
sensors

Article

Collision Detection for Underwater ROV
Manipulator Systems

Satja Sivčev 1,2,∗,†, Matija Rossi 1,2,†, Joseph Coleman 1,2, Edin Omerdić 1,2, Gerard Dooly 1,2 and
Daniel Toal 1,2

1 MaREI – Marine and Renewable Energy Ireland, Cork, Ireland; matija.rossi@ul.ie (M.R.);
Joseph.Coleman@ul.ie (J.C.); Edin.Omerdic@ul.ie (E.O.); Gerard.Dooly@ul.ie (G.D.); Daniel.Toal@ul.ie (D.T.)

2 Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
* Correspondence: satja.sivcev@ul.ie; Tel.: +353-(0)61-213-102
† These authors contributed equally to this work.

Received: 19 March 2018; Accepted: 4 April 2018; Published: 6 April 2018
����������
�������

Abstract: Work-class ROVs equipped with robotic manipulators are extensively used for subsea
intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback
from the worksite. Operating in a remote environment, with limited pilot perception and poor
visibility, manipulator collisions which may cause significant damage are likely to happen. This paper
presents a real-time collision detection algorithm for marine robotic manipulation. The proposed
collision detection mechanism is developed, integrated into a commercial ROV manipulator control
system, and successfully evaluated in simulations and experimental setup using a real industry
standard underwater manipulator. The presented collision sensing solution has a potential to be
a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea
inspection, repair, and maintenance operations.

Keywords: underwater manipulation; collision detection; collision sensing; collision avoidance;
manipulator control; robot arm; subsea inspection and intervention; marine robotics; ROV

1. Introduction

Due to the lack of autonomous mobile-manipulator robots, tasks in remote and hostile
environments are performed by manipulator arms operated by human pilots at distance. Often called
telemanipulators, these devices are usually deployed to worksites onboard support base vehicles which
are also remotely operated—therefore referred to as Remotely Operated Vehicles (ROVs). Work-class
ROV technology has served subsea Intervention, Repair, and Maintenance (IRM) operations in various
offshore industries, including oil and gas, marine construction, marine science, naval defence, and
Marine Renewable Energy (MRE) [1–3]. Submarine work-class ROVs are generally equipped with
two manipulators; one dexterous seven function manipulator that is used to perform the actual
intervention task, and one simple, powerful grabber that is used to hold the ROV stationary relative to
the structure on which the operation is taking place. Utilising a traditional teleoperation approach with
an open-loop control system, work-class ROVs are completely reliant on the human operators who
control both the ROV and the manipulator. The pilots, located on the surface vessel, acquire visual
feedback of the worksite through different imaging systems and simultaneously perform various tasks
by remotely controlling the manipulators’ motion with a specialised joystick [4]. ROVs are usually
equipped with multiple sensing devices including camera systems, forward-looking sonars, and other
sensors and tools [5]. A lot of the equipment is mounted on the front side of the ROV, therefore inside
the manipulators’ workspace. ROV pilots must be extremely careful during telemanipulation not
to damage the expensive equipment, the ROV’s body, the targeted structure, and the manipulators

Sensors 2018, 18, 1117; doi:10.3390/s18041117 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/1117?type=check_update&version=1
http://dx.doi.org/10.3390/s18041117


Sensors 2018, 18, 1117 2 of 17

themselves. Reduced visibility due to water turbidity and poor 3D perception due to the 2D video
feedback only add to the complexity of teleoperation. As a result, tasks that might seem simple can
become very difficult and wearisome even for very skilled operators, significantly affecting their
performance. Moreover, there is a trend towards resident ROV teleoperation of manipulators, i.e.,
manipulation from shore through telecommunication network infrastructure. Such a setup increases
the pilot’s task load and emphasises the importance of the pilot’s skills and of the network quality,
which might introduce delays in control and sensory feedback. The resident ROV teleoperation concept
has recently been introduced in the industry by IKM Subsea with a permanently deployed ROV system
remotely operated from shore [6]. Due to the complexities mentioned above, subsea operations are
time-consuming and therefore costly. Mobilising a vessel with ROV systems onboard can cost from
e18,000 per day for research vessels to well over e50,000 for oil and gas operations.

Most advanced commercial underwater ROV manipulator systems have an integrated software
function to limit the range of motion of the manipulator’s joint axes. This is often done to prohibit
the access to certain areas on the base vehicle and protect the equipment. However, limiting
the manipulator’s motion in joint space is not efficient as it enormously limits the manipulator’s
operational workspace. Moreover, it does not prevent the two manipulators from colliding, which is an
important issue as these manipulators are capable of exerting considerable forces that may cause severe
mechanical damage. As two manipulators with overlapping workspaces simultaneously operate in
a common working area, a real-time collision avoidance algorithm is required, capable of detecting
and prohibiting motion commands which would result in a collision and allowing only collision-free
motion. Each manipulator represents a dynamic obstacle to the other manipulator, therefore it is
necessary to address the collision between the two as well as between each of them and other obstacles.

Over the last thirty years, various researchers have been investigating collision detection methods
for robotic arms, chiefly as part of collision-free motion planning algorithms [7–9]. Most of the research
focus has been on algorithm development, evaluating them through simulations and laboratory
experiments on industrial manufacturing electro-mechanical autonomous robots. Many of these
approaches are off-line and designed for preprogrammed robot motion planning, and therefore not
suitable for commercial ROV manipulator systems which are teleoperated utilising point-to-point
control, where the full path cannot be known in advance. For this reason, any collision avoidance
implementation for the teleoperated manipulators has to work on-line. There is a research trend
towards automating ROV intervention operations [10], and in the case the ROV industry adopts
it, off-line collision avoidance approaches might become suitable. However, this is still in its early
research and development stage, and fully automated manipulator systems still do not exist in the
global fleet of work-class ROVs.

