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Abstract: This paper considers the problems of the posterior Cramér–Rao bound and sensor selection
for multi-sensor nonlinear systems with uncertain observations. In order to effectively overcome the
difficulties caused by uncertainty, we investigate two methods to derive the posterior Cramér–Rao
bound. The first method is based on the recursive formula of the Cramér–Rao bound and the Gaussian
mixture model. Nevertheless, it needs to compute a complex integral based on the joint probability
density function of the sensor measurements and the target state. The computation burden of this
method is relatively high, especially in large sensor networks. Inspired by the idea of the expectation
maximization algorithm, the second method is to introduce some 0–1 latent variables to deal with
the Gaussian mixture model. Since the regular condition of the posterior Cramér–Rao bound is
unsatisfied for the discrete uncertain system, we use some continuous variables to approximate the
discrete latent variables. Then, a new Cramér–Rao bound can be achieved by a limiting process of
the Cramér–Rao bound of the continuous system. It avoids the complex integral, which can reduce
the computation burden. Based on the new posterior Cramér–Rao bound, the optimal solution of
the sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor
selection of a large-scale sensor networks. Two typical numerical examples verify the effectiveness of
the proposed methods.

Keywords: Cramér–Rao bound; sensor selection; uncertain measurement; target tracking

1. Introduction

In practical problems, we always encounter some sensors have the uncertain measurement
subjected to random interference, natural interruptions or sensor failures. Using the mode parameters
without considering the uncertainty is unavailable, and there are a lot of researchers that have studied
the state estimation with uncertain measurement, such as [1–4]. In this paper, we consider the
uncertainty caused by occlusions, i.e., the sensors may not be able to observe the target when blocked
by some obstacles [5]. For the linear dynamic systems involving uncertainty in [6,7], the authors use a
Kalman filter to track the target. However, it is difficult to obtain the optimal estimation for a nonlinear
uncertain dynamic system, but we are particular interested in measuring their efficiency. For this
purpose, it is natural to compare a lower bound of the estimation error, which gives an indication
of performance limitations. Moreover, it can be used to determine whether imposed performance
requirements are realistic or not.

The most popular lower bound is the well-known Cramér–Rao bound (CRB). In time-invariant
statistical models, the estimated parameter vector is usually assumed to be real-valued (non-random).
The lower bound is given by the inverse of the Fisher information matrix. When we deal with the
time-varying systems, the estimated parameter vector is modeled randomly. A lower bound that is
analogous to the CRB for random parameters is derived in [8], and this bound is also known as the
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Van Trees version of the CRB, or referred to as posterior CRB (PCRB). In fact, the underlying static
random system needs to satisfy the regularity condition, which is absolute integrability of the first
two derivatives of all related probability density functions. The first derivation of a sequential PCRB
version applicable to discrete-time dynamic system filtering is done in [9] and then extended in [10–12].
The most general form of sequential PCRB for discrete-time nonlinear systems is presented in [13].
Together with the original static form of the CRB, these results serve as a basis for a large number of
applications [14–16].

Most of the papers on PCRB are obtained without considering the uncertainty in the dynamic
systems. When the sensors have uncertain measurements, we need to consider the influence of the
uncertainty [17,18]. The CRB is presented in [19,20] to target tracking with detection probability smaller
than one. If the uncertain measurement is prone to discretely-distributed faults, a Cramér–Rao-type
bound is shown in [21]. Actually, the authors in [22,23] have considered uncertainty as the mixed
Gaussian probabilistic model, where the sensor observation is assumed to contain only noise if the
sensor cannot sense the target. Therefore, we hope to derive a recursive PCRB based on the uncertain
model of the Gaussian mixture distribution.

Since the PCRB needs to compute the Fisher information, which is obtained by the derivatives
of the log likelihood function of the Gaussian mixture model, and it is much more difficult than the
case of a single Gaussian distribution. The reason is that the presence of the summation that occurs
inside of the logarithm, and the PCRB of the Gaussian mixture model needs to compute the complex
integral, which is with respect to the joint probability density function of the sensor measurements
and the target state. These reasons motivate us to research another approach to derive the PCRB.

