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Abstract: Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much
research attraction because small and low-power CMOS devices are very suitable for deploying
sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing
of a wireless CMOS impulse radar system that can detect humans and objects in the home-care
internet-of-things sensing system. The challenges of low-power CMOS radar systems are the
weakness of human signals and the high computational complexity of the target detection algorithm.
The compressive sensing-based detection algorithm can relax the computational costs by avoiding
the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement.
The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for
compressive sensing radar; however, the complexity is still very high because the high resolution
of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a
two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not
only has lower complexity than the OMP algorithm by 75% but also achieves better positioning
performance than the OMP algorithm especially in noisy environments. This study also designed and
implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed
reconstruction processor can support the 256× 13 real-time radar image display with a throughput
of 28.2 frames per second.

Keywords: compressive sensing; CMOS radar; ranging

1. Introduction

The complementary metal-oxide-semiconductor (CMOS) radar system has recently drawn
much research attention because of the great demand of low-power actively sensing devices for
the internet-of-thing (IOT) system [1–3]. The human-centric home-care system is one of the most
potential applications of the CMOS radar system, in which an impulse-radio radar transceiver can
transmit high-frequency impulses to scan the weak respiration signals and identify the human body in
the noisy environments [4–6]. However, the high-resolution signal increases the dimension of grid
space, leading to the increased computational complexity of the target detection. Thus, the target
detection and weak human feature extraction are two important signal processing issues for the
human-centric CMOS radar system.

Traditional human detection algorithms detected respiration frequency in either time domain
or frequency domain [7–9]. However, most of them were developed by using simple sinusoidal
respiration model. Our previous work [10] designed a CMOS impulse radar system and developed a
respiration feature extraction algorithm for detecting fine human features. The proposed single-input
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single-output (SISO) impulse radar system can detect single human body in a tunable fixed distance
(1D distance) and extract the respiration features based on a four-segment linear waveform model.

The target detection and localization is another signal processing issue for the impulse radar
system because of its great computational complexity. Traditional radar systems usually achieve
high-accuracy target detection regardless of the computational cost because the radar station is usually
equipped with high-performance digital signal processors. For an IOT system, the computational
power of the target detection algorithm becomes a critical design issue because of the low-power
requirement of wireless sensing nodes. Therefore, many researchers [11,12] applied compressive
sensing (CS) reconstruction algorithms to the object detection to eliminate high-power matched filters
and high-bandwidth analog-to-digital converters. One the other hand, some researchers designed the
shape of the transmitted impulse to satisfy the incoherent constraint of CS. Thus, the reconstruction
algorithm can rebuild the target scene with better performance and lower complexity than a classical
radar in the literature [13,14].

The reconstruction algorithm dominates the signal processing complexity of a CS radar
system [15]. l1-minimization (basis pursuit) and greedy reconstruction are two typical algorithms.
l1-minimization [12,13] has robust reconstruction performance but involves very high complexity.
Greedy reconstruction algorithms, such as orthogonal matching pursuit (OMP), has worse performance
than l1-minimization. Thus, the greedy reconstruction algorithms [16–21] are more suitable for
low-power hardware implementation. For a certain CS-radar-scanned area, higher resolution leads to
higher grid density and higher reconstruction complexity. This design issue is especially stringent for a
human-centric wireless sensing system because the respiratory vibration is extremely fine and requires
a high resolution radar system. This work proposes a low-complexity two-stage OMP reconstruction
algorithm for a single-input multiple-output (SIMO) CS radar. The contributions of the proposed
algorithm are twofold. Firstly, the computational complexity of the proposed algorithm is significantly
lower than the OMP algorithm, especially when the resolution of the CS radar system increases.
Secondly, the detection performance of the proposed algorithm is better than that of the OMP algorithm
especially in noisy environments. Finally, a reconstruction processor was designed and implemented
for a real-time radar image display for the single-input and multiple-output (SIMO) CS radar system.

The rest of this paper is organized as follows. Section 2 introduces the signal model of the CS
radar system and the signal reconstruction algorithms for target detection. Section 3 presents the
proposed low-complexity reconstruction algorithm. Section 4 analyses the computational complexity
and performance of the proposed algorithm. Section 5 presents the FPGA design and implementation
of the proposed reconstruction processor. Finally, conclusions are given in Section 6.

2. Compressive Sensing Radar System

2.1. Compressive Sensing

The measurement process of compressive sensing system can be expressed by

y = Φr (1)

where y is an M× 1 sensing vector; Φ is an M×N measurement matrix; and r is an N× 1 vector of
the original signal with a higher dimension than y. Signal sparsity and incoherence of sensing matrix
are requisites of efficient signal reconstruction [22,23]. r can be described by

r = Ψx (2)

where Ψ is an N×N basis matrix of the sparse domain and x is an N× 1 coefficient vector in the sparse
domain. There are only a few non-zero elements in x. Using Ψ as basis, signal r can be transformed to
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the sparse domain as x with only K non-zero elements. K is much smaller than N. Then, the overall
compressive sensing signal model can be expressed by

y = Φr = ΦΨx = Ax (3)

where A = ΦΨ is the sensing matrix of the CS system.