Various on-line collision detection methods based on different geometrical modelling approaches
have been proposed. Discretising the Cartesian space into cuboids and forming a collision map based
on the obstacle-unaware trajectories has been presented by Czarnecki [11]. Greenspan and Burtnyk
[12] described a method of model-based real-time collision avoidance where the manipulator links
are modelled as sets of spheres and obstacles as a weighted voxel map. Henrich et al. [13] proposed
an implicit and discretised configuration space (C-space)-based method where collision detection
is done in the Cartesian workspace. A similar C-space obstacle boundary method based on the
reachable manifold and contact manifold theories has been presented by Fei et al. [14]. Freund and
Rossman [15] described a Collision Avoidance in Real-time Environments (CARE) method where
the points on the robot’s surface endangered by obstacles are assigned Collision Avoidance Points
(CAPs). Some authors have adopted a geometrical modelling approach where the manipulator links
are modelled with spherical shells, volumes formed by moving a sphere with a certain radius on a
specified primitive such as a point, line, or rectangle [16–19]. Smith et al. [20] presented a survey
that includes collision detection and avoidance methods on dual-arm robots, which are kinematically
identical to work-class ROVs; they are equipped with two manipulators with overlapping workspaces.
Other non-geometrical model-based methods have also been investigated. Lee and Song [21] proposed



Sensors 2018, 18, 1117 3 of 17

a collision detection algorithm based on an external torque observer and friction model identification.
This approach requires monitoring the electric current of the manipulator’s joint motors and is
applicable only for electrically driven robot arms, which are rare in the ROV industry [22]. Force
feedback based collision detection methods have also been proposed [23]. The issue with the last
two approaches is that the collision can be detected solely after the contact has been made, and
since ROV equipment includes multiple cameras with glass domes and other delicate devices, any
contact is undesirable. Lumelsky and Cheung [24] experimented on whole-sensitive manipulator
arms whose entire body is covered with sensitive skin capable of detecting collision with other objects.
Besides the contact issue, this approach might be too complicated for underwater implementation
as the sensor skin would have to be waterproof. Various machine vision methods for collision
detection have been investigated [25–27]; however, the visibility in ROV worksites is often low, and
such approaches would be condition dependent. Moreover, multiple cameras might be required to
encircle the manipulators’ environment and ensure no impeding collision are missed. One of the few
publications addressing collision detection for subsea ROV manipulators has been reported by Agba
[28] within the “SeaMaster” ROV-manipulator system simulator, where the manipulator links are
modelled using the super-ellipsoid equation and collision is tested by checking whether a point on the
surface of an object lies within the inside surface of a link model.

Despite the significant achievements in academia, including many publications on autonomous
subsea manipulation [29–32], collision-free manipulation has not been developed and integrated on
work-class ROVs. This paper describes a real-time collision detection algorithm based on a voxel map
representation developed for use on work-class ROV manipulator systems. The proposed collision
avoidance mechanism is capable of sensing imminent collisions and preventing their occurrence by
automatically overriding the operator’s commands and stopping the manipulator. The developed
algorithm is not a collision-free path planning method capable of finding an alternative path to the
one provided by the control system. In that sense, it is entirely passive, and it is left to the ROV pilot
to decide on alternative routes. The developed solution is successfully integrated with the control
system of a real underwater ROV manipulator. The performance of the developed approach has been
validated through simulations and laboratory experiments.

The remainder of the paper is organised as follows: Section 2 presents a detailed description
of the developed collision-free manipulation algorithm. Section 3 describes the simulation and
experiment scenarios and presents the results. Finally, Section 4 offers some final remarks and describes
future work.

2. Algorithm

This section describes the collision detection algorithm developed for underwater manipulators
beyond the current state of the art in work-class ROV technology. The developed software is readily
integrable with existing subsea hydraulic manipulator systems without any hardware or software
modifications. The developed software package is running on a standard PC, located between the
Master Control Unit (MCU) and the low-level joint position servo controller. A computer control
software, previously developed by the authors [22], is also tested as an alternative to the traditional
MCU. This software includes a program switch that allows the ROV pilot to select which of the two
systems is used to control the manipulator, and to switch the control from one to the other during
operation. Figure 1 shows a block diagram of the dual manipulator ROV control system architecture
which includes the developed collision avoidance algorithm.

The proposed collision-free manipulation algorithm is an on-line method based on a voxel map—a
representation of Cartesian space discretised into a regular grid. The work of [11] inspires the core idea
of the algorithm. It is a purely kinematical method that processes kinematic parameters (joint positions)
provided by a command control system and returns collision-free kinematic parameters in the same
form, which are forwarded to the existing low-level joint space motion controller. Kinematic modelling
was essential for the algorithm development, and it had previously been derived by Sivčev et al. [33].



Sensors 2018, 18, 1117 4 of 17

Figure 1. Block diagram of a dual manipulator control system.

The Cartesian space occupied by manipulators and obstacles is discretised into a regular grid of
cubic voxels with the desired spatial resolution, determined by the voxel size. The smaller the voxels
are, the more accurate the modelling will be. The maximum total number of voxels n in the grid is
inversely proportional to the voxel size s and grows according to the cubic law in (1).

n =
1
s3 for s = (0, . . . , 1] (1)

A larger voxel grid leads to a higher computational load for the collision avoidance algorithm.
This used to be a relevant factor in the past, but with the processing power currently available it is not
anymore, as will be seen from the simulation and experimental results.