In large wireless sensor networks (WSNs), sensors are battery-powered devices with limited signal
processing capabilities [24,25]. In such situations, it is inefficient to utilize all the sensors including
the uninformative ones, which is hardly helpful to the tracking task but still consumes resources.
This issue has been researched and shown via the development of sensor selection schemes, whose
goal is to select the best non-redundant set of sensors for the tracking task while satisfying the resource
constraints [26,27]. The previous research [28,29] on sensor selection assumes that the target tracking
process does not have any interruptions. As the sensor observations are quite uncertain, we need to
consider the sensor selection based on the proposed PCRB.

In this paper, we use two methods to derive the PCRB to effectively overcome the difficulties
caused by uncertainty. The first method is based on the recursive formula of the Cramér–Rao bound
and the Gaussian mixture model. Nevertheless, it needs to compute a complex integral based on
the joint probability density function of the sensor measurements and the target state, which leads
to the computation burden of this method being relatively high, especially in large sensor networks,
so that it is not better using this PCRB as a measure criteria of the sensor selection. In order to
reduce the computation burden and deal with the sensor selection of a large-scale sensor networks,
our contributions are as follows:

• Inspired by the idea of the expectation maximization algorithm, we introduce some 0–1
latent variables to treat the Gaussian mixture model. Since the regular condition of the
posterior Cramér–Rao bound is unsatisfied in the discrete uncertain system, we use some
continuous variables to approximate the discrete latent variables, then a new Cramér–Rao
bound can be achieved by a limiting process of the Cramér–Rao bound of the continuous system.
The Cramér–Rao bound avoids the complex integral with a less computation burden.

• Based on the proposed posterior Cramér–Rao bound, the sensor selection problems for the
nonlinear uncertain dynamic system can be efficiently solved, and the optimal solution of the
sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor
selection for the large-scale sensor networks.

The remainder of this paper is organized as follows. The system uncertain model is defined and
the problem is formulated in Section 2. The PCRB for the dynamic system with uncertain observations
is detailed and justified in Section 3. The optimal sensor selection with uncertain observations is shown
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in Section 4. Two numerical examples are presented in Section 5. Finally, the conclusions are offered in
the final section.

2. Problem Formulation

Consider the L-sensor nonlinear dynamic systems with the uncertain observations [5,30],

xk = fk(xk−1) + wk, (1)

yi
k =

{
hi

k(xk) + vi
k with probability pi

k,

vi
k with probability 1− pi

k,
(2)

i = 1, 2, ..., L,

where pi
k is the sensing probability of sensor i, xk is the state of system at time k, yi

k is the measurement
at the ith sensor, i = 1, . . . , L, fk(xk−1) is the nonlinear state function, and hi

k(xk) is the nonlinear
measurement function of xk at the ith sensor. wk and vi

k are the state noise and the measurement noise,
respectively, and they are mutually independent. vi

k is assumed to be independent across time steps
and across sensors. The measurement information of the ith sensor is denoted by Yi

k = {y
i
1, yi

2, ..., yi
k}.

Assume that wk and vi
k are white Gaussian noise with N (0, Qk) and N (0, Ri

k), i = 1, . . . , L,
respectively, where, Qk and Ri

k are the corresponding covariance matrices. We also assume that
the initial state x0 ∼ N (x̂0, Σ0), and, if xk is given, then the measurement yi

k follows the Gaussian
distribution N (hi

k(xk), Ri
k) with probability pi

k, and follows the Gaussian distribution N (0, Ri
k) with

probability 1− pi
k, i.e.,

p(yi
k|xk) = pi

kN (hi
k(xk), Ri

k) + (1− pi
k)N (0, Ri

k). (3)

Obviously, the conditional probability density function is a Gaussian mixture distribution, which
ishard to calculate the PCRB. This difficult problem motivates us to introduce a hidden state variable,
which draws lessons from the idea of the expectation maximization (EM) algorithm [31].

We introduce the 0–1 hidden state variables Ii
k, i = 1, 2, ..., L, which indicate whether the dynamic

system has uncertainty. In other words, if Ii
k = 1, then yi

k = hi
k(xk) + vi

k, and Ii
k = 0, then yi

k = vi
k.