2.2. SISO Compressive Sensing Radar System

In a single-input single-output compressive sensing impulse radar system, the received signal
can be expressed by

y(t) = ∑
i

pis(t− τi) (4)

where s(t) is transmitted impulse signal. The i-th target reflects the transmitted impulse signal with
signal gain pi and propagation delay τi. di is the distance between the radar and the i-th target and
can be calculated by di =

τic
2 , where c is the light velocity. The received signal can be also rewritten

as follows:
y(t) = ∑

i
αiz(t; di) (5)

where z(t; di) is the echo signal of the i-th target and αi is the signal gain coefficient determined by the
path loss and other properties of the target, such as energy reflection/absorption ratio of the target.

2.3. MIMO Compressive Sensing Radar System

A multiple-input multiple-output (MIMO) radar system has many advantages over a SISO radar
system [24]. The MIMO radar can scan targets in a 2-D space by using phase array antennas [25].
On the other hand, multiple transmitted impulse signals can be properly designed to reduce the
degree of coherence of the compressive sensing system so as to improve the signal reconstruction
accuracy [13,14]. The received signal of the MIMO compressive sensing radar can be expressed by

y(t) = ∑
k

αkz(t; φk, dk) (6)

where αk is amplitude coefficient of the k-th target, and φk and dk are the direction (angle) and distance
of the k-th target, respectively. The echo signal z(t; φ, d) is extended from z(t; d) in Equation (5) with
an additional dimension φ .

Assume that a MIMO radar system has NR receive antennas and NT transmit antennas, and each
receive antenna acquires NS samples. The echo signal matrix of a target with distance d and angle φ is
denoted as Z(t; φ, d). Echo signal z(t; φ, d) in Equation (6) is a vectorized version of the echo signal
matrix Z(t; φ, d). Echo signal matrix Z(t; φ, d) is an NR ×NS matrix, and echo signal z(t; φ, d) is an
NRNS× 1 vector. The echo signal matrix Z(t; φ, d) can be constructed by using uniformly-spaced linear
array (ULA) [12] and can be expressed as follows:

Z(t; φ, d) = aR(φ)aT
T(φ)S(t− τ) (7)

where aR(φ) is an NR × 1 receive matrix, aT(φ) is an NT × 1 transmit matrix, and S(t − τ) is an
NT ×NS transmitted signal matrix. The delay τ can be calculated by using τ = 2d

c . In the transmitted
signal matrix S(t− τ), each row of the matrix are the delayed transmitted signal si(t− τ) of the i-th
transmit antenna. Transmit matrix aT(φ) and receive matrix aR(φ) are given by Equations (9) and (10),
respectively, in which dT and dR are the normalized spacings (distance divided by wavelength) of the
transmit antennas and receive antennas, respectively [12]. According to Equations (8)–(10), echo signal
matrix Z(t; φ, d) in Equation (7) can be established. Then, echo signal vector z(t; φ, d) in Equation (6)
can be generated by vectorizing the echo signal matrix Z(t; φ, d).
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S(t− τ) =


· · · Ns samples of s1(t− τ) · · ·
· · · Ns samples of s2(t− τ) · · ·

...
· · · Ns samples of sNT(t− τ) · · ·

 (8)

aT(φ) =
[
1 ej2πdT sin(φ) · · · ej2πdT sin(φ)(NT−1)

]T
(9)

aR(φ) =
[
1 ej2πdR sin(φ) · · · ej2πdR sin(φ)(NR−1)

]T
(10)

The target scene of an MIMO radar system is a discrete Nr × Nθ range-azimuth grid.
When a target is at the range-azimuth grid point (θi, rj) within the coverage of the MIMO radar

system, that is, 1 ≤ i ≤ Nθ and 1 ≤ j ≤ Nr, the received signal can be expressed by

y(t) =
Nθ

∑
i=1

Nr

∑
j=1

xijz(t; θi, rj), (11)

where z(t; θi, rj) is the echo signal of the target at (θi, rj) and xij is the signal gain coefficient. If there is
no target at (θi, rj), then xij = 0. The object detection and localization is to find a set of non-zero xijs
in Equation (11). Equation (11) can be expressed in matrix form in Figure 1. The number of targets,
denoted as K, is much smaller than the number of grid points (K � NθNr). Thus, the matrix form
in Figure 1 can be regarded as a CS signal model and sensing matrix A is composed of z(t; θi, rj).
The object detection searches a set of echo signals in the received signal, and indices of echo signals
represent their locations.

Figure 1. Multiple-input multiple-output (MIMO) compressive sensing radar model.

2.4. Path Loss and Human Respiration Signal Model

Path loss of the travelling electromagnetic wave determines the signal gain coefficient xij.
This work utilizes a radar system [10] integrated with a CMOS impulse radar chip [1] to measure the
path loss parameters of metallic objects and human bodies, as shown in Figure 2a,b. The CMOS radar
system transmits 25 dBm 1 GHz sinusoidal impulse with a repetitive 10 MHz frequency, resulting
in 0.94 mm range resolution. Figure 3a shows the measured results of the path loss versus logthmic
radius distance. The power attenuation of human is more than 20 dB than that of a mental object due
to the high energy absorption ratio of human body. The 0.94 mm resolution is fine enough to capture
tiny respiratory information. This study adds four-segment linear waveform (FSLW) [10] respiration
signals into the echo signals of human target to simulate the practical human respiration.

