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Abstract: In this article, a multi-view registration approach for the 3D handheld profiling system 
based on the multiple shot structured light technique is proposed. The multi-view registration 
approach is categorized into coarse registration and point cloud refinement using the iterative 
closest point (ICP) algorithm. Coarse registration of multiple point clouds was performed using 
relative orientation and translation parameters estimated via homography-based visual navigation. 
The proposed system was evaluated using an artificial human skull and a paper box object. For the 
quantitative evaluation of the accuracy of a single 3D scan, a paper box was reconstructed, and the 
mean errors in its height and breadth were found to be 9.4 μm and 23 μm, respectively. A 
comprehensive quantitative evaluation and comparison of proposed algorithm was performed with 
other variants of ICP. The root mean square error for the ICP algorithm to register a pair of point 
clouds of the skull object was also found to be less than 1 mm. 

Keywords: multi-view registration; multiple shot structured light; handheld 3D scanning; coarse 
registration; registration refinement; visual navigation 

 

1. Introduction 

Three dimensional measurements are popular in computer vision owing to their applications in 
medical and scientific imaging, reverse engineering, security, cultural heritage, industrial inspection 
and 3D map building. Several techniques, e.g., laser ranging, structured light, and passive stereo 
vision can be utilized for 3D range data acquisition. As a result of the rapid development of these 
sensing techniques, scientists and researchers have taken great interest in the multiview 3D 
reconstruction of real objects. The general procedure of generating 3D models of an object includes 
the acquisition of 3D data from different viewpoints (partial 3D shapes of the object) and integration 
of these point clouds into a 3D model. The complete process to generate the 3D model from several 
partial views is known as multiview 3D reconstruction. 

Approaches for 3D reconstruction [1–3] based on passive stereo vision have been proposed in 
the literature. These approaches pose the correspondence problem [4] when the scenes or images lack 
sufficient texture on the surface of the 3D object. This problem was resolved by using structured light 
techniques [5–7] in which a projector (or projection system) replaces one of the cameras in the stereo 
pair and a coded pattern is projected onto the 3D object. User may not be able to acquire the complete 
3D model from the modeling system in a single measurement step owing to self-occlusion and a 
limited field of view and requires merging multiple views into a complete 3D model [8]. To merge 
different range images, we need to align these scans with respect to a common coordinate system 
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using the process known as registration. Multi-view 3D registration is very popular due to its 
applications in different fields, e.g., human body detection, 3D object scanning, 3D localization and 
ego-motion estimation.  

Multiview 3D reconstruction may be classified into two categories [9]: the first uses a fixed 
sensor for an object performing handheld motion, and the other uses a handheld scanner for a fixed 
object. Let us consider the handheld rotation of an object by a small angle, wherein the images of the 
object are captured by a fixed sensor; here the range images can be aligned using a refinement 
algorithm owing to the fixed camera coordinate system, whereas for the same rotation of handheld 
scanner, this assumption is not valid owing to large displacement of the object in two different views 
and to the change in camera coordinate system [9]. Hence the multiview registration approach to 
tackle handheld operation, consists of two stages, coarse registration and refinement using the 
iterative closest point (ICP) algorithm [8,9]. The coarse registration is needed to handle unstable 
handheld motion and especially for tackling large motion where ICP-based refinement does not 
perform well. The coarse registration is used to estimate the initial parameters of the camera pose 
and then the refinement technique is applied on the pair of coarsely registered 3D datasets. In case of 
the failure of the refinement stage owing to unstable handheld motion, the multiview 3D 
reconstruction utilizes the fast coarse registration stage. If the coarse registration transforms the 3D 
data using an accurate pose, the refinement stage starts registering the 3D point clouds again 
following a coarse-to-fine strategy [9].  

Researchers have intensively studied the problem of registration of 3D shapes in the last two 
decades. Readers may find the details of these studies in reviews [10,11]. Registration problems can 
be classified into two categories: pairwise registration (local method) or multiview registration 
(global method) [12]. Pairwise registration may be defined as the registration of the overlapping 
views and the user may formulate the problem as the sum of squared distances provided that the 3D 
correspondences are known. The locally aligned range images using pairwise registration may be 
integrated into the 3D model, leading to loop closure problem, which may be resolved using global 
method known as multiview registration. The comparision of the local and global methods [13] is 
given under the following features: (1) Local methods perform the registration on the pair of point 
clouds in an iterative manner while the global methods consider all the point clouds matching key 
geometric features among them and generate an optimum solution using RANSAC (Random sample 
consensus) frame work; (2) Local methods need good initial solution for their better performance and 
global methods donot require any good initialization, but they face the problem of incorrect and 
insufficient matched features; (3) As the global methods suffer from the problem of incorrect and 
insufficient correspondences, local methods can be used to refine the registration yielded by the 
global methods.  

