSYVIO Dataset

The PennCOSYVIO dataset is a recent VIO benchmark that collects the synchronized data of a large
glass building with hand-held equipment from outdoors to indoors (see Figure 9) [45]. Challenging
factors include illumination changes, rapid rotations, and repetitive structures. All the intrinsic and
extrinsic parameters as well as the ground truth trajectory are provided. We use data collected by the
VI-sensor, which was also used in the EuRoc MAV datasets.

Sensors 2018, 18, 1159 19 of 25

(a) (b)

Figure 9. Images from PennCOSYVIO dataset. Red lines are detected lines. (a) Outside the glass
building. (b) Inside the glass building.

We compared the proposed PL-VIO with the VINS-Mono without loop closure. To evaluate fairly,
the same parameters were used for PL-VIO and VINS-Mono. The same metric and evaluation tools
used in Section 5.1 were employed here to evaluate the trajectories. Table 3 lists the results.

Table 3. The RMSE of the absolute pose error (APE) for different algorithms. The numbers in bold
represent the estimated trajectory is more close to the benchmark trajectory.

Algorithm Translation Error (m) Rotation Error (rad)

VINS-Mono 1.14690 0.04156
PL-VIO 1.05975 0.03742

Furthermore, the evaluation tool (https://daniilidis-group.github.io/penncosyvio/) is also
provided in the PennCOSYVIO dataset, and adopts two metrics, the APE and relative pose error
(RPE). For RPE, it expresses the errors in percentages by dividing the value with the path length [45].
The creators of PennCOSYVIO cautiously selected the evaluation parameters, so their tool is suited
for evaluating VIO approaches in this dataset. Therefore, we adopted this evaluation tool in our
experiments, and the results are listed in Table 4.

Table 4. The results evaluated by PennCOSYVIO evaluation tool for different algorithms. The rotation
errors for the APE and relative pose error (RPE) are expressed in degrees. The translation error is
expressed in the x-axis, y-axis, and z-axis. The APE is expressed in meters, while the RPE is expressed in
percentages (%). The numbers in bold represent the estimated trajectory is more close to the benchmark
trajectory.

Algorithm
APE RPE

x y z Rot. x y z Rot.

VINS-Mono 0.423 0.173 0.861 2.3477 2.807 1.844 4.663 1.9337
PL-VIO 0.524 0.070 0.769 2.0782 2.375 1.844 4.361 1.7350

From Tables 3 and 4, it can be seen that the PL-VIO obtained the best performance for the rotation
part. The APE of translation evaluated by PennCOSYVIO tool provided more details. Compared to
VINS-Mono, PL-VIO gave smaller errors in the y-axis and z-axis, and a smaller error summation of the
three axes. VINS-Mono obtained better performance only in the x-axis.

https://daniilidis-group.github.io/penncosyvio/

Sensors 2018, 18, 1159 20 of 25

5.3. Computing Time

Finally, we evaluated the average execution time of our PL-VIO running at the V1_02_medium
sequence because this image sequence was collected from a typical indoor scene. Table 5 shows the
execution time of each block. We can see that line detection and matching, which runs at 11 Hz in the
front end, is the bottleneck in terms of efficiency. State-of-the-art line detection and matching methods,
such as the combination of LSD and LBD, are not satisfactory for VIO/SLAM systems. Note that our
method is independent of line feature detection and matching, so improving their efficiency is beyond
the scope of this paper. Marginalization in the back end is another time-consuming part. We observe
that the inefficiency of marginalization is caused by the fill-in when marginalizing out features, which
makes the Hessian matrix become a less sparse matrix. This problem can be potentially solved by
discarding some features when performing marginalization to maintain a sparse Hessian matrix [18].

Table 5. Mean execution time of PL-VIO run with the V1_02_medium sequence.