Based on the measurement results, this study constructs a SIMO impulse radar system with
4 receive antennas and 1 transmit antenna, which are configured as shown in Figure 3b. Each receive



Sensors 2018, 18, 1106 5 of 21

antenna receives 128 samples for each iteration. The maximum detection range is 5 m, and direction
(angle) is between +45 and −45 degrees. The range resolution is Nr = 256 and angle resolution is
Nθ = 13, that is, target scene forms 256× 13 range-azimuth grid. The sensing matrix of the CS radar
system is a 512 × 3328 matrix. aT(φ) and aR(φ) are determined by (9) and (10) with Nt = 1 and
Nr = 4, respectively. The receive antenna spacing dR is λ

2 . There are three targets in the scene. One is
a non-human object and the others are human bodies, which are modelled by the FSLW respiration
model [10] with intensity A = 0.01 m, inspiration speed β1 = 0.5, expiration speed β2 = 0.5, and
respiration holding ratio X = 0.5. The respiration rate of two persons are 0.5 Hz and 0.8 Hz, respectively.
The non-human target is located at the distance 4.5 m and angle 22.5◦. One person is located at the
distance 2 m and angle −7.5◦, and the other is located at distance 3.5 m and angle 30◦.

(a) (b)

Figure 2. (a) The complementary metal-oxide-semiconductor (CMOS) radar system [10] and
(b) measurement environments.
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Figure 3. (a) Single-input multiple-output (SIMO) radar configuration and (b) the measured path loss
models of the human body and metal object.

2.5. Reconstruction Algorithms for Compressive Sensing

Orthogonal matching pursuit (OMP) [26] is one of the popular greedy reconstruction algorithms
for compressive sensing. For a compressive sensing framework y = Ax, y is M× 1 measurement vector,
A is M×N sensing matrix, and x is N× 1 signal vector. First, the OMP algorithm searches the support
set iteratively according to the matching results by

α = ATy =
[

a1 a2 · · · aN

]T
y (12)
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The determined index with the maximum matched gain is added into the support set Ik of the
k-th iteration. Then, the estimated signal vector of the k-th iteration, denoted as x̂k, can be reconstructed
by x̂k = A†

Ik
y, where A†

Ik
is the pseudo-inverse of AIk . Then, the residual of the k-th iteration can be

calculated by rk = y−AIk x̂k. The residual rk is then used to match the index of the next iteration by
αk = AT

Ĩk
rk, where Ĩk is complementary set of support set Ik. Algorithm 1 shows the pseudo code of

the OMP algorithm.

Algorithm 1 Orthogonal Matching Pursuit Algorithm
Input: Sensing matrix A, measurement y, target sparsity K
Output: Support set Ik, estimate x̂k

1: Initialization:
• k = 1; I0 = φ;
• r0 = y; α0 = ATrk−1

2: repeat
3: ik = arg max(|αk−1|)
4: Ik = Ik−1 ∪ {ik};
5: x̂Ik = A†

Ik
y;

6: rk = y−AIk x̂Ik ;
7: αk = AT

Ĩk
rk

8: k=k+1;
9: until (k ≥ K)

2.6. Orthogonal Matching Pursuit via Matrix Inversion Bypass

The computational bottleneck of the OMP algorithm is the matrix inversion in Step 5 of
Algorithm 1. Thus, this study uses the Schur-Banachiewicz block-wise inversion [27,28] to reduce
the complexity. The derived OMP algorithm is called the orthogonal matching pursuit via matrix
inversion bypass (OMP-MIB) [29]. We denote N×N matrix G = ATA and GI ,J = AT

IAJ , where I
and J are any two support sets. Thus, the estimated signal vector can be rewritten as

x̂k = A†
Ik

y = G−1
Ik ,Ik

AT
Ik

y, (13)

where GIk ,Ik is a K × K matrix. Schur-Banachiewicz block-wise inversion is then applied to
Equation (13). Hence, matrix inversion in Equation (13) can be expressed by

G−1
Ik ,Ik

=

[
GIk−1,Ik−1

GIk−1,i
Gi,Ik−1

Gi,i

]−1

=

[
G−1
Ik−1,Ik−1

+ WTVW −WTV
−VW V

] (14)

where W is 1× (K− 1) matrix is
W = Gi,Ik−1

G−1
Ik−1,Ik−1

(15)

and V is a scalar:
V =

(
Gi,i −Gi,Ik−1

G−1
Ik−1,Ik−1

GIk−1,i

)−1
(16)

Equation (14) shows that the matrix inversion of GIk ,Ik can be replaced by several
matrix operations. Since V is a simple reciprocal operation, matrix inversion operation is not required
in Equation (14). The pseudo code of the OMP-MIB algorithm is shown in Algorithm 2.
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Algorithm 2 Orthogonal Matching Pursuit via Matrix Inversion Bypass
Input: Sensing matrix A, measurement y, target sparsity K
Output: Reconstructed signal x̂, support set Ik
1: Initialization:

1. I0 = φ; r0 = y;
2. α0 = ATr0; G = ATA;
3. i1 = arg max(|α0|), I1 = I0 ∪ {i1};
4. G−1

I1 ,I1
= 1/Gi1 ,i1

5. x̂I1 = A†
I1

y;
6. α1 = AT

Ĩ1
y−GĨ1 ,I1

x̂I1 ;
7. Iteration counter k = 2;