Voxel maps are formed by highlighting those voxels that are occupied by worksite objects. Maps
that represent static obstacles only need to be computed once, during the initial stage of the algorithm.
On the other hand, voxel maps that represent manipulators and other dynamic obstacles have to be
recomputed in the control loop iteration. It is assumed that the geometry of worksite objects is known,
i.e., that the CAD models of obstacles and manipulators are available. Each static obstacle’s pose, as
well as manipulator poses, are also assumed to be known. The common reference frame in this case is
a fixed coordinate frame on the base vehicle (ROV). Collision detection is done by checking whether
more than one object occupies the same voxel at a given point in time.

2.1. Voxel Map Modelling—Static Obstacles

For each object, a separate voxel map can be generated based on its CAD model. An alternative
way is to construct multiple object CAD assemblies and create a voxel map for each one or form a
single assembly that comprises all static obstacles and transform it into a voxel map. For each mission
an ROV can be equipped with a slightly different set of devices; additionally, the same devices can
be mounted in different locations. Having an independent voxel map for each device, or groups of
devices that are often used together, it is straightforward to create a single final voxel map for each
mission as a union of separate voxel maps. Therefore, for the sake of modularity, it is preferable to
address each object separately when constructing voxel maps.

The first step is transforming an obstacle’s CAD model into a point cloud, which can be achieved
using most 3D CAD tools. Using SolidWorks for example, this can be done by generating a mesh of
points with a user-specified mesh density for each surface of the CAD model (Figure 2). Selecting an
appropriate mesh density is crucial for avoiding gaps in voxel maps—the Euclidean distance between
any two points in the mesh should be at least an order of magnitude smaller than the voxel size.



Sensors 2018, 18, 1117 5 of 17

Figure 2. Meshing an ROV camera CAD model into a point cloud using SolidWorks.

This method does not consider the object’s volume, but only its external surface. Therefore, the
resulting point cloud is a shell of the shape of the object. The method used to compensate for the
loss of information about the interior of the obstacle is performed on the voxel map level and will
be described later in this section. The resulting point cloud is a set of m data points Pi defined with
Cartesian coordinates:

P = {Pi(xi, yi, zi) ∈ R3 | i = 1, . . . , m} (2)

Choosing the point cloud reference frame is essential—it has to be either the ROV base frame
Oxyz or any frame xOxyz whose pose Hx relative to the base is known or possible to measure. In the
latter case, expressing the point cloud in the ROV base frame is straightforward:

P = Hx
xP (3)

The next step is mapping the generated point cloud to voxels in the Cartesian grid. Voxels
occupied by at least one point are highlighted and included into the voxel map. This is done by finding
the closest voxel to each point, i.e., the voxel with the smallest Euclidean distance from the point. A
regular voxel grid V (Figure 3) is given by:

V = {Vi(xi, yi, zi) ∈ R3| i = 1, . . . , n} (4)

where each voxel is defined with Cartesian coordinates representing its volumetric centroid.

Figure 3. Regular 3D voxel grid—unoccupied.

Mapping each point in the point cloud P to its nearest voxel is performed by a rounding function,
given by:

P̂i =

⌊
(Pi +

s
2 )

s

⌋
s for i = 1, . . . , m (5)

As a result, each point in the newly formed point cloud P̂ gets pushed to its nearest voxel. The
coordinates of these points are used to highlight voxels in the grid and form a voxel map that represent
the object’s shell. The next step is to compensate for the lost information on the object’s interior by
filling the cavities. This is done by identifying all internal voxels and marking them as occupied, see
Algorithm 1. The result is a voxel map that models the entire volume of the object. The same process is
repeated for all other obstacles.



Sensors 2018, 18, 1117 6 of 17

Finally, a single voxel map representing all static worksite objects is created as a union of separate
obstacle voxel maps. Since this voxel map is constant, it has to be constructed only once before the
execution of the collision avoidance algorithm.

Algorithm 1 Algorithm for supplementing an object shell voxel map with internal volume voxels

1: procedure FILLINTERNALVOLUME(V )
2: for all z axis do
3: cnt← 0
4: for all x axis do
5: for all y axis do
6: if V(x, y, z) = 1 then
7: cnt← cnt + 1
8: if cnt = 1 then
9: V1 ← V(x, y, z)

10: y1 ← y
11: else if cnt = 2 then
12: if y− y1 = Vsize then
13: V1 ← V(x, y, z)
14: y1 ← y
15: cnt← cnt− 1
16: else
17: V2 ← V1
18: V1 ← V(x, y, z)
19: cnt← cnt + 1
20: for y← y1, y2 do
21: V(x, y, z)← 1
22: end for
23: end if
24: end if
25: else if cnt ≥ 2 then
26: cnt← 0
27: end if
28: end for
29: end for
30: cnt← 0

31: for all y axis do
32: for all x axis do
33: if V(x, y, z) = 1 then
34: cnt← cnt + 1
35: if cnt = 1 then
36: V1 ← V(x, y, z)
37: y1 ← y
38: else if cnt = 2 then
39: if x− x1 = Vsize then
40: V1 ← V(x, y, z)
41: x1 ← y
42: cnt← cnt− 1
43: else
44: V2 ← V1
45: V1 ← V(x, y, z)
46: cnt← cnt + 1
47: for x ← x1, x2 do
48: V(x, y, z)← 1
49: end for
50: end if
51: end if
52: else if cnt ≥ 2 then
53: cnt← 0
54: end if
55: end for
56: end for
57: end for
58: return V
59: end procedure