Module Operation Times (ms) Rate (Hz) Thread ID

front end
point feature detection and matching 4 25 1
line feature detection and matching 86 11 2
IMU forward propagation 1 100 3

back end
nonlinear optimization 28 15 4
marginalization 35 15 4
feature triangulation and culling 2 15 4

6. Conclusions

This paper presents the novel tightly-coupled monocular vision-inertial odometry algorithm
PL-VIO, which optimizes the system states in a sliding window with both point and line features.
The proposed PL-VIO system has two main modules: the front end and the back end. The front-end
module is used to propagate IMU body state, and detect and match point/line features. The back-end
module is used to estimate and optimize the body states. In the back-end module, a line landmark is
considered as an infinite 3D spatial line and its orthonormal representation is employed to parameterize
it compactly during optimization. Furthermore, all the Jacobian matrices of error terms are given in
detail for solving the sliding window optimization efficiently. We also provide the evaluation results
of the proposed PL-VIO as compared to three state-of-the-art monocular VIO methods including
ROVIO [17], OKVIS [18], and VINS-Mono [32] on both the EuRoc dataset and PennCOSYVIO dataset.
According to the analysis and results, two further conclusions are as follows:

1. The reconstructed 3D map with line features can provide geometrical information with respect to
the environment, and thus semantic information could be extracted from the map. This is useful
for robot navigation.

2. Line features can improve the system accuracy both for translation and rotation, especially in
illumination-changing scenes. However, the line detection and matching are time-consuming and
become the bottlenecks in the efficiency of the system.

In the future, we plan to improve our system by introducing the structural constraints between 3D
spatial lines, such as parallel or coplanar lines in Manhattan-world scenes [48]. Geometric constraints
among these lines have the potential to further improve localization precision and reduce rotation
accumulation errors.

Acknowledgments: This research work was supported by the National Natural Science Foundation of China
(Grant No. 61421004). We would like to thank Yang Ding for testing line matching methods. Finally, Yijia He
would like to thank, in particular, the support received from Qiang Tang and Fangbo Qin.

Author Contributions: Yijia He and Ji Zhao conceived and designed the alogrithm; Yijia He performed the
experiments, analyzed the data, and drafted the paper; Yue Guo and Wenhao He contributed analysis tools;
Ji Zhao and Kui Yuan revised the manuscript.

Sensors 2018, 18, 1159 21 of 25

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The IMU error state propagtion equation can be defined as [49]:

δαbk+1b′k+1

δθbk+1b′k+1

δβbk+1b′k+1

δbbk+1
a

δbbk+1
g

= Fk

δαbkb′k
δθbkb′k
δβbkb′k
δbbk

a

δbbk
g

+ Gk

nbk
a

nbk
g

nbk+1
a

nbk+1
g

nba

nbg

(A1)

With

Fk =

I f12 Iδt − 1

4 (qbibk
+ qbibk+1

)δt2 f15

0 I − [ω]× 0 0 −Iδt
0 f32 I − 1

2 (qbibk
+ qbibk+1

)δt f35

0 0 0 I 0
0 0 0 0 I

 (A2)

Gk =

1
4 qbibk

δt2 g12
1
4 qbibk+1

δt2 g14 0 0
0 1

2 δt 0 1
2 δt 0 0

1
2 qbibk

δt g32
1
2 qbibk+1

δt g34 0 0
0 0 0 0 δt 0
0 0 0 0 0 δt

 (A3)

f12 =
∂αbibk+1

∂δθbkb′k

= −1
4
(Rbibk

[abk − bbk
a]×δt2 + Rbibk+1

[(abk − bbk
a)]×(I− [ω]×δt)δt2)

f32 =
∂βbibk+1

∂δθbkb′k

= −1
2
(Rbibk

[abk − bbk
a]×δt + Rbibk+1

[(abk − bbk
a)]×(I− [ω]×δt)δt)

f15 =
∂αbibk+1

∂δbbk
g

= −1
4
(Rbibk+1

[(abk − bbk
a)]×δt2)(−δt)

f35 =
∂βbibk+1

∂δbbk
g

= −1
2
(Rbibk+1

[(abk − bbk
a)]×δt)(−δt)

g12 =
∂αbibk+1

∂nbk
g

= g14 =
∂αbibk+1

∂nbk+1
g

= −1
4
(Rbibk+1

[(abk − bbk
a)]×δt2)(

1
2

δt)

g32 =
∂βbibk+1

∂nbk
g

= g34 =
∂βbibk+1

∂nbk+1
g

= −1
2
(Rbibk+1

[(abk − bbk
a)]×δt2)(

1
2

δt)

(A4)

We can define the error state vector with ηk+1 = [δαbk+1b′k+1
, δθbk+1b′k+1

, δβbk+1b′k+1
, δbbk+1

a , δbbk+1
g]>.

