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Abstract: The huge quantity of information and the high spectral resolution of hyperspectral
imagery present a challenge when performing traditional processing techniques such as classification.
Dimensionality and noise reduction improves both efficiency and accuracy, while retaining essential
information. Among the many dimensionality reduction methods, Independent Component Analysis
(ICA) is one of the most popular techniques. However, ICA is computationally costly, and given
the absence of specific criteria for component selection, constrains its application in high-dimension
data analysis. To overcome this limitation, we propose a novel approach that applies Discrete
Cosine Transform (DCT) as preprocessing for ICA. Our method exploits the unique capacity of DCT
to pack signal energy in few low-frequency coefficients, thus reducing noise and computation
time. Subsequently, ICA is applied on this reduced data to make the output components as
independent as possible for subsequent hyperspectral classification. To evaluate this novel approach,
the reduced data using (1) ICA without preprocessing; (2) ICA with the commonly used preprocessing
techniques which is Principal Component Analysis (PCA); and (3) ICA with DCT preprocessing are
tested with Support Vector Machine (SVM) and K-Nearest Neighbor (K-NN) classifiers on two real
hyperspectral datasets. Experimental results in both instances indicate that data after our proposed
DCT preprocessing method combined with ICA yields superior hyperspectral classification accuracy.

Keywords: discrete cosine transform; hyperspectral dimensionality reduction; independent
component analysis; hyperspectral signal subspace identification by the minimum error; principal
component analysis

1. Introduction

Hyperspectral imagery contains hundreds of bands at a very high spectral resolution providing
detailed information about objects, making hyperspectral imagery appropriate for source separation
and classification. However, this high-dimensional data increases computation time and decreases the
effectiveness of a classifier [1], which is one consequence of the curse of dimensionality [2]. Therefore,
hyperspectral images require preprocessing to reduce spectral bands [3,4] and denoising prior to
further processing. Many techniques have been applied in hyperspectral data analysis to reduce
data dimensionality, including selection-based [5] and transformation-based techniques [6] such as
Independent Component Analysis (ICA).

ICA is a popular unsupervised Blind Source Separation (BSS) technique [7], which determines
statistically independent components. Unlike correlation-based transformations such as Principal
Component Analysis (PCA), ICA not only decorrelates signals but also makes the signals as
independent as possible [8]. ICA accurately recognizes patterns, reduces noise and data effectively,
and is widely applied in systems involving multivariable data [9]. The general idea is to reduce high
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dimension space to a lower dimension with the transformed components describing the essential
structure of the data; containing the relevant information, but without the volume of the original data.

ICA has been applied to hyperspectral data for dimensionality reduction, for source separation,
and data compression [9]. It however, is computationally expensive and does not have specific
criteria for selecting components [9], which limits its usefulness in high-dimensional data analysis.
To overcome this limitation, PCA is the most commonly used preprocessing technique in ICA
applications for hyperspectral data dimensionality reduction [10].

In this paper, the Discrete Cosine Transform (DCT) is proposed as a data preprocessing procedure
for ICA to reduce dimension, noise, and computation time. DCT is among the filters based on
orthogonal transforms that have demonstrated good performance in additive white Gaussian noise
removal [11,12], which is the dominant noise component in hyperspectral imagery [13–15]. However,
very few studies have taken advantage of DCT in hyperspectral imagery. For instance, spatial DCT was
proposed as preprocessing for source separation exploiting the inter-pixel spatial correlation in [16].

By exploiting DCT ability to concentrate signal energy in few low-frequency coefficients, our
procedure considers each pixel vector as a 1-D discrete signal to obtain its frequency domain profile.
In the frequency domain, we can easily retain the most useful information as represented by these few
low-frequency components [17], and discards high-frequency components that generally represent
noise. Therefore, by performing DCT, we can either reduce data dimensionality and noise.

