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Abstract: Due to the endurance of alternating high pressure and temperature, the carbide anvils
of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone
to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent
monitoring network is proposed to classify the sound samples. The pulse sound signals produced
by such cracking are first extracted based on a short-time energy threshold. Then, the signals are
processed with the proposed intelligent monitoring network to identify the operation condition of the
anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural
network that solves the problems that may occur in practice. The length of pulse sound excited by the
crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length
input problem. An adaptive weighted algorithm for loss function is proposed in this method to
handle the class imbalance problem. The good performance regarding the accuracy and balance of
the proposed intelligent monitoring network is validated through the experiments finally.

Keywords: intelligent monitoring network; crack detection; convolutional neural network; spatial
pyramid pooling layer (SPP-Layer); class imbalance problem; adaptive weighted algorithm for
loss function

1. Introduction

At present, synthetic diamonds are produced in a high-temperature and high-pressure
environment formed by electric heating and the hydraulic press in the high-press apparatus. In this
process, the anvil cracks may be caused by material fatigue as a result of the alternating high
temperature and pressure. A cracked anvil will eventually fracture as the cracks grow, and the
concomitant sudden loss of pressure may damage other anvils, causing safety accidents. Thus, the crack
monitoring of anvils is necessary to ensure the high-press apparatus works reliably and efficiently.

The study of fatigue issues began in the middle of the nineteenth Century. Through a lot
of experimental explorations, a wealth of knowledge has been accumulated. The S-N curve,
which indicates the fatigue performance and fatigue limit, were first proposed by Wholer in the
1860s. Bauschinger put forward the concept of stress-strain hysteresis loop in 1884, and in 1945,
Miner presented the Palmgrem theory of linear cumulative damage and the Miner-Palmgren theory.
Until now, these theories were widely used [1]. The development of fracture mechanics in the 1950s
further promoted the study of the fatigue crack propagation law and failure control. In order to
simulate the process of crack growth, various fatigue crack propagation rate models have been
established, such as the Paris model [2], the Walker model [3], and the Forman model [4], which have
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been successfully applied in engineering. However, the fatigue failure involves the multiple actions of
the load, the formation and expansion of material defects, the influence of the working environment,
etc. The complexity of the problem is obvious. Therefore, many problems of fatigue failure have not
been fully understood and fundamentally resolved. On the other hand, except for the fatigue life
prediction, the real-time monitoring of fatigue cracks is also important in practice.

The acoustic emission (AE) is the most commonly used method in fatigue crack monitoring. It is
generated when the material cracks. As the AE signal contains the information of damage degree of
the material [5,6], the characteristics of the AE signal are often used to determine the working state of
the mechanical equipments. Yan proposes the nested power spectrum centroid and modified power
spectrum variance as features of the pulse sound signal to detect the cracks in the anvil of large-volume
cubic high-pressure apparatus [7]. In Zhou’s work, for monitoring the railway vehicle axle fatigue
crack, an Elman neural network is adopted to classify the AE signals using the feature vector consisting
of energy entropy, the energy distribution ratio, and interval average energy [8]. The time-frequency
manifold features of the AE signals are extracted to interpret different bearing conditions and are used
for bearing fault diagnosis by He [9]. Wen uses the non-stationary features in the time and frequency
domain of the AE signal, which is processed by wavelet packet decomposition and the empirical mode
decomposition for tool condition classification with the ReliefF method [10]. Al-Ghamd identifies the
presence and size of a defect on a radially loaded bearing with AE technique and proves that AE offers
earlier fault detection and provides an indication of the defect size [11]. Shahidan uses the AE wave
descriptors, including AE amplitude, rise time, and average frequency, to identify the crack patterns in
concrete beams [12]. Although this method has achieved some results, there are still lots of defects.