The noise vector is nk = [nbk
a , nbk

g , nbk+1
a , nbk+1

g , nba , nbg ,]>. Equation (A1) can be written in compact
matrix form as:

ηk+1 = Fkηk + Gknk (A5)

The pre-integrated measurements covariance can be computed iteratively based on the linear
model (A5) [14]:

Σbibk+1
= FkΣbibk

F>k + GkΣnG>k (A6)

Sensors 2018, 18, 1159 22 of 25

where Σn is the covariance of the raw IMU measurements, and the initial covariance is Σbibi
= 015×15.

Also we can compute the Jacobian matrix of pre-integrated measurements zbibj
with respect to error

state ηi iteratively with [49]:
Jik+1 = FkJik (A7)

With Jii = I. These Jacobian matrices given in Equation (10) can be extracted from Jij.

Appendix B

The Jacobian matrix of the line re-projection error respect to the orthonormal representation is:

∂rl
∂l

=

[
∂r1
∂l1

∂r1
∂l2

∂r1
∂l3

∂r2
∂l1

∂r2
∂l2

∂r2
∂l3

]

=

−l1s>l l

(l2
1+l2

2)
(3

2)
+ us

(l2
1+l2

2)
(1

2)

−l2s>l l

(l2
1+l2

2)
(3

2)
+ vs

(l2
1+l2

2)
(1

2)
1

(l2
1+l2

2)
(1

2)

−l1e>l l

(l2
1+l2

2)
(3

2)
+ ue

(l2
1+l2

2)
(1

2)

−l2e>l l

(l2
1+l2

2)
(3

2)
+ ve

(l2
1+l2

2)
(1

2)
1

(l2
1+l2

2)
(1

2)

2×3

(A8)

∂Lw

∂δO =
[

∂Lw
∂u1

∂Lw
∂u2

∂Lw
∂w1

∂Lw
∂w2

]
6×8

∂u1
∂δψ

∂u1
∂δφ

∂u2
∂δψ

∂u2
∂δφ

∂w1
∂δψ

∂w1
∂δφ

∂w2
∂δψ

∂w2
∂δφ

8×4

=

[
w1I3×3 03×3 u1 03×1

03×3 w2I3×3 03×1 u2

]
6×8

0 −u3 u2 0

u3 0 −u1 0
0 0 0 −w2

0 0 0 w1

8×4

=

[
0 −w1u3 w1u2 −w2u1

w2u3 0 −w2u1 w1u2

]
6×4

(A9)

To compute the line re-projection error, a spatial line in world frame w is transformed to the body
frame b firstly, and then transformed to the camera frame c with the extrinsic parameters Tbc.

Lc = T −1
bc T

−1
wb Lw

= T −1
bc

[
R>wb(n

w + [dw]×pwb)

R>wbdw

]
6×1

(A10)

The Jacobian matrix of the line re-projection error with respect to rotation of the ith IMU body
state is:

∂Lc

∂δθbb′
= T −1

bc

 ∂(I−[δθbb′]×)R
>
wb(n

w+[dw]×pwb)
∂δθbb′

∂(I−[δθbb′]×)R
>
wbdw

∂δθbb′

= T −1

bc

[
[R>wb(n

w + [dw]×pwb)]×
[R>wbdw]×

]
6×3

(A11)

Sensors 2018, 18, 1159 23 of 25

The Jacobian matrix of the line re-projection error with respect to position of the ith IMU body state
is as follows:

∂Lc

∂δpbb′
= T −1

bc

 ∂R>wb(n
w+[dw]×(pwb+δpbb′))

∂δpbb′
∂R>wbdw

∂δpbb′

= T −1

bc

[
R>wb[d

w]×
0

]
6×3

(A12)

References

1. Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems; Artech House:
Norwood, MA, USA, 2013.