Therefore, our objective was to implement and test a new DCT-based preprocessing procedure
for ICA that overcomes the limits of ICA regarding computational cost and make it more effective for
dimensionality reduction in hyperspectral imagery analysis. To evaluate this procedure, SVM and
K-NN classifiers were applied on the reduced data using ICA only, on ICA with PCA as preprocessing
procedure and on ICA with our proposed DCT preprocessing procedure.

The rest of this paper is organized as follows. Section 2 briefly reviews the mathematical
formulation of ICA and DCT. Section 3 describes the proposed approach. Section 4 presents datasets,
experimental setup, evaluation process and illustrates the results. In Section 5, some conclusions
are drawn.

2. ICA

The main idea behind ICA assumes that data are linearly mixed by a set of separate independent
sources, and that it is possible to decompose these signal sources according to measurements of their
statistical independence. ICA analysis is applied in spectral un-mixing, and anomaly and target
detection [18]. There are several applications specifically designed for remote sensing imagery [19–21].
Indeed, the ICA transform is based on a non-Gaussian assumption of independence among sources,
a usual characteristic of hyperspectral datasets [22]. To measure source independence, different criteria
have been proposed [7], most are based on the concept of mutual information as a criterion to measure
the discrepancy between two random sources [23].

Given an observation vector with x = [x0, x1, x2, . . . , xP−1] as a linear mixture of P independent
elements of a random vector source s = [s0, s1, s2, . . . , sP−1]. In matrix terms, the model is given by [7]:

X = A·S (1)

where, A represents a mixing matrix.
ICA estimates an unmixing matrix W (i.e., the inverse of A) to give the best possible approximation

of S.
Y = W·X ≈ S (2)

Such a model has been used to capture the essential structure of the data in many applications,
including signal separation, feature extraction, and target detection; by taking in consideration some
factors, such as the statistical independence between sources, equality between the numbers of mixtures
and sources. This requirement however, can be moderated as in [24]. Furthermore, no external noise
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and such requirement can be resolved during denoising preprocessing. To reduce computational
complexity, the data ideally should be centered and whitened. Finally, the non-Gaussianity distribution
of the source signals.

Different algorithms are used to measure independence, these output slightly different unmixing
matrices. These algorithms can be divided into two main families [25], those based on the minimization
of mutual information, and those seeking to maximize the non-Gaussianity of sources.

Mutual information is based on the entropy of random variable, defined by Shannon 1948 to
measure of uncertainty. Indeed, there is information about behavior of given system if its entropy value
is low. Mutual information can be seen as the reduction of uncertainty regarding a given variable after
the observation of another variable. These algorithms seek to minimize mutual information, searching
for maximally independent components. We find examples in the literature, especially in [26–29].

Since ICA assumes that the distribution of each source is not normal or Gaussian, then we can
use the non-Gaussianity criterion; as an extracted component is forced to be far as possible from the
normal distribution [30].The negentropy measurement can be used to estimate non-Gaussianity by
measuring the distance from normality; however, it is difficult to be computed. Hyvärinen and Oja
proposed in [31] an approximate formula, that gives birth to the algorithm known as FastICA [32] .

As a statistical technique, FastICA approach results rely on the initialization conditions, the
parameterizations of the algorithm and the sampling of the dataset [33]. Therefore, the result of
FastICA algorithm should be treated carefully and reliability analysis of the estimated components
should be taken in consideration. In this regards, an approach for the estimation of the algorithmic
and statistical reliability of the independent components resulting from FastICA called ICASSO, was
proposed in [34]. However, ICASSO is an exploratory visualization method that requires users to
set the initial parameters and visually interpret the relations between estimates. Furthermore, data
dimensionality reduction using PCA is also recommended as a preprocessing step before running the
algorithm [34].

In our approach, ICA is used as dimensionality reduction technique after performing DCT to
overcome the limitations that compromise the use of ICA in hyperspectral processing.