Now, we transfer the nonlinear systems (1) and (2) as follows:{
xk = fk(xk−1) + wk,

Ii
k = 0 · Ii

k−1 + w̃i
k,

(4)

yi
k = Ii

k · h
i
k(xk) + vi

k, i = 1, 2, ..., L. (5)

Then, the compact form for Equations (4) and (5) can be written as follows:

x̆k = Fk(x̆k−1) + Wk, (6)

yi
k = Ii

k · h
i
k(xk) + vi

k, i = 1, 2, ..., L, (7)

where x̆k = [xT
k IT

k ]
T , Wk = [wT

k w̃1T

k , . . . , w̃LT

k ]T , Fk(Xk) = [ f T
k (xk) 0]T , Ik = [I1

k , . . . , IL
k ]

T ,
wk ∼ N (0, Qk). w̃i

k ∼ B(1, pi
k), which means a Bernoulli distribution with probability parameter

pi
k, if P(w̃i

k = 1) = pi
k and P(w̃i

k = 0) = 1− pi
k. The process noise is independent of the uncertainty.

Then, we assume wk and w̃i
k, i = 1, 2, ..., L are mutually independent.

Since the PCRB is an important criterion of sensor selection, we drive two PCRBs of the uncertain
dynamic systems (1), (2), (6) and (7) in Sections 3 and 4, respectively. The former is accurate, but it is
difficult to be computed. Thus, the latter is derived by introduced some hidden state variables, which
avoids the complex integral and can reduce the computation burden. Finally, based on the second
PCRB, we hope to obtain the analytically optimal solution of the sensor selection problem, so that it
can be applied to the large-scale sensor selection problem for the uncertain dynamic systems.
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3. The Posterior Cramér–Rao Bound with Uncertain Observations

In this section, we mainly discuss two methods to calculate the PCRB of multiple sensors. The first
method is based on the nonlinear dynamic system with uncertain observations (1) and (2) and Gaussian
mixture model [5,13,15,32]. The other approach is based on the nonlinear dynamic system (6) and (7)
motivated by the EM algorithm [33].

Let θ be a r-dimensional estimated random parameter, z represents a vector of measured data,
let p(z, θ) be the joint probability density of the pair (z, θ), and let g(z) be a function of z, which is an
estimate of θ. Let ∆ and ∇ be operators of the first and second-order partial derivatives, respectively,

∇η = [
∂

∂η1
, . . . ,

∂

∂ηL
],

∆ξ
η = ∇η∇T

ξ .

The PCRB on the estimate error has the form

P = E
{
[g(z)− θ][g(z)− θ]T

}
≥ J−1, (8)

where J = E
{
− ∆Θ

Θ log pz,θ(Z, Θ)
}

is the (Fisher) information matrix denoted by Van Trees [8].

For example, if the posterior distribution of θ conditioned on z is Gaussian with mean θ̄z and a
covariance matric Σz. Then, the information matrix (8) reads J = E{Σ−1

z }.
Assume now that the parameter θ is decomposed into two parts as θ = [θT

α , θT
β ]

T , and the
information matrix J is correspondingly divided into blocks

J =

[
Jαα Jαβ

Jβα Jββ

]
.

Then, it can be easily shown that the covariance of estimation of θβ is lower bounded by the
right-lower block of J−1, i.e.,

Pβ = E{[gβ(x)− θβ][gβ(x)− θβ]
T}

≥ [Jββ − JβαJ−1
αα Jαβ]

−1,

where we assume that J−1
αα exists. Denoted Jβ = Jββ − JβαJ−1

αα Jαβ, which is called the information
submatrix for β.

Now, for nonlinear dynamic systems with uncertain observations (1) and (2), the following
proposition gives a method to compute the information submatrix Jk recursively.

Proposition 1. The Fisher information submatrix Jk for the estimating state vectors {xk} obeys the recursion:

Jk+1 = D22
k −D21

k (Jk + D11
k )−1D12

k , (9)

J0 = E[−∆x0
x0 log p(x0)], (10)

with

D11
k = E[∇xk f T

k (xk)]Q
−1
k [∇xk f T

k (xk)]
T , (11)

D12
k = −E[∇xk f T

k (xk)]Q
−1
k , (12)

D21
k = (D12

k )T , (13)

D22
k = Q−1

k +
L

∑
i=1

E{−∆xk+1
xk+1 log p(yi

k+1|xk+1)}, (14)
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where

p(yi
k+1|xk+1) = pi

kN (hi
k(xk+1), Ri

k+1) + (1− pi
k)N (0, Ri

k+1). (15)