2. Martínez, J.L.; Morán, M.; Morales, J.; Reina, A.J.; Zafra, M. Field Navigation Using Fuzzy Elevation Maps
Built with Local 3D Laser Scans. Appl. Sci. 2018, 8, 397.

3. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings
of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden,
16–21 May 2016; pp. 1271–1278.

4. Liu, L.; Mei, T.; Niu, R.; Wang, J.; Liu, Y.; Chu, S. RBF-Based Monocular Vision Navigation for Small Vehicles
in Narrow Space below Maize Canopy. Appl. Sci. 2016, 6, 182.

5. Valiente, D.; Gil, A.; Payá, L.; Sebastián, J.M.; Reinoso, Ó. Robust Visual Localization with Dynamic
Uncertainty Management in Omnidirectional SLAM. Appl. Sci. 2017, 7, 1294.

6. Borraz, R.; Navarro, P.J.; Fernández, C.; Alcover, P.M. Cloud Incubator Car: A Reliable Platform for
Autonomous Driving. Appl. Sci. 2018, 8, 303.

7. Wang, X.; Wang, J. Detecting glass in simultaneous localisation and mapping. Robot. Auton. Syst. 2017, 88, 97–103.
8. Titterton, D.; Weston, J.L. Strapdown Inertial Navigation Technology; The Institution of Engineering and

Technology: Stevenage, UK, 2004; Volume 17.
9. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present,

and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot.
2016, 32, 1309–1332.

10. Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D
cameras. IEEE Trans. Robot. 2017, 33, 1255–1262.

11. Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40,
611–625.

12. Gui, J.; Gu, D.; Wang, S.; Hu, H. A review of visual inertial odometry from filtering and optimisation
perspectives. Adv. Robot. 2015, 29, 1289–1301.

13. Liu, Y.; Chen, Z.; Zheng, W.; Wang, H.; Liu, J. Monocular Visual-Inertial SLAM: Continuous Preintegration
and Reliable Initialization. Sensors 2017, 17, 2613.

14. Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual–Inertial
Odometry. IEEE Trans. Robot. 2017, 33, 1–21.

15. Weiss, S.; Siegwart, R. Real-time metric state estimation for modular vision-inertial systems. In Proceedings of
the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May 2011;
pp. 4531–4537.

16. Kneip, L.; Weiss, S.; Siegwart, R. Deterministic initialization of metric state estimation filters for
loosely-coupled monocular vision-inertial systems. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, 25–30 September 2011;
pp. 2235–2241.

17. Bloesch, M.; Burri, M.; Omari, S.; Hutter, M.; Siegwart, R. Iterated extended Kalman filter based visual-inertial
odometry using direct photometric feedback. Int. J. Robot. Res. 2017, 36, 1053–1072.

18. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry
using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334.

19. Jones, E.S.; Soatto, S. Visual-inertial navigation, mapping and localization: A scalable real-time causal
approach. Int. J. Robot. Res. 2011, 30, 407–430.

Sensors 2018, 18, 1159 24 of 25

20. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based
approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 298–304.

21. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation.
In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; pp. 3565–3572.

22. Lupton, T.; Sukkarieh, S. Visual-inertial-aided navigation for high-dynamic motion in built environments
without initial conditions. IEEE Trans. Robot. 2012, 28, 61–76.

23. Shen, S.; Michael, N.; Kumar, V. Tightly-coupled monocular visual-inertial fusion for autonomous flight of
rotorcraft MAVs. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation
(ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 5303–5310.

24. Mur-Artal, R.; Tardós, J.D. Visual-inertial monocular SLAM with map reuse. IEEE Robot. Autom. Lett. 2017,
2, 796–803.

25. Kong, X.; Wu, W.; Zhang, L.; Wang, Y. Tightly-coupled stereo visual-inertial navigation using point and line
features. Sensors 2015, 15, 12816–12833.

26. Kottas, D.G.; Roumeliotis, S.I. Efficient and consistent vision-aided inertial navigation using line
observations. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation
(ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 1540–1547.