2.2. Voxel Map Modelling—Manipulators

The method for creating a voxel map representing a manipulator is slightly different due to its
moving parts. The manipulator consists of a base and its links. Since the base is fixed, it is modelled as
a static object and incorporated in the static obstacle voxel map. The situation with links is different
as they move in space. Determining the volume in space occupied by each link requires a kinematic
model of the manipulator, a CAD model of each of the links, and the manipulator’s latest angular joint
positions acquired in each control loop. This volume can be modelled as a point cloud and transformed
into a voxel map. A more efficient way is to precompute voxel maps for each manipulator links from
their CAD models, and then iteratively, using the kinematic model and angular joint positions, remap
the voxel maps appropriately. The kinematic model is derived according to the Denavit-Hartenberg
(DH) convention for attaching reference frames to the links of a manipulator [33]. The addressed
manipulator consists of six joints numbered from 1 to 6, and seven links numbered from 0 to 6, starting
from the base. Each link has a coordinate frame rigidly attached to it; its location is determined by the
DH convention.

The first step in creating a manipulator voxel map is to create a voxel map for each link by using
the technique for a separate static object described in Section 2.1. However, in the step of transforming
a CAD model into a point cloud, it is essential to choose the appropriate reference coordinate frame for
each link. These frames have to be the coordinate frames rigidly attached to the links according to the
DH convention (Figure 4).



Sensors 2018, 18, 1117 7 of 17

Figure 4. Kinematic model of a Schilling Titan 2 manipulator.

Thus, the resulting voxel map kL for the kth link (k = 1, .., 6) expressed in the coordinate frame
kOxyz, is given by:

kL = {kLi(xi, yi, zi) ∈ R3|i = 1, ..,k n} (6)

where kn is the number of voxels that describe the kth link. The pose of the coordinate frame kOxyz can
be expressed in the manipulator base frame 0Oxyz, as a homogeneous transformation calculated with
the standard forward kinematics equation using the appropriate joint position values q, given by [34]:

H0
k =

k

∏
i=1

T i−1
i (qi) (7)

This resulting homogeneous transformation can be expressed in the ROV base frame:

Hk = H0H0
k (8)

where H0 is the pose of the manipulator base in the ROV frame. Finally, a voxel map for the kth link
expressed in the ROV base coordinate frame Oxyz is acquired by multiplying each voxel from the voxel
map given in (6) with the homogeneous transformation given in (8):

0Lki = Hk
kLki for i = 1, ..,k n (9)

The same procedure is repeated for each of the manipulator’s links, excluding the base.
Subsequently, a single manipulator voxel map is created as the union of the individual links’ voxel
maps. The voxel map derived in this way determines which voxels the manipulator occupies for any
given joint configuration.

Obstacles independent of the ROV base vehicle are not addressed in this paper. Examples of such
obstacles related to ROV operations are the sea floor, a dock wall, or any offshore infrastructure an
ROV is not supposed to collide with while operating in its vicinity. Regardless of whether they are
stationary or moving, these can be considered dynamic since the ROV is in motion; unless ideal station
keeping is assumed. Computer vision might be a potential solution to identifying these obstacles
and generating corresponding point clouds. Having the point cloud, transferring it into a voxel map
is a straightforward process. Alternatively, if the obstacle structure is known, a method similar to
that used for manipulator links can be applied. In this case, the missing component, to be potentially
implemented leveraging computer vision, would be the estimation of the obstacle’s pose relative to the
ROV. The up-to-date software solution we present is applicable only for detecting collisions between
the moving manipulators and the static workspace obstacles.

2.3. Voxel Map Modelling—Manipulators’ Workspaces

The static obstacle voxel map described earlier in Section 2.1 is formed based on the CAD
models of all objects with which manipulators are not supposed to collide, without considering the
manipulators’ workspace size, and therefore regardless of whether the manipulators can reach the
potential obstacles. If static obstacles are out of the manipulators’ reachable workspace, there is no



Sensors 2018, 18, 1117 8 of 17

reason to include them in the voxel map. However, as the two manipulators’ workspaces do not
overlap entirely, some obstacles are reachable by both manipulators and some only by one of them.
Instead of using a single voxel map comprising of all obstacles, two separate voxel maps are used, one
for each manipulator, each of which contains only the objects that are reachable by that manipulator.
This section describes the procedure to generate these two voxel maps.

The Cartesian space defining a manipulator’s reachable workspace has to be transformed into a
voxel map. The first step to create a manipulator workspace voxel map is discretising the manipulator’s
configuration space (C-space) and transforming it into the Cartesian space. The C-space represents the
set of all allowable transformations of the manipulator; for a 6 degrees-of-freedom (DOF) manipulator
it forms a 6-dimensional manifold [35]. For each DOF of the manipulator (k = 1, . . . , 6), a number of
intervals along the generalised joint coordinate qk is specified as:

Nk =

⌊
qmax

k − qmin
k

∆qk

⌋
(10)

where qmin
k and qmax

k are the physical limits of the kth joint motion, and ∆qk is the discretisation
resolution of the kth joint. The most straightforward discretisation method is uniform
discretisation—fixing ∆qk to a constant value used for all joints. The deficiency of this approach
is that the Cartesian points it generates are not equidistant. This can be improved using advanced
discretisation methods such as heuristic and optimal discretisation [13]. However, creating a workspace
voxel map does not require having a dense point cloud of equidistant reachable end-effector Cartesian
points throughout the entire workspace volume. Nevertheless, accurate and sufficiently dense
modelling of the outer shell of the working space is required. As the C-space discretisation takes
place only once, the computational time for this step is not of importance, and therefore the uniform
discretisation method with high enough resolution is sufficient. Discretisation of the C-space generates
K joint configuration vectors q, where K = ∏6

k=1 Nk, which are transformed into the Cartesian
space using standard forward kinematics equation [34], resulting in a point cloud expressed in the
manipulator’s base frame:

0W =

{
0Wj =

6

∏
i=1

T i−1
i (qi) | j = 1, . . . , K

}
(11)

Using the same process that was used for generating the static obstacles map, this point cloud is
transformed into a voxel map and expressed in the ROV base frame W , see Equations (2)–(5). Since
the resulting manipulator workspace voxel map might contain gaps within the volume, the missing
voxels are added using Algorithm 1. Finally, the resulting voxel map represents the entire volume of
the manipulator’s workspace. The intersection between this voxel map and the static obstacle voxel
map then results in a map O1 which is comprised only of obstacles reachable by that manipulator. The
same procedure is repeated for the other manipulator, yielding voxel map O2. These newly formed
static obstacle voxel maps are smaller in size which is convenient for storage and computation.

2.4. The Collision Avoidance Algorithm

Regardless of the manipulator control input device, mode of operation (manual, semi-automatic
or fully automatic), and operational space (joint or Cartesian), the output kinematic parameters to be
supplied to the low-level manipulator motion controller are assumed to be angular joint positions.
Additionally, it is considered that the desired joint position is a continuous digital signal. The algorithm
requires having access to desired motion commands and current joint position sensor measurements
for both manipulators in each control loop. After the manipulator motion commands are issued,
the desired joint position vectors are processed by the collision avoidance algorithm based on the
procedure described in this section.



Sensors 2018, 18, 1117 9 of 17

The first step in implementing the algorithm is forming a path between initial and desired joint
configurations. Since the difference between the corresponding values of desired and initial joint
positions is assumed to be relatively small, the number of steps forming this path does not have to
be large. This provides a sequence of specific manipulator poses in space-time, for each of which a
manipulator voxel map is created, using the technique described in Sections 2.1–2.3. The resulting
maps are merged into a single map, as a union between them. The newly formed voxel map (MD1)
represents the entire volume that the manipulator would sweep moving from the initial to the desired
pose. The same process is repeated for the other manipulator and the voxel map MD2 is formed. The
next step is constructing voxel maps that represent the currently occupied workspace. To do this,
the manipulator voxel map for the second manipulator MC2 is created based on its current pose and
merged with the static obstacle voxel map for the first manipulator (O1) as a union between them,
forming a new map OM1. Using the same procedure, map OM2 is generated for the other manipulator.
The final step is constructing two collision voxel maps, one for each manipulator. The first one is
formed as an intersection between MD1 and OM1. If the resulting collision voxel map is empty, the
motion is regarded as collision-free and the desired motion command is forwarded to the low-level
motion controller of the manipulator. However, if there is a single voxel occupied in the resulting
collision voxel map, the impending collision is detected. In that case, the desired joint position vector
supplied as a motion command is ignored and the current joint position vector, which represents
the collision-free configuration, is forwarded to the low-level motion controller of the manipulator.
This provides an answer whether the first manipulator by moving to the desired pose is going cause
a collision with the second manipulator or static obstacles. The second collision map is formed in
the same way using MD2 and OM2. This algorithm is repeated throughout the entire duration of the
manipulators’ operation.

3. Simulation and Experimental Results

In this section, the authors analyse an implementation scenario for the proposed collision-free
manipulation algorithm on an ROV equipped with two manipulators. One such robotic vehicle is
the MRE ROV (Figure 5), a University of Limerick owned ROV which is mainly used for research
purposes.

Figure 5. University of Limerick MRE ROV.



Sensors 2018, 18, 1117 10 of 17

This ROV is equipped with two seven function Schilling ORION manipulators, both of which
have position sensors in each joint. The information provided by these sensors along with the known
CAD model of the whole ROV, including the relative pose between the robotic manipulator bases, are
sufficient to implement the proposed collision detection algorithm. The collision detection algorithm is
developed in C++ in the form of an independent Dynamic-Link Library (DLL) which is encapsulated
in the robotic manipulation control software, developed previously using the Matlab Robotics Toolbox
and LabView [22]. The simulation scenario for the validation of the developed software, including
the proposed collision avoidance algorithm, consists of a mathematical model of the real MRE ROV
and the two accompanying manipulators. Two cases are addressed in simulations: the collision
between each manipulator and the base vehicle, and the collision between the two manipulators.
Additionally, the developed collision-free manipulation algorithm has been tested in a real-world
experimental setup in dry laboratory conditions, where a single Schilling Titan 2 manipulator was kept
from colliding with the floor using the discussed method. Voxels of different sizes ranging from 10
mm to 100 mm were used for the modelling of all the rigid objects that are part of the ROV, including
the manipulators (Figure 6). Such variation enabled analysing how the algorithm behaves with the
increase in the computational load due to the voxel map size, that is, how the voxel size affects the
algorithm execution time.

(a) (b) (c)

Figure 6. MRE ROV modelled with voxels of different size: (a) 100 mm; (b) 33 mm; and (c) 10 mm.