Proof. Equations (1) and (2) together with p(x0) determine the joint probability distribution
of Xk = [x0, x1, ..., xk] and Yk = [y0, y1, ..., yk], where yk = (y1

k , y2
k , ..., yL

k )
T ,

p(Xk, Yk) = p(Xk−1, Yk−1) · p(xk|Xk−1, Yk−1) · p(yk|Xk, Yk−1)

= p(Xk−1, Yk−1) · p(xk|xk−1) · p(yk|xk)

= p(Xk−1, Yk−1) · p(xk|xk−1) ·
L

∏
i=1

p(yi
k|xk). (16)

The conditional probability densities p(xk|xk−1) and p(yi
k|xk) can be calculated by

Equations (1) and (2), respectively. Denote pk = p(Xk, Yk), by Equation (16), we can obtain the
formula about pk+1 as follows:

pk+1 = pk · p(xk+1|xk) ·
L

∏
i=1

p(yi
k+1|xk+1). (17)

Therefore,

log pk+1 = log pk + log p(xk+1|xk) +
L

∑
i=1

log p(yi
k+1|xk+1). (18)

If we divide Xk into Xk = [XT
k−1, xT

k ]
T , then

J(Xk) = E{−∆Xk
Xk

log pk} =
[

E{−∆Xk−1
Xk−1

log pk} E{−∆xk
Xk−1

log pk}
E{−∆Xk−1

xk log pk} E{−∆xk
xk log pk}

]
,

[
Ak Bk
BT

k Ck

]
. (19)

The information submatrix Jk for xk can be obtained as follows:

Jk = Ck − BT
k A−1

k Bk. (20)

Moreover, let Xk+1 = [XT
k−1, xT

k , xT
k+1]

T , then the posterior information matrix for Xk+1 can be
written as the following block form by Equation (18),

J(Xk+1) =

 Ak Bk 0
BT

k Ck + D11
k D12

k
0 D21

k D22
k

 , (21)

where 0 stands for zero blocks of appropriate dimensions, and D11
k , D12

k , D22
k are calculated as follows:

D11
k = E{−∆xk

xk log p(xk+1|xk)},
D12

k = E{−∆xk+1
xk log p(xk+1|xk)} = (D21

k )T ,

D22
k =

L

∑
i=1

E{−∆xk+1
xk+1 log p(yi

k+1|xk+1)}.
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Then, the information submatrix Jk+1 for xk+1 can be computed as

Jk+1 = D22
k −

[
0 D21

k

] [ Ak Bk
BT

k Ck + D11
k

]−1 [
0

D12
k

]
= D22

k −D21
k [Ck + D11

k − BT
k A−1

k Bk]
−1D12

k . (22)

Based on the definition of Jk in (20), we can obtain the desired recursion (9). Since the state noise
and the measurement noise are Gaussian with zero mean and invertible covariance matrices Qk and
Ri

k, i = 1, . . . , L, respectively. Moreover, the dynamic systems have the uncertain observations. From
these assumptions and Equation (3), it follows that

− log p(xk+1|xk) = c1 +
1
2
[xk+1 − fk(xk)]

TQ−1
k [xk+1 − fk(xk)]

− log p(yi
k+1|xk+1) = − log

(
pkN (hi

k+1(xk+1), Ri
k+1) + (1− pk)N (0, Ri

k+1)
)

,

where c1 is a constant. Therefore, D11
k , D12

k , D22
k can be simplified to (11)–(14).

From Equations (14) and (15), we see that the appearance of the summation inside of the
logarithm, and the computation of Dk

22 is related to the joint probability density function of the
sensor measurements yk+1 and the target state xk+1, then Dk

22 is not easy to calculate. These reasons
motivate us to study another approach to derive the PCRB.