In rigid registration, we can model the transformation between the point clouds using 6 degrees 
of freedom (DOF). Researchers employed the registration approaches based on either the Singular 
Value Decomposition (SVD) [14] or the Principal Component Analysis (PCA). The literature also 
reported the registration based on the advanced iterative scheme using the ICP algorithm [15]. 
Researchers have proposed several variants of ICP, which are non-linear ICP [16], generalized ICP 
[17], and non-rigid ICP [18]. The user may select any of these variants of the ICP algorithm depending 
on several characteristics, which are accuracy, convergence rate, robustness and computation time. 
All these characteristics depend on the application of interest, 3D data and the imaging environment. 

In this paper, the registration approach for the 3D handheld profiling system based on stereo 
vision and multiple shot structured light is proposed. This system consists of a stereo camera and a 
non-calibrated projector [19] and finds application in the 3D modeling and the reconstruction of the 
3D objects. The proposed approach can be divided into three steps i.e., the two view 3D 
reconstruction based on active stereo vision, estimation of the relative translation and rotation for 
different views using visual navigation and multi-view registration based on the ICP algorithm. The 
remainder of this paper is organized as follows: Section 2 describes the methodology of the proposed 
research. In Section 3, we discuss the experiments and results conducted using the proposed 
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approach of the 3D registration and the 3D profiling system based on multiple shot structured light. 
Section 4 concludes this research and also provides the directions for future work. 

2. Materials and Methods 

The proposed method can be described into three stages: proposed approach, two view 3D 
reconstruction and multi-view 3D reconstruction. 

2.1. Proposed Approach 

The proposed handheld profiling system consists of a stereo camera and a non-calibrated 
illumination projector employed for 3D modelling, which is different from camera-projector based 
systems [4,19]. The 3D sensing systems [20–24] are related to the proposed 3D sensing system, but 
are employed for single view geometry. We have previously reported a procedure for the 3D 
reconstruction for variable zoom using stereo vision and structured light [25], but it was based only 
on the single view 3D reconstruction. The proposed hardware of the handheld system comprises of 
stereo camera and non-calibrated projector without zoom lenses, and the multiview 3D registration 
is proposed in this paper. This research is an extension of the previous work [25] on the 3D 
reconstruction; it enhances the accuracy of the 3D reconstruction using a multi-view procedure. The 
proposed approach belongs to the multiview 3D reconstruction consisting of the handheld system 
for a fixed 3D object. Owing to large motion and the change in camera coordinate system in our case, 
the multi-view registration based on coarse registration and pairwise ICP based final refinement is 
proposed. The final refinement based on the ICP algorithm depends on the coarse registration stage. 
If the coarse registration transforms the point clouds using accurate visual navigation parameters, 
the refinement stage further enhances the accuracy of the 3D model. The stereo camera system 
consisted of two cameras (acA2500-14gm, Basler, Exton, PA, USA). The projector used in this work 
was an mini beam PA75K (LG, Daejeon, Korea). 

Passive stereo vision-based 3D imaging poses the correspondence problem owing to less texture 
in a scene. To solve this problem, structured light technique is used to create artificial texture in the 
resulting images [20]. The block diagram of the proposed approach is shown in Figure 1 which 
depicts the flow of different algorithms in this research.  

 
Figure 1. The block diagram of the proposed approach showing different algorithms. 
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2.2. Two View 3D Reconstruction 

The two view 3D reconstruction approach is similar to the method described in [25], which 
utilizes the binary coded structured light and normalized cross correlation (NCC) for pattern 
projection and stereo matching respectively. The calibration object used in the current study was a  
7 × 6 chessboard target. The algorithm in [26] was employed for corner detection of the chessboard 
target. 