3. DCT

The Discrete Cosine Transform (DCT) represents a sequence of values in terms of a sum of cosine
functions oscillating at different frequencies. DCT is similar to the Discrete Fourier Transform (DFT)
but uses only real numbers. The complete set of DCTs and Discrete Sine Transforms (DSTs), referred to
as discrete trigonometric transforms, was described by Wang and Hunt [35]. DCT concentrates the
energy of a signal into a small number of low-frequency DCT coefficients [17].

DCT is employed in many science and engineering applications, such as data lossy compression
(e.g., MP3 and JPEG) and spectral methods to solve partial differential equations, numerically.

Assuming that each pixel x is a discrete signal represented by a vector x = [x0, x1, x2, . . . , xP−1] in
P dimensional spectral bands space (P is the count of spectral bands), the DCT coefficients of vector x
are given by [36]:

d = [d0, d1, . . . , dP−1]
T

d0 =
√

2
P

P−1
∑

n=0
xn

du = 2
P

P−1
∑

n=0
xn cos (2n+1)uπ

2P ; u = 1, 2, . . . , P− 1
(3)

where u is the discrete frequency variable, du is the uth DCT coefficient in P space dimension and each
vector d corresponds to the original pixel x. Each component of DCT coefficients (DCT coefficients
curve) represents the amplitude of a specific cosine base function, proportional to the importance of a
cosinusoid present in the pixel spectral curve.
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An examination of DCT coefficients distribution in Figure 1b, shows that most of the large
amplitudes are concentrated in minority of low-frequency components, given the ability of DCT
transform to concentrate information energy in a few low frequencies.

Figure 1. (a) Spectral curve, (b) DCT Coefficients curve.

In our procedure, we transform the spectral data from the original feature space to a reduced
feature space using DCT. We generate a frequency domain profile for the spectral curve of each pixel
as illustrated in Figure 1.

Figure 2 shows the plot of the first four transformed components of the new feature space after
performing spectral-DCT on the Kennedy Space Center (KSC) dataset cube. Indeed, we can visually
confirm the ability of DCT to concentrate most of the spectral energy in the first low-frequency
coefficients. In contrast, Figure 3 presents the plot of four high-frequency components after performing
DCT on the same dataset cube (component 50, component 100, component 150, and component 170).
For these high-frequency components, the presence of heavy noise is visible, as there is no effective
discrimination between the different classes.

Figure 2. The first four transformed components of the spectral-DCT feature space from the Kennedy
Space Center dataset.
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Figure 3. Four transformed high-frequency components of the spectral-DCT feature space from the
Kennedy Space Center dataset.

4. The Proposed Preprocessing Procedure Description

Our approach is based on applying DCT as preprocessing procedure for ICA to reduce data
dimensionality and evaluate its effectiveness by performing classification on the resulting reduced
data. The flowchart of our approach is detailed in the following figure (Figure 4).

Figure 4. Flowchart of DCT-based preprocessing procedure for ICA.

In this approach we assume that the hyperspectral data cube is a matrix XNxP (N: number of
pixels, P: number of spectral bands) with each row representing a pixel as a 1-D discrete signal x = [x0,
x1, x2, . . . , xP−1] in P-dimensional spectral bands space. Applying this formula, the DCT of X is given
by DNxP where each row d = [d0, d1, d2, . . . , dP−1] is the DCT coefficients curve of the corresponding
vector x.
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Due to ability of DCT to concentrate energy in a few first coefficients, it is sufficient to take the
first L (where L << P) coefficients to preserve the major part of useful information. By taking the
first coefficients and discarding the high frequencies that generally represent noise, the result can be
considered as denoised data.

The required DCT coefficient number L is estimated using Hyperspectral Signal Subspace
Identification by the Minimum Error (HySime) method as proposed in [37] to find independent bands in
the image for estimating the count of distinct spectral signatures in hyperspectral image. reference [38],
demonstrated that by using four real datasets, this method, yields a more accurate estimation than other
methods such as Noise-Whitened HFC (NWHFC) and the Harsanyi-Farrand-Chang (HFC) approaches.