The AE wave is a solid-elastic wave that can only be detected by touch sensors. Since the anvils
are working in a high temperature environment, the AE sensors attached to the anvils are liable to fail
as the couplant dries rapidly. In addition, as many as six sensors are needed for each high-pressure
apparatus. Thus, the pulse sound wave, which is excited by the AE wave, is detected using one
microphone (a kind of non-contact sensor) in this paper. A typical pulse sound signal is shown in
Figure 1. Generally, the process of extracting feature parameters and identifying faults mainly relies on
manual work, which is time-consuming and laborious. Additionally, previous studies have shown
that the algorithm developed for one type of high-press apparatus is ineffective for another type of
high-press apparatus, which greatly limits its applications. In order to realize data-driven automatic
feature extraction and signal identification, an intelligent monitoring network is established. It can not
only apply to the monitoring high-press apparatus, but also to other mechanical equipment.

Figure 1. The pulse sound signal.

A complete set of algorithms for monitoring the crack of anvils of the high-press apparatus is
presented in this paper. The sound pulse signals are first extracted from original signals, which contain
information related to the working status of high-press apparatus. Then, the operation condition of
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the high-press apparatus is identified by processing the pulse sound signals through the monitoring
network (the flow chart of the algorithm is shown in Figure 2). The monitoring network is based on
the convolutional neural network, which is widely applied in image recognition and is modified to
meet the specific requirements of high-press apparatus monitoring. Finally, the experiment results are
given and discussed. The method proposed in this paper realizes real-time monitoring of the carbide
anvils of the high-press apparatus.

Figure 2. The flow chart of the algorithm.

2. Pre-Processing

The Pre-Processing works on the basis that the pulse sound signal has higher energy than the
background noise. The original data is divided into non-overlapping frames at first step, and then
the energy of each frame is calculated. The pulse sound signal is assumed to start once the frame
energy exceeds a threshold F and to continue until the energy drops below this threshold. The pulse
sound signals less than 10 ms are ignored to avoid possible electromagnetic interference. The steps of
Pre-Processing are shown in Figure 3.

Figure 3. The Pre-Processing of Original Signal.

The threshold value (F) is obtained by the following method: A certain number of frames of
background noise signal are selected, and the average frame energy of these signals is gained, which is
denoted by Fnoise. Then, F is calculated by Equation (1).

F = β·Fnoise (1)

in which β is a coefficient greater than 1 and set to 1.4 as an empirical value in this article.
To deal with the possible continuous double sound pulse, the variation of frame energy is utilized.

Considering that the later pulse sound signal is usually superposed over the attenuation stage of
previous one, there is a valley of frame energy (MinMid) between the two actual pulse sound signals
with energy peaks of MaxFor and MaxLat. If MinMid is less than α(α < 1) times the minimum of two
peaks (MinMid < α·min{MaxFor, MaxLat}), it is separated into two pulse sound signals; otherwise,
it is regarded as a single pulse sound signal. α is called the double pulse extraction parameter.

3. The Intelligent Monitoring Network

The pulse sound signals are analyzed and recognized by the proposed intelligent monitoring
network. It is an improved convolutional neural network and consists of three convolutional layers,
two max-pooling layers, two fully connected layers, a spatial pyramid pooling layer (SPP-Layer), and
a Softmax classifier. The specific structure is illustrated in Figure 4.
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Figure 4. The Structure of the Monitoring Network.

3.1. Convolutional Network

A convolutional network, which is composed of three convolutional layers and two pooling
layers, is adopted to learn the representations of the pulse sound signal. A series of one-dimensional
convolutions followed by ReLU activation function is used to process the pulse sound signals.
The convolutional network is well-suited for the signals in this paper for several reasons. Firstly,
the convolutional network has a powerful capability of feature extraction proven by its applications in
signal processing. Secondly, the convolutional network makes it practical to stack layers, which enables
the convolutional network to detect higher-level features. What is more, the recognition of pulse
sound signals of different complexity under various working conditions can be realized by adding or
reducing the convolutional layers without changing the structure of other parts [13–16].

The structure parameters of convolutional network are displayed in Table 1, which include the
lengths of inputs, the number of filters, the size of filters, and the stride of filters in each layer.

Table 1. The Structure of Convolutional Network.