In the current research, the binary coded multiple shot structured light technique was used to 
acquire 3D scans for the handheld profiling system. A lot of research has been performed in the 3D 
handheld scanning field, but these approaches utilized the single shot structured light technique. To 
the best of our knowledge, there are no reports of handheld scanning approaches utilizing a multiple 
shot structured light technique. If the target 3D object is static and the application does not impose 
stringent constraints on the acquisition time, multiple-shot techniques can be used and may often 
result in more reliable and accurate results. However, if the target is moving, single-shot techniques 
have to be used to acquire a snapshot 3D surface image of the 3D object at particular time instance 
[27]. A high speed and low-cost approach for structured light pattern sequence projection using a fast 
rotating binary spatial light modulator is reported in [28]. This system has the capability to yield high 
accuracy measurements at 200 Hz of the projection frequency and 20 Hz of the 3D reconstruction 
rate. The research reported in [29] describes the system, which consists of a projector that is held in 
one hand and a fixed camera, that captures the 3D object’s geometry in less than 1 s using pattern 
sequence projection and reconstructs it in less than 30 s on a desktop computer. This approach may 
also be extended to obtain the representation of a whole object and align the different view point 
clouds using the ICP algorithm [29]. According to the research studies in [28,29], handheld scanning 
based on multiple shot structured light is feasible if a special hardware is utilized and the pattern 
projection and capturing processes take less time compared to handheld motion. Our system is also 
different from that reported in [29]. The proposed hardware is also capable of projecting and 
capturing binary patterns in less than 1 s for single scan. 

The system’s calibration consists of two stages: pre-calibration based on Zhang’s method [30] 
and stereo camera calibration based on linear least square technique [31]. Pre-calibration was 
performed using images captured at a specific distance from system to remove distortion from the 
images at different distances. The undistorted image data can be obtained using Equation (1) from 
[32]: 
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where (xp, yp) and (xd, yd) are the corrected and distorted pixel coordinates, respectively. 
For two view 3D reconstruction, the fundamental matrix was estimated from Equation (2) using 

random sample consensus (RANSAC) algorithm [33]. Binary coded structured light was used to 
obtain the coded images of the stereo camera and NCC was utilized for stereo matching [25] in this 
research. Binary patterns were projected on the 3D projected and captured by the proposed 
hardware. The procedure for generation of binary coded images from the projected binary patterns 
for the handheld profiling system is as follows: (1) Nine images for each camera are loaded, which 
consist of one all-white, one all-black, and seven binary images; (2) The average of all-white and  
all-black images is determined and compared with the binary images; (3) Each pixel in the binary 
images is examined to determine whether it is illuminated or not by thresholding; (4) The code from 
all binary images is concatenated into a binary coded image: 

l =0T
rq Fq  (2) 

Epipolar geometry can be defined as the basic geometry of the stereo camera which describes 
the relationship between the image coordinates of the stereo pair. Some facts about the epipolar 
geometry [32] are listed as follows: (1) Epipolar plane contains every 3D point visible in both cameras 
and it intersects each image in stereo pair in an epipolar line; (2) For feature point given in the left 
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image, the matched feature must be located along the corresponding epipolar line and this constraint 
is termed as epipolar constraint; (3) Epipolar constraint converts the two dimensional search for 
stereo matching into one dimensional along the epipolar lines provided that the epipolar geometry 
of the stereo camera is known; (4) Therefore, epipolar constraint reduces the computation expenses 
of the stereo matching and excludes the features that may result in false matches; (5) For the two 
feature points visible in the field of view of both cameras appearing in a specific order in the left 
image, the correspondences of these points in the right image will occur in the same order as of the 
left image.  

The binary coded images were used in the stereo matching based on NCC and the whole images 
are processed to render the 3D point cloud for a single scan. Since this matching process consumes 
huge time, the region of interest (ROI) of the stereo pairs enclosing the 3D object was used for yielding 
the 3D data, which improves the computation time. We demonstrated the epipolar geometry between 
the binary coded images in the stereo pair shown in Figure 2. Figures 2b,c depict binary coded images 
of the left camera with the point indicated by black circle and the coded image of the right camera 
shows the epipolar line passing through the matched point between the stereo pair; whereas the 
actual skull object used for the 3D reconstruction is depicted in Figure 2a. 

   
(a) (b) (c) 

Figure 2. Description of the epipolar geometry in the binary coded images using the skull object,  
(a) the actual skull object used for the 3D reconstruction; (b) the left image shows the point indicated 
as black circle; and (c) the right image shows epipolar line passing through the same position as of 
dark circle indicated in the left image. 