After applying DCT and estimating the count of coefficients to be retained using the HySime
method, we can now perform ICA on the preprocessed data. To evaluate the effectiveness of
our DCT-based preprocessing procedure on ICA, SVM and K-NN classifiers were applied on the
present data.

5. Data and Evaluation Process

In this section, we present data and our experimental results. We overview the characteristics
of the data used in the experimental setup, explain the evaluation process, and the accuracy
measurements. Experiments were carried out using Matlab R2014a on a Dual-Core 2 GHz CPU
with 8 GB of memory. Specifically, the implementation of the ICA technique was based on the Kurtosis
Maximization method.

5.1. Data

Two real world remote sensing hyperspectral datasets with different spatial resolution were used
for the experiments:

5.1.1. The Indian Pines Dataset

The Indian Pines scene capturing the agricultural Indian Pine area in Northwestern Indiana, USA
was recorded by Airborne Visible Infrared Imaging Spectrometer (AVIRIS) at a 3.7 m spatial resolution.
This image contains 220 bands and 145 × 145 pixels. Channels affected by noise and water absorption
were removed leaving 200 channels. There are 16 classes in the ground reference data. Table 1 describes
the classes and gives the number of samples, the number of training and the test points in Indian Pines
dataset corresponding to Five-Fold cross-validation model.

Table 1. Classes and number of test and training samples for Indian Pines (corresponding to Five-Fold
cross-validation model).

Class Type Samples Training Testing

1 Alfalfa 46 36 10
2 Corn-notill 1428 1142 286
3 Corn-mintill 830 664 166
4 Corn 237 189 48
5 Grass-pasture 483 386 97
6 Grass-trees 730 584 146
7 Grass-pasture-mowed 28 22 6
8 Hay-windrowed 478 382 96
9 Oats 20 16 4
10 Soybean-notill 972 777 195
11 Soybean-mintill 2455 1964 491
12 Soybean-clean 593 474 119
13 Wheat 205 164 41
14 Woods 1265 1012 253
15 Buildings-Grass-Trees-Drives 386 308 78
16 Stone-Steel-Towers 93 74 19
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Figure 5 shows a ground reference map and a false color composition of the Indian Pines scene.

Figure 5. (a) Ground reference map of Indian Pines dataset. (b) False color composition of the Indian
Pines dataset.

5.1.2. The Kennedy Space Center (KSC) Dataset

The Kennedy Space Center (KSC), located in Florida, scene was acquired by AVIRIS. This image
is 512 × 614 pixels with 18 m spatial resolution. After removing affect water absorption and noisy
bands, only 176 bands were retained in our experiments. The ground reference data contains 13 classes.
Table 2 describes the classes and gives the number of samples, the number of training and the test
points in Kennedy Space Center (KSC) dataset corresponding to Five-Fold cross-validation model.

Table 2. Classes and number of test and training samples for Kennedy Space Center (KSC) dataset
(corresponding to Five-Fold cross-validation model).

Class Type Samples Training Testing

1 Scrub 875 700 175
2 Willow swamp 279 223 56
3 Cabbage palm hammock 294 235 59
4 Cabbage palm/oak hammock 290 232 58
5 Slash pine 185 148 37
6 Oak/broad leaf hammock 263 210 53
7 Hardwood swamp 121 96 25
8 Graminoid marsh 496 396 100
9 Spartina marsh 598 478 120

10 Cattail marsh 465 372 93
11 Salt marsh 482 385 97
12 Mud flats 578 462 116
13 Water 1066 852 214

Figure 6 shows a ground reference map and a false color composition of the Kennedy Space
Center scene.
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Figure 6. (a) Ground reference map of Kennedy Space Center dataset. (b) False color composition of
Kennedy Space Center dataset.