2: repeat
3: ik = arg max(|αk−1|)
4: Ik = Ik−1 ∪ {ik}
5: W = Gik ,Ik−1

G−1
Ik−1 ,Ik−1

6: V =
(

Gik ,ik −WGIk−1 ,ik

)−1

7: U = WAT
Ik−1

y−AT
i y

8: G−1
Ik ,Ik

=

 G−1
Ik−1 ,Ik−1

+ VWTW −VWT

−VW V


9: αk = αk−1 −GĨk ,Ik

 VUWT

−VU


10: x̂k =

 x̂k−1

0

+

 WTVU

−VU


11: until k ≥ K

3. Two-Stage Reconstruction Algorithm

The complexity of the OMP reconstruction algorithm increases along with the increased sensing
resolution and dimension of the sensing matrix. In order to reduce high reconstruction complexity
for the CMOS impulse radar system, this study proposes a two-stage OMP reconstruction algorithm
including block-wise OMP estimation, weight updating and decision mechanism, and fine estimation.
Figure 4a shows the processing flow chart of the proposed algorithm.

Coarse Positioning 

(Block-wise Estimation)

start

# of Iteration > 

# of training?

Update Weights

Decision

YES

Fine Positioning (OMP)
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Figure 4. (a) Flow chart of the proposed low-complexity two-stage OMP reconstruction algorithm and
(b) the decision strategy.
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3.1. Block-Wise OMP Estimation

The proposed algorithm first performs block-wise OMP, which reduces the sensing matrix size to
estimate the rough target regions. In the CS radar, each column of a sensing matrix A represents the
echo signal of a specific grid point. Because the neighbouring grid points have similar echo signals,
A can be separated into several blocks and each block is the concatenation of neighbouring columns.
Thus, the target locations can be coarsely estimated by the block-wise OMP estimation. The block-wise
OMP algorithm first downsizes A into a new sensing matrix D by Dj = A(j−1)×(B+1) + · · ·+ Aj×B,
where B is the block size. The j-th column of a downsized sensing matrix D is the sum of columns
in the j-th block of A. The block-wise OMP estimation can be regarded as the OMP using D as the
sensing matrix. The detailed block-wise OMP algorithm is shown in Algorithm 3. The block-wise
OMP estimation selects several block candidates and stores their indices in a candidate set Iblock for
the following weight updating.

Algorithm 3 Block-Wise Estimation Algorithm

Input: Sensing matrix A, measurement y, target sparsity K, block size B
Output: Support set Ik

1: Initialization:
• k=1; I0 = φ;
• New sensing matrix D where Dj = A(j−1)B+1 + · · ·+ AjB

• r0 = y; α0 = DTrk−1
2: repeat
3: iblock = arg max(|αk−1|)
4: Ik = Ik−1 ∪ {iblock};
5: x̂Ik = D†

Ik
y;

6: rk = y−DIk x̂Ik ;
7: αk = DT

Ĩk
rk

8: k=k+1;
9: until (k ≥ K)

3.2. Weight Updating

Each block has a weight representing the possibility of having targets within the block.
The proposed algorithm calculates weights by using historical coarse estimation results. The proposed
weighting mechanism utilizes the fact that the blocks near a known object have higher opportunities
of having objects in, even in a noisy environment. Thus, the proposed algorithm collects coarse
estimation results of the previous iteration for evaluating the block weights. The weight updating is
expressed by Z (Iblock) = Z (Iblock) + 1, where is the candidate set selected by the coarse estimation.
The size of Iblock is determined by the number of block candidates Kb of the compressive sensing
system. The algorithm adopts several sensing matrix A from the UWB radar system and skips the fine
estimation in the first a few Tnum iterations of the training mode. This weight computation helps to
increase the reliability of the weight distribution. The algorithm usually needs only one or two training
iterations in low-noise conditions.

3.3. Decision Strategy for Fine Estimation

After updating weights, the algorithm selects the blocks to be performed by the following fine
estimation according to the decision strategy shown in Figure 4b. The first step performs weight sorting.
The blocks are sorted in the descending order of their weights. The second step is block merging.
Since the size of human body is much larger than the respiratory spatial variation, the neighbouring
selected blocks could represent the same target. Thus, this step merges the block candidates within a
merging distance Mg into the block with the largest weight. Then, the merged blocks are discarded
and their weights are added to the weight of the winner block. The final step selects the remaining
candidate blocks by comparing the normalized weights with a specified threshold Th. After the
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threshold decision, the fine estimation combines the columns of the selected blocks as sensing matrix
to perform the fine object positioning. Notice that the block merging in the decision process assumes
that the size of human body is much larger than the respiratory spatial variation because the radar
ranging resolution is much higher than the body resolution. Thus, sparsity K in the fine estimation
OMP is no larger than Kb to locate the detailed positions of the human bodies or objects. Following
simulation and hardware design assume K = Kb without the loss of generality.

After the location of targets are estimated by the OMP estimation, the algorithm returns back to
the next iteration. Notice that the block weights are not reset and remain the same at the beginning of
the next iteration. The detailed two-stage reconstruction algorithm is shown in Algorithm 4.