2.3. Multiview 3D Reconstruction 

Multi-view 3D reconstruction of the point cloud data consists of two stages: rough registration 
and fine registration based on the ICP algorithm. Rough registration is based on camera parameters 
estimated using visual navigation. For large and unstable handheld motion, a coarse-to-fine strategy 
is employed in multiview 3D reconstruction. 

The visual navigation algorithm determines the relative rotation and translation parameters of 
a single moving camera using RANSAC-based homography estimation [32,33]. The projective 
mapping between the two images or planes is known as homography. The relationship between the 
image points in the source and destination images is expressed by a homography matrix ‘H’. The 
Direct Linear Transform (DLT) algorithm can be used to estimate the matrix ‘H’ using sufficient 
number of matched features [34] as given below:  
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After dividing the first row and the second row of Equation (3) by the third row, we get the 
following two equations: 

 11 12 13 31 32 33h h h hx  y    x  yh h  u  0        (4) 

 21 22 23 31 32 33h h h hx  y    x  yh h v    0        (5) 

Equations (4) and (5) can be written in matrix form as follows: 

iA h  0  (6) 

i
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The pose and position of a single moving camera may be determined via homography 

decomposition provided that the intrinsic camera matrix is known. The equations for the 
homography estimation and decomposition are as follows: 
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where (usrc, vsrc) are the pixel coordinates of the source image; (udst, vdst) are the pixel coordinates of the 
destination image; H = [h1 h2 h3] is a 3 × 3 homography matrix; ri is the i-th column of the 3 × 3 rotation 
matrix; hi is a 3 × 1 vector, i = 1 to 3; λ is the scaling factor; and M is the intrinsic matrix of the camera 
(known by calibration). 

The rough registration is based on the transformation of the point clouds into the coordinate of 
the reference view using the parameters from visual navigation. The mathematical equation is given 
below: 

ref
i i i iX R X T   (13) 

where Xi is the 3D point cloud of the i-th view, Ri is the relative rotation between the i-th view and 
the reference view point cloud, Ti is the relative translation between the i-th view and the reference 
view point cloud, and Xiref is the i-th point cloud transformed into the reference view coordinate. 

The points clouds were further refined using the ICP algorithm, which is a modified version of 
that presented in [16]. The ICP algorithm consists of an extrapolation step that traces out a path in 
the registration state space from the identity transformation toward a locally optimal shape match 

 11 12 13 21 22 23 31

T

32 33h h h h h h h h hh 
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[15]. The extrapolation step results in reducing the number of iterations for fast convergence of the 
ICP algorithm. The mathematics of the proposed algorithm is similar to the algorithm presented in 
[16], but a number of modifications have been made. The ICP algorithm presented in [16] is based on 
minimizing the distance measure function derived from the definition of the 3D surface registration. 
This registration algorithm based on Levenberg Marquardt (LM) algorithm to solve least-square 
equations, is computationally expensive. To solve this problem, we did not employ the LM algorithm 
and an extrapolation step [15] has been added to further accelerate the proposed ICP algorithm. The 
proposed algorithm also consists of worst 10% of pairs-based outlier rejection method [35]. The 
algorithm in [15] needs a 3D model and a sensed model (data model) for the 3D registration, whereas 
the proposed algorithm does not need the 3D model of an object. The block diagram of ICP algorithm 
is depicted in Figure 3 using the reference view point cloud and the other viewpoint cloud.  

 
Figure 3. Block diagram of the ICP algorithm depicting different steps for point cloud refinement. 

The final refinement stage based on the ICP algorithm yields good accuracy if the initial 
estimation of pose for coarse registration is also accurate. If the initial pose has good accuracy, the 
refinement stage starts registering the 3D point clouds again following a coarse-to-fine strategy and 
yielding high registration accuracy. The block diagram of the algorithm for the formation of 3D mesh 
is shown in Figure 4. 

 
Figure 4. Block diagram of the algorithm for the formation of 3D mesh from point clouds. 