5.2. Evaluation Process

To assess the new DCT-based preprocessing procedure for ICA, linear SVM and K-NN classifiers
were applied on the experimental datasets after ICA without preprocessing; after ICA with PCA as
preprocessing; and after ICA with DCT as preprocessing. In this study, accuracy was estimated using
three traditional accuracy measurements, kappa, Average Accuracy (AA), and Overall Accuracy (OA)
defined as in [39]:

OA =
No. o f pixels correctly classi f ied

Total no. o f pixels
× 100 (4)

AA =
∑n

c=1 CAc

n
× 100 (5)

where, CAc is the class wise accuracy of cth class, and n is the total number of classes in the hyperspectral
image. CA is defined by [39]:

CA =
No. o f pixels correctly classi f ied in each class

Total no. o f pixels in each class
× 100 (6)

Kappa coe f f icients =
P× C− S

P2 − S
(7)

where, P is the total number of pixels, C represents the number of pixels that are accurately classified,
and S is the sum of the product of rows and columns of the confusion matrix.

The 5-fold cross-validation process was used as the validation model for classification.

6. Results and Discussion

6.1. Intrinsic Dimension Criterion

In this section, we apply the Hysime criterion for intrinsic dimension estimation to the
experimental datasets regarding the three dimensionality reduction techniques: ICA, PCA and DCT.
The results are summarized in Table 3.

Table 3. Intrinsic dimension estimation.

Criterion Indian Pines KSC

Hysime 18 32
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The results obtained in the following section are based on a selection of 18 components in the
Indian pines dataset and 32 components in Kennedy Space Center dataset for ICA, PCA and DCT
techniques as listed in Table 3.

6.2. ClassificationofIndian Pines and Kennedy Space Centerdatasets

Tables 4 and 5 present the classification accuracy of individual class, OA, AA, kappa
coefficient, and execution time for the two experimental datasets: Indian Pines and Kennedy Space
Center respectively.

A comparison of the accuracy results presented in Tables 4 and 5, shows that the proposed
DCT-ICA method yields the best results than the other tested approaches on almost all of classes.
In addition, OA, AA, and kappa coefficient are also larger than those of ICA and PCA-ICA. Specifically,
DCT-ICA delivered about (10% to 15%) and (13% to 15%) gain in OA with SVM classifier for Indian
Pines and Kennedy Space Center datasets, respectively.

The proposed DCT-ICA approach offers a great improvement in performance, even for classes
with few labeled training samples such as class 1, class 7, and class 9, in the Indian Pines dataset; these
classes are usually discarded to improve the average classification accuracy [40–43].

Furthermore, classification execution times (on a Dual-Core 2 GHz CPU with 8 GB of memory)
were considerably reduced for the two datasets, using both classifiers. For instance, in Kennedy Space
Center dataset, the K-NN execution time was around 0.95 s when performing ICA, around 0.49 s when
performing PCA-ICA, and was reduced to around 0.20 s when using our proposed DCT-ICA approach.

Figures 7 and 8 show three arbitrary selected independent components, after performing DCT-ICA,
on both the Indian Pines and Kennedy Space Center datasets.

As can be seen in Figures 7 and 8, there is a high contrast between objects, with effective
discrimination between the different classes, in almost all the selected independent components
after performing DCT-ICA.

Table 4. Classification accuracy (%) using K-NN and SVM classifiers on the Indian Pines Dataset.

Classes
K-NN SVM

ICA DCT-ICA PCA-ICA ICA DCT-ICA PCA-ICA

1 58.89 78.44 76.00 80.22 86.67 72.00
2 66.45 74.93 69.54 61.84 82.71 61.63
3 47.35 65.18 63.01 25.18 64.46 44.58
4 46.84 50.59 50.25 42.65 78.42 52.33
5 88.20 94.20 90.46 91.09 93.17 93.37
6 96.99 97.81 97.40 94.79 96.03 96.30
7 76.00 83.33 82.67 69.33 92.67 82.67
8 98.53 98.95 98.13 98.11 99.58 97.48
9 35.00 60.00 35.00 25.00 90.00 65.00
10 69.13 80.45 76.54 30.66 69.55 53.60
11 73.32 81.47 77.52 75.40 75.15 74.01
12 39.12 59.86 50.77 9.27 72.35 26.63
13 93.66 99.02 95.61 95.12 96.59 93.66
14 93.60 94.86 93.91 96.28 96.52 95.81
15 43.52 49.21 44.32 54.16 66.54 54.66
16 92.40 94.56 93.39 94.56 97.84 95.67