Algorithm 4 Proposed Two-Stage Reconstruction Algorithm

Input: sensing matrix A; received signal y; number of targets K; block size B; training number Tnum; threshold Th;

merging distance Mg; number of block candidates Kb;
Output: Support set Iout

1: Initialization: Let iteration counter k = 1, and initialize weights Z
(

1 : N
B

)
= 0;

2: Acquire received signal yk of k-th iteration;
3: Coarse positioning(Block-Wise Estimation Algorithm):

(A) Calculate downsized sensing matrix D where Dj = A(j−1)B+1 + · · ·+ AjB

(B) Iblock = OMP (D, yk, Kb);

4: Update weights: Z (Iblock) = Z (Iblock) + 1;
5: if k≤Tnum then
6: Let k = k + 1 and goto Step 2 for next iteration;
7: end if
8: Decision:

(A) Sorting: [Zsort, Isort] = Sort (Z (Iblock) , Iblock)

(B) Merging:
1. for all i and j such that Isort (i)− Isort (j) < Mg and i 6=j do
2. if Zsort (i) > Zsort (j) then
3. Zsort (i) = Zsort (i) + Zsort (j)
4. and remove Isort (j) from Isort

5. else
6. Zsort (j) = Zsort (j) + Zsort (i)
7. and remove Isort (i) from Isort

8. end if
9. end for

(C) Selection:

1. Threshold calculation: t = Th×sum (Z)
2. Iselect = Isort (1 : K)
3. Removing Iselect (i) from Iselect for every i that satisfies Zsort (i) < t

9: Fine positioning: Iout = OMP
(
AIselect , yk, K

)
;

10: Output Iout, and let k = k + 1;
11: Goto Step 2 in order to acquire new received signal;

4. Complexity and Performance Analysis

This section analyses the computational complexity of the conventional OMP algorithm, OMP via
MIB algorithm, and the proposed two-stage OMP algorithms with and without MIB. The complexity
analysis is based on the number of multiplications of several matrix operations. The complexity
of the matrix inversion for an n × n matrix is O(n3). The complexity of the matrix multiplication
A× B is O(mnk), where A is an m× n matrix and B is an n× k matrix. The complexity of the matrix
pseudo-inverse A† is O(n3 + 2mn2).
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4.1. Orthogonal Matching Pursuit Algorithm

Algorithm 1 shows the OMP algorithm. The computational complexity of the pseudo matrix
inversion and multiplication in Step 5 is O(k3 + 2mk2 + mk). The complexity of Step 6 and Step 7
areO(mk) andO((n− k)m). Thus, total complexity of the OMP algorithm isO(k3 + 2mk2 + nm+mk).
For the fair comparison with the OMP-MIB algorithm, the computation of matrix pseudo-inverse
A†
Ik

= (AT
Ik

AIk )
−1AT

Ik
can be reduced to A†

Ik
= (GIk ,Ik )

−1AT
Ik

. Therefore, computational complexity
of matrix pseudo-inverse A†

Ik
is O(k3 + mk2). Thus, total complexity of the OMP algorithm is

O(k3 + mk2 + nm + mk).

4.2. OMP-MIB Algorithm

Algorithm 2 shows the OMP-MIB algorithm. The complexity of calculating W, V, and U are
O((k − 1)2), O(k), and O(mk + k − 1), respectively. Steps 8, 9, and 10 calculate G−1

Ik ,Ik
, αk, and x̂k,

respectively. The computational complexity of calculating VWTW in Step 8 is O((k− 1)2 + (k− 1)).

In Step 9, the complexity of
[
VUWT −VU

]T
is O(k). Thus, computational complexity of calculating

GĨk ,Ik

[
VUWT

−VU

]
is O(nk − k2). Thus, the total complexity of the OMP via MIB algorithm is

O(k2 + nk + mk− 1) ≈ O(k2 + nk + mk).

4.3. Proposed Two-Stage OMP Reconstruction Algorithm

The major complexity of the proposed two-stage reconstruction algorithm are the OMP
calculations for both coarse and fine positioning. The block-wise estimation is an OMP algorithm
for a downsized m × nc sensing matrix D. Thus, the complexity of the coarse positioning is
O
(
k3 + mk2 + ncm + mk

)
. For block size b, nc can be expressed as nc = n

b . Thus, the complexity
of the coarse positioning becomes O

(
k3 + mk2 + n

b m + mk
)
. The fine positioning uses a m × n f

sensing matrix to perform the OMP algorithm for the selected blocks. Thus, the complexity is
O
(

k3 + mk2 + n f m + mk
)

, and n f can be expressed as n f = kb. Hence, the complexity of the

fine positioning becomes O
(
k3 + mk2 + kbm + mk

)
. The total complexity of the proposed two-stage

reconstruction algorithm is O
(
k3 + mk2 + n

b m + mk
)
+O

(
k3 + mk2 + kbm + mk

)
.

In addition, both the coarse and fine positioning can be realized by using OMP-MIB algorithm.
Thus, the complexity of coarse and fine positioning are O

(
k2 + nck + mk

)
and O

(
k2 + n f k + mk

)
,

respectively. By substituting nc = n
b and n f = kb into O

(
k2 + nck + mk

)
and O

(
k2 + n f k + mk

)
,

respectively, Thus, the complexity of the coarse and fine positioning by using OMP-MIB algorithm are
O
(
k2 + n

b k + mk
)

and O
(
(b + 1) k2 + mk

)
.