Sensors 2018, 18, x  8 of 16 

 

3. Experiments and Results 

This section describes the experiments and results of this research. Two objects were selected for 
the 3D reconstruction and were placed at 50 cm from the handheld profiling system. These objects 
included a skull, which was reconstructed as the qualitative demonstration of the 3D modeling, and 
a box, which was used to quantitatively analyze the 3D reconstruction results. Our previous research 
[25] has described the details of the experimental setup and has also mentioned the working distances 
and illumination patterns. That description is also applicable to this handheld scanning research. The 
studies in [25] utilized a zoom lens while the current research did not employ any zoom lens. The 
current research is based on multiview geometry while the study in [25] was based on single view 
geometry. 

First, the 3D reconstruction of the skull object, shown in Figure 5a, was carried out and the raw 
3D point cloud was further processed using the Geomagic Control software (3D Systems, Inc., Rock 
Hill, SC, USA). The results of the 3D reconstruction of the skull before and after the  
post-processing of the point cloud are shown in Figures 5b,c. A single view 3D scan of the skull shows 
good quality of the point cloud with the preservation of features, the shape of the 3D object is also 
visible as depicted in Figure 5c and also in Figure 9a below, which shows the result of the mesh of 
another single view 3D point cloud of the skull. 

 

 

 

(a) (b) (c) 

 
 

 

(d) (e) (f) 

Figure 5. Results of the 3D reconstruction, (a–c) Qualitative analysis of the 3D reconstruction showing 
the actual skull object, and the preservation of the features of the skull before and after post 
processing, (d–f) Quantitative analysis of the 3D reconstruction showing the actual box object, its 
measured height and length and the result of the 3D reconstruction before and after the post 
processing. 

We also performed the experiment using the box object, shown in Figure 5d, to evaluate the 
accuracy of a single view 3D reconstruction by measuring the height and length of the same object as 
the accuracy in a single view 3D reconstruction directly corresponds to the accuracy of the 3D 
modeling. Therefore, the paper box was placed at 50 cm from handheld profiling system. Figures 5e,f 
show the 3D reconstruction result of the box before and after post-processing of the point cloud.  
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Table 1 shows the accuracy of the dimensions of the paper box object i.e., the mean errors in height 
and length of the box were found to be 9.4 μm and 23 μm, respectively, which demonstrate the good 
accuracy of the single view 3D reconstruction. Mean measured value is the mean of a specific number 
of manual measurements of the dimension of the paper box in Geomagic Verify viewer. Mean error 
is the difference between the original value and the mean measured value. This procedure is to show 
the quantitative evaluation of the accuracy of the single view 3D reconstruction and it is not related 
to ICP. 

Table 1. Results of the 3D reconstruction of the paper box to demonstrate the accuracy of single view 
reconstruction. 

S.No. Object Dimension Original Value (mm) Mean Measured Value (mm) Mean Error (μm) 
1. Height 55.54 55.5494 9.4 
2. Length 241.51 241.533 23 

Figure 6 also shows the quality of the 3D reconstruction of the box object in Figure 6a. The result 
of the visualization of the point cloud of the box object for another single view is shown in Figure 6b, 
whereas Figure 6c depicts the refined mesh of the same view of the box object. 

   
(a) (b) (c) 

Figure 6. Results of the 3D reconstruction of a single view of the box object, (a) the actual box object; 
(b) Visualization of the 3D point cloud; and (c) Visualization of the mesh refined in the  
MeshLab software (ISTI, CNR, Pisa, Italy). 

For the registration of the point clouds, the two view 3D reconstructions were performed using 
the skull for different views performing a handheld motion. A visualization of the two-point clouds 
of skull before and after applying the ICP algorithm shown in green and blue colors is depicted in 
Figure 7 for three pairs of roughly registered point clouds, which demonstrates final refinement using 
the ICP algorithm and further enhancement of the shape of the skull. Each pair consists of a reference 
view point cloud and a roughly registered view with respect to reference view via coarse registration 
stage. The root mean square error (RMS) for the three pairs of point cloud registered using the ICP 
algorithm is shown in Table 2; the table also shows the average of number of the 3D points of the two 
point clouds in each pair. The accuracy for the ICP algorithm-based final refinement in RMS is found 
to be less than 1 mm.  

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 7. Visualization before and after applying the ICP algorithm (a,b) for first pair, (c,d) for 2nd 
pair and (e,f) for 3rd pair. 

Table 2. RMS for the ICP algorithm applied for three pairs of roughly registered point clouds. 