The simulation scenario runs as follows. Both robotic manipulators start from predefined
collision-free initial configurations defined in joint space; joint space trajectories are then generated
for both manipulators simulating the motion command issued by a human operator or a computer
program. Each trajectory is a predefined sequence of joint space configurations such that it first causes
a collision between the manipulator and the body of the ROV base vehicle and afterwards a collision
between the two manipulators. These reference trajectories are inputs of the developed algorithm
which acts as a collision filter, sensing and prohibiting any motion that causes a collision and allowing
only collision-free motion. The reference input trajectories and resulting output trajectories are given
in Figure 7 in joint space and in Figure 8 in Cartesian space; voxel size is 33 mm.



Sensors 2018, 18, 1117 11 of 17

0 0.2 0.4 0.6
−60

−40

−20

0

20

40

60

Time (s)

P
os

iti
on

 (
de

g)

 

 q
1
 in

q
1
 out

q
2
 in

q
2
 out

q
3
 in

q
3
 out

q
4
 in

q
4
 out

q
5
 in

q
5
 out

(a) Left manipulator

0 0.2 0.4 0.6
−100

−80

−60

−40

−20

0

20

Time (s)

P
os

iti
on

 (
de

g)

 

 

q
1
 in

q
1
 out

q
2
 in

q
2
 out

(b) Right manipulator

Figure 7. Reference input and collision-free output trajectories in joint space.

0 0.2 0.4 0.6
−2

−1

0

1

2

Time (s)

P
os

iti
on

 (
m

)

 

 

x in
x out
y in
y out
z in
z out

(a) Left manipulator

0 0.2 0.4 0.6
−0.5

0

0.5

1

1.5

2

Time (s)

P
os

iti
on

 (
m

)

 

 

x in
x out
y in
y out
z in
z out

(b) Right manipulator

Figure 8. Reference input and collision-free output trajectories in Cartesian space.

Figures 9 and 10 illustrate the visualisation of the collision detection algorithm for the described
simulation scenario.

The red-yellow and blue-green manipulators on the middle images represent the collision-free
output motion of the proposed algorithm, while the red and blue manipulators represent the discarded
reference motion. In each control loop, the collision detection algorithm checks not only whether the
single desired configuration of the reference trajectory leads to collision, but also the configurations
in between. That is, the whole volume the manipulator would sweep if it was to move from the
current to the desired configuration, which is illustrated by the yellow voxels in the figures. Each
control loop executes the collision detection algorithm twice to check the reference motion for each
manipulator. Therefore, the green voxels represent the other, passive manipulator, which together
with the ROV body (represented by light blue voxels) forms the obstacle voxel map for that iteration.
Finally, red voxels represent the imminent collision sensed by the developed algorithm. Table 1 shows
the computational load of the collision detection algorithm for different voxel sizes, numbers of voxels,
and numbers of intersection operations; as well the time required for different algorithm phases.



Sensors 2018, 18, 1117 12 of 17

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

Figure 9. Simulation of the collision detection between each manipulator and the ROV.



Sensors 2018, 18, 1117 13 of 17

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

X (m)
Y (m)

Z
 (

m
)

Figure 10. Simulation of the collision detection between two manipulators.

Table 1. Computational load analysis of the collision detection algorithm.

Voxel Size
(mm)

Manip.
Voxels

Obstacle
Voxels

Intersection
Operations

Manip.
Voxeling

(ms)

Intersecion
(ms)

Total Loop
(ms)

100 1120 710 795,200 3.4 0.6 8
66 2500 1688 4,220,000 3.6 1.5 10.2
33 9850 5016 49,407,600 3.8 5.6 18.8
22 18,530 7399 137,103,470 4.5 10.7 30.4
15 47,610 9964 474,386,040 5.8 26.9 65.4
10 102,030 13,530 1,380,465,900 8 58.8 133.6



Sensors 2018, 18, 1117 14 of 17

The developed collision detection algorithm has been tested in a real-world experimental setup
using a Schilling Titan 2 manipulator. In the addressed scenario, the manipulator was intentionally
commanded to collide with the floor, which the collision detection algorithm successfully prohibited.
The trajectories utilised in this experiment are depicted in Figure 11, while Figure 12 shows a photo of
the experiment.

0 5 10 15 20 25 30 35 40 45
−20

0

20

40

60

80

Time(s)

P
os

iti
on

 (
de

g)

 

 

q
2
 in

q
2
 out

q
3
 in

q
3
 out

q
4
 in

q
4
 out

(a) Joint space

0 5 10 15 20 25 30 35 40 45
−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

Time (s)

P
os

iti
on

 (
m

)

 

 

z in
z out

(b) Cartesian space

Figure 11. Reference input and collision-free output trajectories from the experiment.

Figure 12. Experimental setup with the floor as an obstacle.



Sensors 2018, 18, 1117 15 of 17

4. Conclusion and Future Work

The proposed collision-free motion algorithm for marine robotic manipulation has been described
and successfully evaluated in simulations and experimental setup using a real underwater manipulator.
The developed solution can be easily integrated as a software upgrade into the control systems that
are present in the global fleet of industry standard work-class ROVs. Tests with real ROV hardware
verified that the computational load and memory consumption are not a problem. The authors believe
that the presented collision detection algorithm has a potential to be a useful add-on for ROV pilots
enabling them to execute typical IRM tasks with greater ease and speed, e.g., handling tools with both
manipulators in close vicinity to fragile equipment, such as cameras and sonars, knowing that no
harm can be done. This would reduce their fatigue and eventually provide cost savings in subsea IRM
operations in oil and gas, the MRE sector, and other fields of application.