Layer Conv1 Pool1 Conv2 Pool2 Conv3

Length N N/2 N/8 N/16 N/64
Num. of Filters 16 16 64 64 256

Filter Size 64 4 32 4 16
Stride 2 4 2 4 2

3.2. Variable Length Input/Output

Since the time lengths of pulse sound signals excited by the crack growth are variable,
the monitoring network must handle the variable-length inputs. As the convolutional network
includes only convolutional layers and pooling layers, it can work with input of different lengths.
To make the output layer work with variable length input as well, a SPP-Layer is added following
the convolutional network [17]. The variable length input is transformed into the fixed length output
via SPP-Layer. The workflow of the SPP-Layer is shown in Figure 5. The input of length N is divided
into floor(N/8) and floor(N/4) frames. Then, the Max pooling operation is done on floor(N/8)
frames and floor (N/4) frames, and the average pooling is done on floor(N/4) frames, respectively.
The results of pooling operations are combined at last to form the fixed length output.

The output is processed through two fully connected layers, the dimension of which is reduced.
At the end, a Softmax classifier is used to serve as the final output layer for providing the identification
of each pulse sound signal. The change in the length of the input is illustrated in Table 2.
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Figure 5. The Workflow of SPP-Layer.

Table 2. The Structure of SPP-Layer and Fully Connected Layer.

Layer SPP-Layer FC1 FC2

Len of Input (N/64) × 256 16 × 256 256
Len of output (8 + 4 + 4) × 256 256 2

3.3. The Adaptive Weighted Algorithm for Loss Function

The ratio of normal signal samples to fault signal samples has a significant impact on the
classification performance during the training of the intelligent monitoring network. In fact,
the classification with minor proportion of training samples gives a poor recognition rate. While,
in practice, the anvils of high-press apparatus are less prone to failure, the fault signal samples are in
the minority within the training dataset. Given this condition, an adaptive weighted algorithm for loss
function is proposed in this paper to ensure the balance of the monitoring network. The algorithm is
defined as blow:

1. The training sample expansion of fault signals is obtained firstly using the methods of amplitude
reversal, time reversal, white noise adding, and random copping [18–20].

2. The power spectrum centroid and the 1st nested power spectrum centroid of all the fault signal
samples in the training dataset are calculated using the method proposed in Yan’s work [1],
denoted by F0, F0

1 , F1
1 .

3. In the parameter space with the dimensions of F0, F0
1 , F1

1 , the sum of the Euclidean distances from
the fault signal sample to its k nearest fault signal neighbors (k = 5 in this article) is calculated,
which is denoted by Rsum. Then, the loss function of fault signal samples is given a corresponding
weight to increase the penalty for misclassifying. The ratio of the normal signal samples to the
fault signal samples in the training dataset is defined as ρ, then the weight value can be calculated
by Equation (2).

ρi =
max{Rsum} − Rsum(i)

max{Rsum} −minth{Rsum}
·ρ+ 0.5·ρ, (2)

in which ρ is supposed to be larger than two in general, Rsum(i) is the sum of the distances from the
i-th fault signal sample to its k nearest fault signal neighbors, and ρi is the weight of the loss function
of the i-th fault signal sample.

This algorithm mainly reflects the distribution of the fault signal samples by Euclidean distance.
The small value of Rsum indicates that the fault signal sample locates close to the cluster center, which
should play a major role in the network training and be assigned a large weight value, or else a small
weight should be given. On the other hand, in order to avoid the network imbalance caused by
oversize ρi, four common algorithms are used to realize the training sample expansion of fault signals
in step 1.
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4. Experiments and Analysis

4.1. Original Data

The original data used in this paper is collected continuously for about 13 h from high-press
apparatuses in factory, of which the sampling rate is 131,072 Hz and is recorded in mat format.

4.2. Data Processing

In the experiments, the frame length and the double pulse extraction parameter α in
Pre-Processing are set to 256 and 0.4, respectively. A total of 4392 pulse sound signals are extracted,
among which 124 signals are fault signals and 4268 signals are normal signals. Each pulse sound
signal is labeled by hand. Initially, 30 fault signal samples and 1000 normal signal samples are
selected randomly as the testing dataset. Then, the rest of the fault signal samples are processed
by the time reversal and amplitude reversal, white noise adding (SNR 20), and random copping
respectively. Finally, a total of 470 fault signal samples and 3268 normal signal samples are gained as
the training dataset.