S.No. Pair of Point Clouds Average 3D Points of Point Clouds RMS for ICP Algorithm (mm) 
1. First 883,116 0.7143 
2. Second 881,165 0.4990 
3. Third 875,165 0.7621 

In order to evaluate the ICP algorithm quantitatively and compare it with other variants of ICP, 
we followed some of the procedures related to [35,36]. We compared the proposed ICP algorithm 
with other variants using the 3D point clouds produced by the 3D handheld scanning system based 
on multiple shot structured light and analyzed the accuracy, convergence behavior, speed and the 
robustness of the algorithms. Figure 8a shows the convergence behavior of the ICP variants for outlier 
rejection schemes i.e., worst 10% of pairs (proposed one), edge rejection and no outlier rejection. The 
graph shows that the edge rejection outperforms the other schemes while worst pair rejection 
performs close to the edge rejection scheme. Five matching strategies, i.e., brute force matching, K-D 
tree matching, K-D tree and extrapolation (proposed one), Delaunay matching and Levenberg 
Marquardt (LM) with K-D tree, were compared using the 3D data produced by the proposed system 
in Figure 8b for convergence behavior. The results show that LM algorithm with K-D tree performed 
better than the other strategies, while the convergence behavior of K-D tree with extrapolation was 
close to the LM (K-D tree) and other variants. The overshoot observed in case of the K-D tree with 
extrapolation is mainly due to extrapolation step [35]. Five error metrics, point to point, point to 
plane, point to point with extrapolation, point to plane with extrapolation (proposed one) and point 
to point using LM algorithm, were comparatively analyzed in Figure 8c. The results demonstrate that 
the convergence behavior of the extrapolated point to point and point to plane error metrics are the 
same or better than those of the other metrics, while the point to point and the point to point with 
LM algorithm performed better than the point to plane metrics. The convergence behaviour of the 
point to point with LM and the point to point metric is same as the point clouds have good overlap.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Characteristics of ICP to compare the proposed algorithm with the other variants, (a–c) the 
convergence behavior of the proposed algorithm and other variants for outlier removal, matching 
and error metrics respectively, and (d,e) speed and robustness of the proposed algorithm and other 
variants. 

In order to evaluate the speed of the proposed algorithm with other ICP variants, matching 
strategies, brute force matching, K-D tree matching, K-D tree and extrapolation (proposed one), 
Delaunay matching and Levenberg Marquardt (LM) with K-D tree, were compared using the two 3D 
point clouds of each of 40–42 k data points shown in Figure 8d. The graph concludes that the brute 
force matching is the most computationally expensive matching scheme and the performance of the 
K-D tree based matching schemes is similar. Among the K-D tree-based schemes, K-D tree with 
extrapolation outperforms the other matching strategies. Since the point clouds have good overlap, 
K-D tree with LM algorithm performs similar to the K-D tree matching. In order to evaluate the 
accuracy of the proposed algorithm and ICP variants, we fixed the Handheld scanner on a rotational 
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stage and acquired the 3D point clouds at five angles with 2 degrees difference between the 
consecutive point clouds. After applying the rough registration, we applied the different strategies 
for ICP, i.e., point to point, point to plane, point to plane with 10% worst rejection (proposed one), 
point to point with edge rejection, point to plane with edge rejection and point to point with LM 
algorithm (with edge rejection). The results were recorded in Table 3 and the best angle 
measurements are shown in bold. In case of the point to point based strategies, the point to point 
based angle measurements were improved using edge rejection and LM algorithm. While the point 
to plane with edge rejection performs better than the point to plane and point to plane with 10% 
worst pair rejection. Finally, the point to plane with edge rejection based angle measurements are 
more accurate than those with point to point with edge rejection. To evaluate the robustness of the 
proposed algorithm, we performed the acquisition of the point clouds at 8 to −8 degree with the step 
size of 2 and the point cloud at 0 degree is taken as the reference point cloud for all the other point 
clouds [36,37]. We compared error metrics with rejection strategy, i.e., point to point, point to plane, 
point to plane with 10% worst rejection (proposed one), point to point with edge rejection, point to 
plane with edge rejection, and point to point with LM and edge rejection as shown in Figure 8e. The 
results show that the point to plane with 10% worst rejection outperforms the other error metrics and 
follows a symmetry on either side of ‘zero’ degree position. The point to point, the point to point with 
LM and point to plane error metrics with edge rejection performed better than the point to point and 
point to plane error metrics without edge rejection on the point clouds at positive angles. 