27. Zhang, G.; Lee, J.H.; Lim, J.; Suh, I.H. Building a 3-D Line-Based Map Using Stereo SLAM. IEEE Trans. Robot.
2015, 31, 1364–1377.

28. Pumarola, A.; Vakhitov, A.; Agudo, A.; Sanfeliu, A.; Moreno-Noguer, F. PL-SLAM: Real-time monocular
visual SLAM with points and lines. In Proceedings of the 2017 IEEE International Conference on Robotics
and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4503–4508.

29. Gomez-Ojeda, R.; Moreno, F.A.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A Stereo SLAM System
through the Combination of Points and Line Segments. arXiv 2017, arXiv:1705.09479.

30. Bartoli, A.; Sturm, P. The 3D line motion matrix and alignment of line reconstructions. Int. J. Comput. Vis.
2004, 57, 159–178.

31. Zuo, X.; Xie, X.; Liu, Y.; Huang, G. Robust Visual SLAM with Point and Line Features. arXiv 2017,
arXiv:1711.08654.

32. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. arXiv
2017, arXiv:1708.03852.

33. Furgale, P.; Rehder, J.; Siegwart, R. Unified temporal and spatial calibration for multi-sensor systems.
In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Tokyo, Japan, 3–7 November 2013; pp. 1280–1286.

34. Kok, M.; Hol, J.D.; Schön, T.B. Using inertial sensors for position and orientation estimation. arXiv 2017,
arXiv:1704.06053.

35. Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and
mapping using the Bayes tree. Int. J. Robot. Res. 2012, 31, 216–235.

36. Sola, J. Quaternion kinematics for the error-state Kalman filter. arXiv 2017, arXiv:1711.02508.
37. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo

vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI),
Vancouver, BC, Canada, 24–28 August 1981.

38. Rosten, E.; Porter, R.; Drummond, T. Faster and better: A machine learning approach to corner detection.
IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 105–119.

39. Von Gioi, R.G.; Jakubowicz, J.; Morel, J.M.; Randall, G. LSD: A fast line segment detector with a false
detection control. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732.

40. Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and
pairwise geometric consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805.

41. Yang, Z.; Shen, S. Monocular visual–inertial state estimation with online initialization and camera–imu
extrinsic calibration. IEEE Trans. Autom. Sci. Eng. 2017, 14, 39–51.

42. Agarwal, S.; Mierle, K. Ceres Solver. Available online: http://ceres-solver.org (accessed on 9 April 2018).
43. Kaehler, A.; Bradski, G. Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library; O’Reilly Media,

Inc.: Sebastopol, CA, USA, 2016.

http://ceres-solver.org

Sensors 2018, 18, 1159 25 of 25

44. Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC
micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163.

45. Pfrommer, B.; Sanket, N.; Daniilidis, K.; Cleveland, J. PennCOSYVIO: A challenging visual inertial odometry
benchmark. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June2017; pp. 3847–3854.

46. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An Open-Source
Robot Operating System; ICRA Workshop on Open Source Software; ICRA: Kobe, Japan, 2009; p. 5.

47. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D
SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vilamoura, Portugal , 7–12 October 2012; pp. 573–580.

48. Lu, Y.; Song, D.; Yi, J. High level landmark-based visual navigation using unsupervised geometric constraints
in local bundle adjustment. In Proceedings of the 2014 IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 1540–1545.

49. Yang, Z.; Shen, S. Tightly-Coupled Visual–Inertial Sensor Fusion Based on IMU Pre-Integration; Technical Report;
Hong Kong University of Science and Technology: Hong Kong, China, 2016.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Formulation
	Notations
	IMU Pre-Integration
	Geometric Representation of Line
	Plücker Line Coordinates
	Orthonormal Representation

	Tightly-Coupled Visual–Inertial Fusion
	Sliding Window Formulation
	IMU Measurement Model
	Point Feature Measurement Model
	Line Feature Measurement Model

	Monocular Visual Inertial Odometry with Point and Line Features
	Front End
	Back End
	Implementation Details

	Experimental Results
	EuRoc MAV Dataset
	PennCOSYVIO Dataset
	Computing Time

	Conclusions
	
	
	References