Ongoing work is integrating the developed algorithm into the MRE ROV control software and
testing it in offshore trials. Subsea experiments will include physical simulation of intervention
operations with various mock-up test panels and tool skids. Specific manipulation tasks are to be
repeated multiple times with and without the implementation of the collision detection algorithm,
where an ROV manipulator operator will focus on executing tasks with increased speed. Measuring
the time required to complete the task and number of collisions during the process, and comparing
them to the traditional method, will reveal the actual performance of the proposed collision detection.
Additionally, further algorithm development is planned in order to address aspects such as software
optimisation, detecting potential manipulator self-collision, expanding the model library by including
different ROV operated tools, developing a real-time GPU-based visualisation as a pilot assisting tool
which can be useful in turbid and low visibility environments, and investigating alternative methods
of acquiring an ROV’s point cloud, including camera imaging and laser scanning.

Supplementary Materials: The following videos are available online: Figures 9 and 10: Simulation of collision-free
manipulation algorithm for work-class ROVs at https://vimeo.com/259666778, and Figure 12: Collision-free
manipulation algorithm experiment at https://vimeo.com/259666780.

Acknowledgments: This material is based upon works supported by Science Foundation Ireland (SFI) under
the Research Centres Award 2012, SFI Centre for Marine & Renewable Energy Research (12/RC/2302 and
14/SP/2740). The MaREI project is also supported by the following industrial partners: Resolve Marine Group,
Shannon Foynes Port Company, Teledyne BlueView, Teledyne Reson and The Commissioners of Irish Lights.

Author Contributions: S.S. and M.R. designed and developed the algorithm, performed the simulation and the
experiment, and analysed the data; J.C., E.O., G.D., and D.T. contributed to the paper by supervising the project;
S.S. and M.R. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

ROV: Remotely Operated Vehicle
IRM: Inspection, Repair, and Maintenance
MRE: Marine Renewable Energy
MCU: Master Control Unit
DOF: Degree of Freedom
DLL: Dynamic-link Library
GPU: Graphics Processing Unit
CAD: Computer-aided Design

https://vimeo.com/259666778
https://vimeo.com/259666780


Sensors 2018, 18, 1117 16 of 17

References

1. Djapic, V.; Nad̄, Ð.; Ferri, G.; Omerdic, E.; Dooly, G.; Toal, D.; Vukić, Z. Novel method for underwater
navigation aiding using a companion underwater robot as a guiding platforms. In Proceedings of the
OCEANS 2013 MTS/IEEE Bergen, Bergen, Norway, 10–14 June 2013; pp. 1–10.

2. Toal, D.; Omerdic, E.; Dooly, G. Precision navigation sensors facilitate full auto pilot control of Smart ROV
for ocean energy applications. In Proceedings of the 2011 IEEE Sensors, Limerick, Ireland, 28–31 October
2011; pp. 1897–1900.

3. Capocci, R.; Omerdic, E.; Dooly, G.; Toal, D. Fault-Tolerant Control for ROVs Using Control Reallocation
and Power Isolation. Preprints 2018, 2018030057.

4. Yuh, J.; West, M. Underwater robotics. Adv. Robot. 2001, 15, 609–639.
5. Capocci, R.; Dooly, G.; Omerdić, E.; Coleman, J.; Newe, T.; Toal, D. Inspection-class remotely operated

vehicles—A review. J. Mar. Sci. Eng. 2017, 5, 13.
6. Offshore Engineer. IKM, Statoil to introduce resident ROV. Available online: http://www.oedigital.com/

component/k2/item/13227-ikm-statoil-to-introduce-resident-rov (accessed on 2 May 2017).
7. Lee, B.H.; Lee, C.S.G. Collision-Free Motion Planning of Two Robots. IEEE Trans. Syst. Man Cybern. 1987,

17, 21–32.
8. Onda, H.; Hasegawa, T.; Matsui, T. Collision avoidance for a 6-DOF manipulator based on empty space

analysis of the 3-D real world. In Proceedings of the IEEE International Workshop on Intelligent Robots and
Systems, Towards a New Frontier of Applications, Ibaraki, Japan, 3–6 July 1990; Volume 2.

9. Chang, C.; Chung, M.J.; Lee, B.H. Collision avoidance of two general robot manipulators by minimum delay
time. IEEE Trans. Syst. Man Cybern. 1994, 24, 517–522.

10. Sivčev, S.; Omerdić, E.; Dooly, G.; Coleman, J.; Toal, D. Towards Inspection of Marine Energy Devices
Using ROVs: Floating Wind Turbine Motion Replication. In Proceedings of the ROBOT 2017: Third Iberian
Robotics Conference, Sevilla, Spain, 22–24 November 2017; Ollero, A., Sanfeliu, A., Montano, L., Lau, N.,
Cardeira, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 196–211.

11. Czarnecki, C.A. Collision free motion planning for two robots operating in a common workspace. In
Proceedings of the International Conference on Control ’94, Coventry, UK, 21–24 March 1994; Volume 2, pp.
1006–1011.

12. Greenspan, M.; Burtnyk, N. Obstacle count independent real-time collision avoidance. In Proceedings of
the IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996;
Volume 2, pp. 1073–1080.

13. Henrich, D.; Wurll, C.; Worn, H. Online path planning with optimal C-space discretization. In Proceedings
of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, BC, Canada, 17
October 1998; Volume 3, pp. 1479–1484.