Figure 5a shows the complexity analysis results with the sparsity factor k = 3 and block size
b = 4. The complexity of two-stage OMP algorithm is much lower than the OMP algorithm. The OMP
via MIB algorithm can further reduce the complexity of the OMP and two-stage OMP algorithms,
as shown in Figure 5b. In this case, the proposed two-stage algorithm still has lower complexity.

Figure 6 shows the complexity of various block sizes. Figure 6b shows the complexity of the
OMP-MIB and the proposed two-stage OMP-MIB algorithm since they are too close in Figure 6a.
The complexity of the proposed algorithm decreases along with the increased block size because
of the decreased dimension of the sensing matrix of the block-wise estimation. The complexity
of the proposed two-stage OMP reconstruction with block size b = 4 reduces approximately 75%
complexity of the conventional OMP algorithm. Figure 6b shows that proposed two-stage OMP-MIB
algorithm with block size b = 4 reduces approximately 50% complexity comparing to original OMP
via MIB algorithm. The complexity reduction percentage would further increases when the radar
resolution increases, that is, the dimension of the original sensing matrix A increases. This is a great
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benefit to human detection because the impulse radar usually requires very high radio frequency and
very high spatial resolution in order to acquire the tiny movement of the human respiration.

(a) (b)

Figure 5. Complexity analysis results of (a) the orthogonal matching pursuit (OMP) and two-stage
OMP algorithms w/o OMP-Matrix Inversion Bypass (MIB) scheme and (b) the OMP and two-stage
OMP algorithms with OMP-MIB scheme.
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Figure 6. Computational complexity versus block size where m = 512, and n = 3328.

4.4. Simulation Result

Figure 7 shows the positioning results of the OMP and two-stage OMP algorithms. 500 impulses
are used to simulate the CS radar processing under different SNR conditions. The sensing matrix A
is derived from the MIMO compressive sensing model in Sections 2.2–2.4. The “estimate” points are
the detected targets, which are sent to the respiration feature extraction algorithm [10] to identify the
human and object. When SNR is 24 dB (Figure 7a,d), both the OMP and two-stage OMP algorithm can
perfectly locate the object and humans. When SNR is 6 dB (Figure 7b,e), the OMP algorithm generates
a few incorrect estimation results of the object and human locations, but the proposed algorithm still
perfectly locates the object and humans. When SNR is −6 dB (Figure 7c,f). However, the proposed
algorithm can still detect one human target with some incorrect results and detect the non-human
target perfectly. The proposed two-stage reconstruction algorithm has better positioning performance
than the conventional OMP algorithm especially in noisy environments.
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Figure 7. The compressive sensing (CS) radar scenes using the OMP reconstruction in (a) 24 dB, (b) 6 dB,
and (c) −6 dB SNR environments. The CS radar scenes using the two-stage OMP reconstruction in
(d) 24 dB, (e) 6 dB, and (f) −6 dB SNR environments.

4.5. Performance Analysis

This study uses three metrics to perform detailed analysis of the reconstruction and detection
results including normalized mean square error (NMSE), number of hits, and hit ratio. These metrics
show some properties that are not revealed in Figure 7.

The normalized mean squared error of the reconstructed signals by CS radar is defined by

NMSE =
‖yestimate − ytrue‖2

2

‖ytrue‖2
2

, (17)

where ytrue is the received radar signal and yestimate is the reconstructed signal by the OMP or the
proposed algorithm. Number of hits is the number of correct estimates in the simulation. The hit ratio
is the detection probability defined by

Hit Ratio =
Number of Correct Estimates

Number of Total Estimates
. (18)

Figure 8a shows the NMSE verus SNR performances of the OMP and two-stage OMP algorithms
with different block sizes. The proposed two-stage OMP algorithm has worse NMSE performance
because the proposed algorithm utilizes threshold mechanism to discard bad estimates and distort the
reconstruction signal. However, the NMSE does not necessarily reflect the detection and positioning
performance, as shown in Figure 7, because a lower NMSE value only means that the signal is better
reconstructed by the OMP process but the reconstructed signal has an incorrect combination of indices,
that is, the support set IK. The proposed algorithm with b = 6 has better NMSE than that with b = 4
because the threshold mechanism with b = 4 is more strict than that with b = 6 because the block
weights is not normalized as we mentioned in Section 3. Hence, the proposed algorithm with b = 6
makes estimated results more easily to reach the threshold, leading to lower NMSE. This is similar to
the reason that causes the better RMSE of the OMP algorithm. Figure 8b shows that the hit ratio of the
two-stage OMP is better than that of the OMP. This implies that the matching pursuit quality of the
two-stage OMP algorithm is better than that of the OMP algorithm.
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Figure 8. Analysis results of (a) NMSE and (b) hit ratio for different block sizes.

Figure 9a shows the NMSE versus SNR with different thresholds. The OMP has lower NMSE
than the proposed algorithm because of the threshold mechanism. A higher threshold of the proposed
algorithm causes a higher NMSE value because more matched results are discarded. Figure 9b shows
the hit ratio of the algorithms for different thresholds. A lower threshold leads to a larger number
of hits. Threshold Th = 1% has the highest hit number in the analysis of the proposed algorithm,
but the hit ratio is unstable when SNR lower than 10 dB.
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Figure 9. Analysis results of (a) normalized mean square error (NMSE) and (b) hit ratio for
different thresholds.