Table 3. Accuracy of the proposed ICP algorithm and its comparison with the other variants. 

S.No. ICP Variants Measured Angle (deg) Ground Truth 
Angle (deg) 

1. Point to point 2.29 3.64 6.70 8.90 2 4 6 8 
2. Point to plane 2.44 3.74 6.51 8.49 2 4 6 8 
3. Point to plane (10% worst rejection) 2.43 3.66 6.35 8.94 2 4 6 8 
4. Point to point with edge rejection 2.26 3.58 6.66 8.78 2 4 6 8 
5. Point to plane with edge rejection 2.36 3.67 6.49 8.45 2 4 6 8 
6. LM with Edge rejection 2.26 3.58 6.66 8.78 2 4 6 8 

The 3D mesh for one view and the integration of five views after applying the ICP algorithm are 
shown in Figures 9a–c. Figure 9a shows the visualization of a single view mesh depicting the good 
quality of the single view 3D reconstruction, whereas the mesh of the integration of five views before 
and after refinement using the MeshLab software (University of Pisa, Italy) [38], is depicted in  
Figure 9b,c. The results of the 3D mesh generation shown in Figure 9a,b, demonstrate the difference 
between the mesh of the single view point cloud and mesh of the integration of five point clouds in 
term of holes. The holes in Figure 9a have been compensated as shown in Figure 9b using the 
proposed multiview 3D reconstruction. In order to find the surface divergence between the merged 
point clouds (five point clouds) and the 3D model of the skull phantom, we generated the 3D replica 
of the skull phantom using a 3D scanner (DAVID SLS-3; Hewlett-Packard, Palo Alto, CA, USA) 
having an accuracy of 50 μm and we performed the comparison between the merged point clouds 
with the 3D model using CloudCompare software [39]. The 3D Scanner used as a reference platform 
is the structured light 3D scanner (DAVID SLS-3). The specifications of this scanner are as follows: 

 Scan size: 60–500 mm 
 Resolution/Precision: Up to 0.05% of scan size (up to 0.05 mm) 
 Scanning time: One single scan within a few seconds 
 Mesh density: Up to 2,300,000 vertices per scan 
 Export formats: OBJ, STL, PLY 
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(a) (b) (c) 

Figure 9. Results of the 3D mesh formation (a) Raw mesh for a single view (b) Raw mesh for the 
integration of five point clouds registered after the ICP algorithm (c) Refined mesh using the MeshLab 
software for the integration of five point clouds registered after the ICP algorithm. 

Figure 10a–c show the merged point clouds, 3D model and the surface divergence between the 
merged point clouds and the 3D model respectively. The mean distance between the merged point 
clouds and the 3D model was 0.94 mm while the standard deviation was found to be 0.15 mm.  

  
(a) (b) 

 
(c) 

Figure 10. Surface divergence result between the merged point clouds and the 3D model (a) merged 
point clouds of the proposed system; (b) the 3D model generated using the 3D scanner; (c) Surface 
divergence estimation between the merged point clouds and the 3D model using CloudCompare 
software. 
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4. Conclusions 

In this paper, we have implemented a 3D handheld profiling system based on multiview stereo 
vision and multiple shot structured light. The system consists of the handheld profiling system using 
a stereo camera and a non-calibrated projector. Single view 3D reconstruction approach based on 
binary coded structured light and NCC was utilized to get the point clouds of different views.  

A rough registration of multiple point clouds was performed using the relative orientation and 
translation parameters estimated via homography-based visual navigation. The registered point 
clouds were further refined using the ICP algorithm. The system was tested using an artificial human 
skull and a paper box object to demonstrate the qualitative and quantitative analysis of the 3D 
reconstruction. For the quantitative evaluation of the proposed system, a paper box was 
reconstructed and errors in its height and breadth were found to be 9.4 μm and 23 μm, respectively. 
A comprehensive quantitative evaluation and comparision of the proposed algorithm was performed 
with other variants of ICP. The proposed ICP algorithm was found to be comparable to the other 
variants of ICP. The mean distance between the merged point clouds and the 3D model was 0.94 mm 
while the standard deviation was found to be 0.15 mm. Future research directions include the 
modelling of human body parts and the utilization of a single shot binary pattern to reduce the 
processing time. The processing time can be further reduced using parallel processing.  
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