14. Fei, Y.; Ding, F.; Zhao, X. Collision-free motion planning of dual-arm reconfigurable robots. Robot. Comput.
Integra. Manuf. 2004, 20, 351–357.

15. Freund, E.; Rossman, J. The basic ideas of a proven dynamic collision avoidance approach for multi-robot
manipulator systems. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, NV, USA, 27–31 October 2003; Volume 2, pp. 1173–1177.

16. Spencer, A.; Pryor, M.; Kapoor, C.; Tesar, D. Collision avoidance techniques for tele-operated and autonomous
manipulators in overlapping workspaces. In Proceedings of the 2008 IEEE International Conference on
Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 2910–2915.

17. Bosscher, P.; Hedman, D. Real-time collision avoidance algorithm for robotic manipulators. In Proceedings
of the 2009 IEEE International Conference on Technologies for Practical Robot Applications, Woburn, MA,
USA, 9–10 November 2009; pp. 113–122.

18. Afaghani, A.Y.; Aiyama, Y. On-line collision avoidance between two robot manipulators using collision map
and simple Escaping method. In Proceedings of the 2013 IEEE/SICE International Symposium on System
Integration, Kobe, Japan, 15–17 December 2013; pp. 105–110.

19. Afaghani, A.Y.; Aiyama, Y. On-line collision detection of n-robot industrial manipulators using advanced
collision map. In Proceedings of the 2015 International Conference on Advanced Robotics, Istanbul, Turkey,
27–31 July 2015; pp. 422–427.

http://www.oedigital.com/component/k2/item/13227-ikm-statoil-to-introduce-resident-rov
http://www.oedigital.com/component/k2/item/13227-ikm-statoil-to-introduce-resident-rov


Sensors 2018, 18, 1117 17 of 17

20. Smith, C.; Karayiannidis, Y.; Nalpantidis, L.; Gratal, X.; Qi, P.; Dimarogonas, D.V.; Kragic, D. Dual arm
manipulation—A survey. Robot. Auton. Syst. 2012, 60, 1340–1353.

21. Lee, S.D.; Song, J.B. Sensorless collision detection based on friction model for a robot manipulator. Int. J.
Precis. Eng. Manuf. 2016, 17, 11–17.

22. Sivčev, S.; Rossi, M.; Coleman, J.; Dooly, G.; Omerdic, E.; Toal, D. Fully Automatic Visual Servoing Control
for Work-class Marine Intervention ROVs. Control Eng. Pract. 2018, 74, 153–167.

23. García, A.; Feliu, V.; Somolinos, J.A. Experimental Testing of a Gauge Based Collision Detection Mechanism
for a New Three-Degree-of-Freedom Flexible Robot. J. Field Robot. 2003, 20, 271–284.

24. Lumelsky, V.; Cheung, E. Towards safe real-time robot teleoperation: Automatic whole-sensitive arm
collision avoidance frees the operator for global control. In Proceedings of the 1991 IEEE International
Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; Volume 1, pp. 797–802.

25. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous Robot Vehicles;
Cox, I.J., Wilfong, G.T., Eds.; Springer: New York, NY, USA, 1986; pp. 396–404.

26. Morikawa, S.; Senoo, T.; Namiki, A.; Ishikawa, M. Realtime collision avoidance using a robot manipulator
with light-weight small high-speed vision systems. In Proceedings of the 2007 IEEE International Conference
on Robotics and Automation, Roma, Italy, 10–14 April 2007; pp. 794–799.

27. Flacco, F.; Kröger, T.; Luca, A.D.; Khatib, O. A depth space approach to human-robot collision avoidance. In
Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA,
14–18 May 2012; pp. 338–345.

28. Agba, E.I. SeaMaster: An ROV-manipulator system simulator. IEEE Comput. Gr. Appl. 1995, 15, 24–31.
29. Cui, Y.; Sarkar, N. A unified force control approach to autonomous underwater manipulation. In Proceedings

of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April
2000; Volume 2, pp. 1263–1268.

30. Sarkar, N.; Podder, T.K. Coordinated motion planning and control of autonomous underwater
vehicle-manipulator systems subject to drag optimization. IEEE J. Ocean. Eng. 2001, 26, 228–239.

31. Conti, R.; Meli, E.; Ridolfi, A.; Allotta, B. An innovative decentralized strategy for I-AUVs cooperative
manipulation tasks. Robot. Auton. Syst. 2015, 72, 261–276.

32. Conti, R.; Fanelli, F.; Meli, E.; Ridolfi, A.; Costanzi, R. A free floating manipulation strategy for Autonomous
Underwater Vehicles. Robot. Auton. Syst. 2017, 87, 133–146.

33. Sivčev, S.; Coleman, J.; Adley, D.; Dooly, G.; Omerdić, E.; Toal, D. Closing the gap between industrial robots
and underwater manipulators. In Proceedings of the OCEANS 2015-MTS/IEEE Washington, Washington,
DC, USA, 19–22 October 2015; pp. 1–7.

34. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics Modelling, Planning and Control; Springer-Verlag:
London, UK, 2009.

35. Kavraki, L.E.; LaValle, S.M. Motion Planning; Springer: Berlin, Germany, 2016; pp. 109–111.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Algorithm
	Voxel Map Modelling—Static Obstacles
	Voxel Map Modelling—Manipulators
	Voxel Map Modelling—Manipulators' Workspaces
	The Collision Avoidance Algorithm

	Simulation and Experimental Results
	Conclusion and Future Work
	References