Kappa (%) 68.74 77.86% 73.90 60.50 78.61 66.47
OA (%) 72.66 80.61% 77.15 66.06 81.28 70.87
AA (%) 69.94 78.93% 74.66 65.23 84.89 72.46
Time (s) 4.1755 0.44037 0.77588 140.8222 93.5459 128.1354

Bolded values denote the best results.
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Table 5. Classification accuracy using K-NN and SVM classifiers on the KSC Dataset.

Classes
K-NN SVM

ICA DCT-ICA PCA-ICA ICA DCT-ICA PCA-ICA

1 89.23 94.22 91.59 92.12 96.58 91.59
2 74.49 87.24 82.30 78.62 97.53 76.99
3 59.75 91.00 77.35 78.88 92.16 80.46
4 37.32 66.26 41.35 53.15 87.72 44.39
5 47.90 55.34 49.20 52.18 82.61 47.23
6 22.26 45.45 27.93 48.93 84.27 43.59
7 62.86 88.57 56.19 64.76 93.33 63.81
8 71.00 87.00 71.25 76.81 95.37 61.46
9 86.15 95.00 86.92 90.19 98.85 86.54
10 48.74 92.81 69.04 77.74 98.52 78.96
11 95.23 97.38 95.46 96.18 99.52 97.85
12 63.63 90.05 70.20 75.77 96.81 79.72
13 98.92 99.35 99.35 99.57 99.89 99.68

Kappa (%) 71.63 87.80 76.47 80.81 95.62 78.68
OA (%) 74.61 89.06 78.93 82.77 96.07 80.86
AA (%) 65.96 83.82 70.63 75.76 94.09 73.25
Time (s) 0.9565 0.2033 0.4924 60.962 9.8957 53.9262

Bolded values denote the best results.

Figure 7. Plot of three arbitrary selected ICs components from the DCT-ICA feature space in the Indian
Pines dataset.

Figure 8. Plot of three arbitrary selected ICs components from the DCT-ICA feature space in the
Kennedy Space Center dataset.

Experimental results confirm the superiority of the proposed DCT preprocessing procedure
for ICA dimensionality reduction, over all datasets and with both classifiers. We observed
significant advantages when we used the DCT preprocessing procedure as classification accuracy was
enhanced, overall. In the experiment with the SVM classifier, accuracy improvements using the DCT
preprocessing procedure were the most evident. Furthermore, our proposed preprocessing procedure
yielded the sharpest improvements in execution time with the K-NN classifier.
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7. Conclusions

In this study, a novel DCT preprocessing procedure for ICA in hyperspectral dimensionality
reduction is proposed. This procedure is based on applying DCT on each pixel spectral curve and
estimating the retained coefficients with the HySime method to construct a new reduced feature space
where the most useful information is packed in the first low-frequency components. Performing ICA
on this reduced feature space overcomes the time consumption problem as well as the absence of
specific criteria to select components produced by the ICA. Indeed, useful information is already
selected by DCT.

SVM and K-NN classifiers were applied on the reduced data to assess the effectiveness of our
approach. Experimental results on two real datasets demonstrate that the proposed preprocessing
procedure, DCT-ICA, outperforms ICA without preprocessing and ICA with PCA as a preprocessing
technique in terms of accuracy, even for small training sets and short execution times. Indeed, the
overall classification accuracy of ICA in the reduced feature space improved by about (10% to 15%),
and (13% to 15%) for two experimental datasets, with reduced execution times.
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