5. Architecture Design and Implementation

This section introduces the hardware design and implementation of the proposed two-stage
reconstruction algorithm. The OMP processing for coarse and fine positioning are the most
complex and time consuming steps. Thus, an OMP processor was designed to accelerate the
reconstruction processing.

5.1. Architecture of OMP via MIB Processor

Figure 10 shows the overall architecture, which can be divided into two parts. One is Matching
Result Update and Index Selection Unit, and the other is Parameter Update Unit. The gray blocks
are data memories including ROMs for G and sensing matrix, a single-port SRAM for αinit, and a
dual-port SRAM for α. G_inv, GIK_IK, αinitIk, and support set Ik are register file. GIK_IK and αinitIk
are buffers for parallel data streams. Ik is the storage of support set. Initially, α serves as register
and loads the received signal firstly for calculating matching result, and then initialization steps are
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executed by matching result update circuit and index selection circuit. After initialization, updating
GIK_IK and αinitIk that store specific value from G ROM and αinit RAM for computing parameter
W, V, U, and W, V, U are calculated by parameter update unit sequentially. Then G−1

Ik ,Ik
and αk are

updated. Support set is also updated during the process of updating αk. Then the algorithm goes to
next iteration.

Index 
Selection

Sensing 
Matrix

 

G

G_inv

Support set Ik

Update

Initialize and 
update 

matching result
α

Update

Memory

y received 
signal Matching result 

Update and Index 
Selection Unit

Parameter 
Update Unit

α

i n i t
α

GIK_IK

α
init k

I

Buffer

, ,WVU − � �
� �−� �

1,
TVUW

G
VU

Figure 10. Block diagram of the proposed architecture.

5.2. Matching Result Update and Index Selection Unit

5.2.1. Initialization and Matching Result Update Circuit

Figure 11 shows the matching result update circuit. The Parallel MAC consists of Nmul
multiply-and-accumulate circuits (MACs) that determine the speed of matrix multiplication.
The number of subtractor circuits in the Parallel Subtractor is also Nmul.

The matching result update circuit not only calculates the matching result but also performs the
initialization of the OMP-MIB algorithm. In initialization phase, parallel MAC calculates the initial
matching result first. Because of the extremely high dimension of sensing matrix and received signals,
it is impossible to execute the parallel MAC for vector-vector multiplication of each column of
sensing matrix in a clock cycle. Thus, the partial results are accumulated by summation circuit
and registers. For an M×N sensing matrix, the matching result update circuit produces one element
of α0 in every M

Nmul
clock cycles. Since the elements of initial matching result vector α0 are computed

sequentially, index selection circuit compares the maximum value of initial matching result vector one
by one, therefore, reducing the complexity of index selection circuit. The resultant α0 is then stored in
memory αinit. The calculations of initial matching result can be finished in N M

Nmul
clock cycles.

In the initialization phase, index i1 is computed by index selection circuit, and G−1
I1,I1

is computed

by reciprocal circuit. After G−1
I1,I1

is calculated, x̂I1 is produced by parallel MAC and stored in xinit,
which will be used for the calculation of new matching result α1 by parallel MAC and parallel
subtractor circuits. Figure 11a shows the processing flow of the initialization in the data path circuit.

The matching result update circuit updates αk based on αk−1 and matrices W, V, U. Dual-port
SRAM is used for simultaneous reading and writing of αs. αk is obtained by subtracting αk−1 by the

parallel MAC output of the matrix multiplication GĨk ,Ik
×
[

VUWT

−VU

]
. Parallel MAC calculates Nmul

elements of matrix multiplication operation in every k clock cycles, where k is the iteration counter
and Nmul is the number of MAC circuits. The Nmul partial results from parallel MAC subtract the
matching result vector αk−1 concurrently by parallel subtractor circuits to obtain Nmul elements of αk.
There are N− k elements in the vector αk for a M×N sensing matrix and N− k >> Nmul. Therefore,
the matching result updating is the most time consuming step in the algorithm. Figure 11b shows the
processing flow of matching result updating process.
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Figure 11. Processing flows of matching result update circuit for (a) initialization and (b) common
matching result update in the data path circuits.

5.2.2. Index Selection Circuit

Figure 12 shows the index selection circuit. At initialization stage, the matching result update
circuit calculates the elements of initial matching result vector α0 sequentially, and then index
selection circuit compares and selects the index of the elements with maximum matching result.
At the iteration stage, the matching result update circuit outputs Nmul matching results concurrently.
Therefore, index selection circuit compares these Nmul matching results by using maximum circuit.
Maximum matching result of the maximum circuit is further compared with the previous maximum
matching result. The larger result is preserved for the next comparison. Figure 12 shows processing
flows of index selection circuit for the initialization and common matching result update processes.
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5.3. Parameter Update Unit

Figure 13 shows the architecture of parameter update unit, which consists two circuits to update
the matrices W, V, U. The vector multiplier and parallel multiplier both use K − 1 multipliers to
execute vector multiplication and parallel multiplication. Figure 13a shows the parameter update
circuit for W, V, and U. W is first calculated in k− 1 clock cycles in the k-th iteration. Then, V and
U are computed in one clock cycle. After W, V and U are updated, the circuit shown in Figure 13b
computes the matrix multiplications of VW, VUWT, and VWTW, which are used for updating new
matching result αk and G−1

Ĩk ,Ik
stored in memory G_inv.