Based on the equivalence between the systems (1)–(2) and (6)–(7), we can derive PCRB for the
dynamic systems (6) and (7) by introducing a hidden variable Ik, and the new PCRB may be easier to
compute. Since the second derivation for the discrete augmented variable Ik do not exist, then we bring
in a continuous random variable Ĩk to approximate the 0–1 variable Ik. The augmented state vector
x̆k = [xk, Ik]

T has changed into x̃k = [xk, Ĩk]
T . Therefore, the new system can be expressed as follows:

xk = fk(xk−1) + wk, (23)

Ĩi
k = 0 · Ĩi

k−1 + w̃k, (24)

yi
k = Ĩi

k · h
i
k(xk) + vi

k, i = 1, 2, ..., L. (25)

Lemma 1 ([21]). If Ii
k ∼ B(1, pi

k) and Ĩi
k ∼ pi

kN (1, σ2) + (1− pi
k)N (0, σ2), i = 1, . . . , L, then the limit of

Ĩk is the state variable Ik when σ→ 0, i.e., lim
σ→0

Ĩk = Ik.

Let J̃k represents the PCRB about the approximated augment vector x̃k of systems (23)–(25),
respectively. Then, we can easily get the following conclusion:

Lemma 2 ([21]). Assume that Ĩi
k ∼ pi

kN (1, σ2)+ (1− pi
k)N (0, σ2), i = 1, . . . , L, then Pk(x̆k) ≥ lim

σ→0
J̃−1

k =[
J̄−1

k 0
0 0

]
, where Pk(x̆k) denotes the estimation error covariance matrix about the vector x̆k and J̄k denotes

the Fisher information submatrix about the vector xk.

Based on Lemmas 1 and 2, for nonlinear dynamic system with the uncertain observations (6)
and (7), it is easy to see that J̄−1

k can also represent a CRB for the estimation error covariance matrix of
vector xk.
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Proposition 2. At time k + 1, the Fisher information submatrix J̄k+1 of xk+1 for the multi-sensor uncertain
systems (6) and (7) is computed according to the following recursion:

J̄k+1 = D̄22
k − D̄21

k (J̄k + D̄11
k )−1D̄12

k , (26)

J̄0 = Σ−1
0 , (27)

with

D̄11
k = E{[∇xk f T

k (xk)]Q
−1
k [∇xk f T

k (xk)]
T}, (28)

D̄12
k = −E[∇xk f T

k (xk)]Q
−1
k , (29)

D̄21
k = (D̄12

k )T , (30)

D̄22
k = Q−1

k +
L

∑
i=1

pi
k+1E

{
[∇xk+1 hi

k+1(xk+1)]
T(Ri

k+1)
−1[∇xk+1 hi

k+1(xk+1)]
}

. (31)

Proof. According to Lemma 1 and the derivation of Proposition 1, the new augmented state vector x̃k
has the following PCRB for systems (6) and (7):

J̃k+1 = D̃22
k − D̃21

k (J̃k + D̃11
k )−1D̃12

k , (32)

where D̃11
k , D̃12

k , D̃22
k are denoted as follows:

D̃11
k = Ex̃k{−∆x̃k

x̃k
log p(x̃k+1|x̃k)},

D̃12
k = Ex̃k{−∆x̃k+1

x̃k
log p(x̃k+1|x̃k)},

D̃21
k = (D̃12

k )T ,

D̃22
k = Ex̃k+1{−∆x̃k+1

x̃k+1
log p(x̃k+1|x̃k)}+

L

∑
i=1

Ex̃k+1{−∆x̃k+1
x̃k+1

log p(yi
k+1|x̃k+1)}.

In order to obtain the lower bound for xk, it is necessary for us to calculate the following probability
densities, according to Equations (6) and (7),

− log p(x̃k+1|x̃k) = − log p(xk+1|xk) · p(Ĩk+1)

= c3 +
1
2 [xk+1 − fk(xk)]

TQ−1
k [xk+1 − fk(xk)]− log p(Ĩk+1),

(33)

where c3 is a constant, and the first equality follows from the independence and the second follows
from (2). The another probability density is as follows:

− log p(yi
k+1|x̃k+1) = c4 +

1
2
[yi

k+1 − Ĩi
k+1hi

k+1(xk+1)]
T(Ri

k+1)
−1[yi

k+1 − Ĩi
k+1hi

k+1(xk+1)], (34)

where c4 is a constant. Since x̃k = [xk, Ĩk]
T , we use Equations (33)–(34) and Lemma 1, and the suitable

partitioned expressions for D̃11
k , D̃12

k , D̃22
k are obtained:

D̃11
k =

[
D̄11

k 0
0 0

]
, (35)

D̃12
k =

[
D̄12

k 0
0 0

]
, (36)