The training of the monitoring network is implemented on Tensorflow. Through the tests and
analyses, the Adam optimizer and weighted cross entropy loss function are adopted, and batch size of
100 produces good results. The network initializes all the weights to zero-mean Gaussian noise with a
standard deviation of 0.02, and all the bias are set to 0.1. The training ended after 500 iterations.

The operation mentioned above is repeated 10 times independently. The results consist of
recognition accuracy on the whole samples (Acc), the normal signal samples (Acc-N), and the fault
signal samples (Acc-F), which are as shown in Table 3. Compared with the results of Yan’s algorithm [7],
the recognition accuracy on fault signals increases from 81% to 91% on the basis of maintaining the
recognition accuracy on normal signals. The monitoring network shows good performance in terms of
accuracy and balance.

Table 3. The recognition of the network.

Times Acc (%) Acc-N (%) Acc-F (%)

1 99.3 99.5 93.3
2 99.1 99.4 90.0
3 99.1 99.4 90.0
4 99.3 99.6 90.0
5 99.3 99.5 93.3
6 99.1 99.4 90.0
7 99.4 99.7 90.0
8 99.1 99.4 90.0
9 99.2 99.4 93.3

10 99.3 99.6 90.0
Average 99.2 99.5 91.0

4.3. Experiment Analysis

To investigate what the monitoring network learned, the first 16 convolution kernels are studied.
Figure 6 shows the amplitude spectrums of the convolution kernels. It can be found that the
components of different kernels are similar; some of their spectrums have the common peaks, like
8192 Hz, 12.3 KHz, 16.4 KHz, 20.5 KHz, and 28.7 KHz. This proves that the monitoring network
successfully extracts the signal features, as these components are also found in the original signal in our
previous studies. Then, the correlation coefficients between different convolution kernels are calculated
to prove the rationality of parameter setting of the monitoring network, as illustrated in Figure 7.
The gray scale reflects the correlation degree, in which the black color (correlation coefficient is zero)
means that the convolution kernels are independent, and the white color (correlation coefficient is one)
means complete correlation. It can be seen that most of the correlation coefficients are low, except a few
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ones (for example, the correlation coefficient between No.5 convolution kernel and No. 12 convolution
kernel). This indicates that all the useful information for the pulse sound signal recognition is extracted
by the first 16 kernels with little repeated information.

Figure 6. The amplitude spectrum of learned filters in Conv1.

Figure 7. Correlation coefficients of learned filters in Conv1.

Finally, the original data that were recorded for 10 h in the industry field is processed with the
trained network successfully, which confirms that the proposed method is capable of real-time signal
processing and recognizing. Figure 8 shows a section of data flow that is taken for demonstration.
Six pulse sound signals are extracted, and the second pulse sound signal is identified as the fault
signal correctly.
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Figure 8. The recognition on original data. The rectangular pulses in red show the positions of pulse
sound signals extracted by the intelligent monitoring network. The fault signal is denoted with 1, and
the normal signal is denoted with 0.

5. Conclusions

In this paper, an intelligent monitoring network is proposed for monitoring the cracks of the
anvils of the high-press apparatus used in synthetic diamond industry. This monitoring network
realizes real-time monitoring by analyzing the extracted pulse sound signals with CNN technology.
In the process of the design and implementation of the network, the SPP-Layer is adopted to transform
the variable length input into fixed length output via pooling operations, and an adaptive weighted
algorithm for loss function is proposed to solve the class imbalance problem by giving corresponding
weight to the loss function of different fault signal sample, which reflects the distribution of feature
parameters. The experiments prove that the method proposed in this paper offers high recognition
accuracy on the pulse sound signal and realizes the real-time monitoring of the cracks of anvils of
high-press apparatus. Furthermore, the structure of the intelligent monitoring network is simple,
and the monitoring network can also be used in the recognition of similar pulse sound signals under
different applications with a slight modification.
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read and approved the final manuscript.
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