Figure 13b shows the several matrix multiplication circuits. First, VW is calculated in one
clock cycle. Then, VU, VUWT, and VWTW are calculated concurrently. VU and VUWT require
one clock cycle, and VWTW requires k − 1 clock cycles. After these matrices are updated,
new matching result αk and index ik can be determined by the matching result update circuit and
index selection circuit.
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Figure 13. Architecture of parameter update unit where (a) updates W, V, U and (b) updates G_inv,
VUWT, VU.

In the block diagrams of the afore-mentioned circuits, some processing modules, such as
parallel MACs, parallel substractors, parallel multipliers, and vector multiplier, can be referred to our
previous works [30,31].

5.4. Implementation Results and Comparison

The proposed two-stage OMP processor was designed and implemented by using Software and
Xilinx Virtex-7 FPGA (Xilinx, San Jose, CA, USA). The proposed two-stage reconstruction algorithm
was realized by Matlab software (MathWorks, Natick, MA, USA) except that the pure OMP processing
functions (Line 3.(B) and 9 in Algorithm 4) are accelerated by FPGA hardware. The original CS
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radar system has a 512× 3328 sensing matrix derived from the MIMO compressive sensing model
in Section III B, C, and D, with b = 4, k = 8, and SNR = −20 dB, that is, the coarse estimation
performs OMP reconstruction for a 512× 832 sensing matrix, and the fine estimation performs OMP
reconstruction for a 512× 32 sensing matrix. The OMP processor was implemented for both 512× 832
and 512× 32 sensing matrices. In the fixed-point simulation, the number of correctly selected indices
in Ik are used to determine the number of fractional bits with 13 integer bits of the signals in memory.

Table 1 shows the hardware resources utilized in the proposed processor. The processing time
for reconstruction of a 512× 3328 CS matrix is 35 ms. The corresponding radar image frame rate is
about 28.2 frames per second, which approaches the typical video frame rate. Table 2 compares the
proposed OMP processor with other reconstruction processors in the literature. The major differences
of the proposed processor are the large compressing sensing matrix size and targeted application.
The CS radar system has an extremely large CS matrix dimension to provide very high radar image
resolution for the detection of very fine human respiration signal. Thus, it is difficult and almost
impossible to implement such a high-dimension signal reconstruction processor for the CS radar system.
The proposed two-stage reconstruction algorithm successfully reduces the complexity by reducing the
CS matrix dimension in the coarse positioning and still maintains the high-precision reconstruction
by fine-positioning. Although traditional reconstruction processors have small processing latencies,
they only support much lower dimensions than the proposed two-stage OMP processor. If these
traditional algorithms are applied to the compressive sensing radar system with such a high dimension,
it is impossible to realize a real-time processor for the CS radar system. In the application aspects,
the proposed processor supports 28.2 frames per second for the radar image real-time display.
This image refreshing throughput is good enough for the human vision response.

Table 1. FPGA Implementation Results.

Plate-Form Xlinx FPGA + Software

Model Vertex-7

Slice Registers 6535
Slice LUTs 207,967

Block RAMs 1092
DSPs 560
Clock 318 MHz

Latency 35.4 ms
Radar Image Resolution 256× 13

Radar Image Rate 28.2 frames/s
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Table 2. VLSI implementations of OMP processors.

Proposed [19] [21] [29] [32] [30] [33]

Algorithm Two-Stage OMB-MIB OMP OMP OMP-MIB OMP PIS-MIB-SOMP SGP
Technology Virtex-7 Virtex-5 65 nm 65 nm Vertex-6 90 nm 90 nm

(N,M) (3328,512) (128,32) (256,64) (256,150) (1024,256) (1024,256) (256,64)
Sparsity 8 5 8 variable 36 12 8

Clock (MHz) 318 39 165 500 120 141 150
Latency Time (µs) 35,400 24 13.7 NONE 340 72.2 61.97

Function Radar Object Detection Signal Reconstruct Signal Reconstruct Signal Reconstruct Signal Reconstruct Signal Reconstruct Signal Reconstruct
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6. Conclusions

This study proposes a two-stage reconstruction algorithm for the compressive sensing radar.
The proposed algorithm has better positioning performance and lower complexity than the traditional
OMP algorithm. The OMP can be replaced by any reduced-complexity algorithm, such as OMP via MIB,
but the proposed two-stage reconstruction is still effective in reducing cost and improving performance.
This work applied a practically-measured path-loss model and a human respiratory signal model from a
CMOS impulse radar system to configure a 4× 1 SIMO radar system to analyse the proposed algorithm.
The proposed algorithm utilizes block-wise OMP estimation, weight threshold mechanism, and fine
estimation to reduce the complexity and improve the performance. The simulation results show that
the proposed algorithm needs only 25% computational complexity of the conventional OMP algorithm
and has a better positioning performance than the OMP algorithm especially in noisy environments.
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