D̃22
k =

[
D̄22

k C12

C21 C22

]
, (37)
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where D̄11
k , D̄12

k are denoted in (28) and (29), while C12, C21 and C22 are calculated as follows:

C12 = Ex̃k+1{−∆Ĩk+1
xk+1 log p(x̃k+1|x̃k)}+

L

∑
i=1

Ex̃k+1{−∆
Ĩi
k+1

xk+1 log p(yi
k+1|x̃k+1)}

= −
L

∑
i=1

Ex̃k+1

{
[∇xk+1 hi

k+1(xk+1)]
T(Ri

k+1)
−1yi

k+1

}
+ 2

L

∑
i=1

Ex̃k+1

{
Ĩi
k+1hi

k+1(xk+1)(R
i
k+1)

−1[∇xk+1 hi
k+1(xk+1)]

}
= (C21)

T ,

C22 =
L

∑
i=1

Ex̃k+1{−∆
Ĩi
k+1

Ĩi
k+1

log p(yi
k+1|x̃k+1)}+

L

∑
i=1

Ex̃k+1{−∆
Ĩi
k+1

Ĩi
k+1

log p( Ĩi
k+1)}

=
L

∑
i=1

Ex̃k+1{(h
i
k+1(xk+1))

T(Ri
k+1)

−1(hi
k+1(xk+1))}+

L

∑
i=1

Ex̃k+1{−∆
Ĩi
k+1

Ĩi
k+1

log p( Ĩi
k+1)}.

If we divide J̃k as the following block matrix

J̃k =

[
J̃11

k J̃12
k

J̃21
k J̃22

k

]
, (38)

then according to (32) and (35)–(37), the value of J̃k+1 is

J̃k+1 =

 D̄22
k + D̄21

k

(
D̄11

k + J̃11
k − J̃12

k (J̃22
k )−1 J̃21

k

)−1
D̄12

k C12

C21 C22

 . (39)

Since the matrix C22 is the function of σ, it is shown in [21] that

lim
σ→0

J̃−1
k+1 =


(

D̄22
k + D̄21

k

(
D̄11

k + J̄11
k

)−1
D̄12

k

)−1

0

0 0

 . (40)

Using Lemma 1, we can obtain (26), and the matrix D̄22
k can be computed as

D̄22
k =

L

∑
i=1

Ex̃k+1{Ii
k+1∇xk+1(h

i
k+1(xk+1))

T(Ri
k+1)

−1∇xk+1(h
i
k+1(xk+1))Ii

k+1}+ Q−1
k

= Q−1
k +

L

∑
i=1

pi
k+1Exk+1

{
[∇xk+1 hi

k+1(xk+1)]
T(Ri

k+1)
−1[∇xk+1 hi

k+1(xk+1)]
}

.

Remark 1. Note that PCRBs derived in Propositions 1 and 2 have different forms. The first one is optimal.
The second one is only approximately optimal with less computational burden. Since it may be approximated
from above or below, which one is lower cannot be judged. The simulation in Section 6 shows that they are almost
equal and the computational complexity of the approximate bound is less than that of the accurate bound.

Remark 2. In the case of p = 1 and L = 1, the multi-sensor dynamic systems (1) and (2) has the certain
observations. Obviously, the PCRB derived by the method in [13] is consistent with that derived in Proposition 2.
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4. Sensor Selection with Uncertain Observations

In large sensor networks, it is an important problem to manage the communication resources
efficiently. The calculation of PCRB by Proposition 1 needs to use the joint probability density function
of the sensor measurements and the target state, which leads to the computational burden being
heavy, so that it is detrimental to be used as a measure criteria of the sensor selection. In this section,
we consider the problem of sensor selection by Proposition 2.

For the nonlinear dynamic system at time k, assume that s sensors will be selected from L sensors
by maximizing the Fisher information matrix, then they will send their measurements or local estimates
to the fusion center. Finally, the fusion center makes the estimates for the state. In order to select
the optimal s sensors, we need to introduce a selection vector sk = [s1

k , . . . , sL
k ]

T ∈ {0, 1}L. If the ith
sensor is selected, let si

k = 1; otherwise, si
k = 0, i = 1, . . . , L. According to the derivation of the Fisher

information matrix in Section 3, the selection vector modifies the log conditional probability density
logp(yk|xk) as [34]

log
L

∏
i=1

(p(yi
k|xk))

si
k =

L

∑
i=1

si
klogp(yi

k|xk). (41)

In fact, the selected variable sk only has an effect on D̄22
k of Proposition 2. Then, D̄22

k can be
written as

D̄22
k = Q−1

k +
L

∑
i=1

si
k+1 pi

k+1E
{
[∇xk+1 hi

k+1(xk+1)]
T(Ri

k+1)
−1[∇xk+1 hi

k+1(xk+1)]
}

. (42)

Therefore, the information matrix of xk+1 is the function of the selected variable sk. Now, the
sensor selection problem can be expressed as the following optimization problem:

max
sk+1

tr(J̄k+1(sk+1)), (43)

s.t.
L

∑
i=1

si
k+1 = s, (44)

si
k+1 ∈ {0, 1}, i = 1, . . . , L, (45)

where “tr” means “trace”, which is the sum of squares of semiaxes lengths of the Fisher information
matrix. “s.t”. means “subjected to”.

Remark 3. In fact, the objective function in (43) should be matrix J̄k+1(sk+1). Then, the problem (43)–(45) is a
matrix optimization problem, which is considered in the sense that if s∗k+1 is an optimal solution. Then, for an
arbitrary feasible solution sk+1, we have J̄k+1(sk+1) � J̄k+1(s∗k+1), i.e., J̄k+1(sk+1)− J̄k+1(s∗k+1) is a positive
semidefinite matrix. There are two reasons to choose trace function as the objective function. First, it is a linear
function, which helps us to easily derive the optimal solution. Second, some researchers [26–28] have proved that
it has many advantages to apply to sensor selection, such as, if the primal matrix optimization problem has an
optimal solution and D̄12

k in (29) is invertible, then the matrix optimization problem for sensor selection can be
equivalently transformed to this convex optimization problem (43)–(45).

Let the information measure corresponding to the i-th sensor at k + 1-th time be denoted as

bi
k+1 = pi

k+1tr
(

E
{
[∇xk+1 hi

k+1(xk+1)]
T(Ri

k+1)
−1[∇xk+1 hi

k+1(xk+1)]
})

, i = 1, . . . , L. (46)

Let {br1
k+1, . . . , brL

k+1} denote {b1
k+1, . . . , bL

k+1} as rearrangement with descending order, i.e.,
br1

k+1 ≥ . . . ≥ brL
k+1. The optimal solution of the optimization problem (43)–(45) can be obtained

by the following proposition.
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Proposition 3. For multisensor nonlinear dynamic system with the uncertain observations (1) and (2),
the optimal sensor selection scheme for the problem (43)–(45) is sr1

k+1 = . . . = srs
k+1 = 1 and srs+1

k+1 = . . . =
srL

k+1 = 0.

Proof. Since D̄11
k and D̄12

k are not related to sk, based on Proposition 2, the optimization
problem (43)–(45) can be equivalent to

max
sk+1

L

∑
i=1

bi
k+1si

k+1, (47)

s.t.
L

∑
i=1

si
k+1 = s, (48)

si
k+1 ∈ {0, 1}, i = 1, . . . , L, (49)

where bi
k+1 is denoted by (46). According to br1

k+1 ≥ . . . ≥ brL
k+1, and si

k+1, i = 1, . . . , L needs to
satisfy (48) and (49), and we have

L

∑
i=1

bi
k+1si

k+1 ≤
s

∑
i=1

bri
k+1.

The equality holds with sr1
k+1 = . . . = srs

k+1 = 1 and srs+1
k+1 = . . . = srL

k+1 = 0. Thus, the optimal
solution is got.

5. Simulation

In this section, we provide two examples to compare the different PCRB by Proposition 1 with
Proposition 2, and select the optimal sensors by Proposition 3.

Example 1: Consider an uncertain nonlinear dynamic system for the mobile robot. At time k,
the mobile robot pose is described with thestate vector xk = [xk yk θk], where xk and yk are the
coordinates on a 2D plane relative to an external coordinate frame, and θk is the heading angle. We use
the control commands uk = [∆dk, ∆θk] to determine the motion of the mobile robot, where ∆dk is the
incremental distance robot (in meters) and ∆θk is the incremental change in heading angle (in degrees).
The robot motion can be described as follows [35]:

f1,k = xk−1 + ∆dkcos(θk−1 +
1
2

∆θk),

f2,k = yk−1 + ∆dksin(θk−1 +
1
2

∆θk),

f3,k = θk−1 + ∆θk,

where ∆dk = 5, ∆θk = 5. The state equation is defined as fk = [ f1,k, f2,k, f3,k]
T , and then the state

model is

xk = fk(xk−1, uk) + wk. (50)

The measurement equation is

yi
k =

{
hi(xk) + vj

k, with probability pi
k ,

vj
k with probability 1− pi

k ,
(51)

f or i = 1, . . . , L, pi
k = 0.8,
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where

hi(xk) =


√
(xk(1)− zi

k(1))
2 + (xk(2)− zi

k(2))
2

arctan
(

xk(2)−zi
k(2)

xk(1)−zi
k(1)

)  .

zi
k = [zi

k(1) zi
k(2)]

T is the position of the ith sensor. In the simulation, we consider the WSN shown
in Figure 1, which has L = 6× 6 = 36 sensors deployed in the area 100× 100 m2 [5]. The noise
covariances are set as Qk = diag([0.12, 0.12, 32]), Ri

k = diag([12, 12]).
In the example, the initial state of the robot starts is [8, 8, 1] and the initial covariance matrix is

P0 = diag([10, 10, 2]) [35]. The sampling length is assigned to f lag = 50. Here, the number of Monte
Carlo (MC) simulation is MC = 200.

x (m)

0 10 20 30 40 50 60 70 80 90 100

y 
(m

)

0

10

20

30

40

50

60

70

80

90

100
Real trajectory

Sensor

Figure 1. The trajectory of the mobile robot and the location of the L sensors.

The following simulation results include three parts: the first part is about the trajectory of the
mobile robot and PCRB of the state estimation, the second part is about the average computation time,
and the third part is about the PCRB with different sensing probability p.

• Figure 1 shows the trajectory of the mobile robot and the location of the L sensors. Figures 2 and 3
show that the PCRB of position along the x- and y-directions based on Proposition 1 and
Proposition 2, respectively. From Figures 2 and 3, we can see the different PCRBs are shown to
converge to the same values. However, the PCRB changes so much in the first seconds, and there
are two possible reasons. First, the dynamic system is nonlinear. It may cause the algorithm to
require some time to be convergent. Second, the initial variance may not be given better, such
that it is far away from the convergence point.

• The average computation time of calculating PCRB based on Proposition 1 and Proposition 2
is presented in Figure 4. From Figure 4, obviously, when the number of the sensors increases,
the computational complexity of Proposition 1 is much higher than that of Proposition 2, and the
average computation time of PCRB by Proposition 2 increases slowly. The reason may be that
the expression of PCRB based on Proposition 2 has a more concise form where the D̄22

k is easier
to compute. Thus, Proposition 2 is more suitable for the sensor selection in the large-scale
sensor networks.

• In Figure 5, the average PCRB of 20 time steps is plotted as a function of number of sensors.
It shows that the PCRB obtained by Proposition 1 is the same as that based on Proposition 2.
The larger p is, the smaller the number of required sensors. The reason may be that the sensors
can take more observation information, when the sensor probability p is larger.
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Figure 2. The PCRB of position in the x-direction is plotted as a function of time steps.
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Figure 3. The PCRB of position in the y-direction is plotted as a function of time steps.
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Figure 4. The average computation time of PCRB is plotted as function of number of sensors.
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Figure 5. The average PCRB of 20 time steps is plotted as function of number of sensors with the
different probability p.

Example 2: In order to manage the communication resources efficiently in large wireless sensor
networks, we need to select some appropriate sensors. Thus, let us consider the above dynamic
system (50) and (51) and the WSNs [35]. In general, if the sensors are close to the target, which may
have higher sensing probabilities compared to other sensors in the WSN, then it is highly likely to select
those sensors, owing to being both closer to target and higher sensing probability. Here, we consider
a relatively difficult case that the sensors around the target have relatively low sensing probabilities.
Then, we compare our algorithm in Proposition 3 with the recent two methods given in [5,28].

In this example, we present two cases with different number of sensors in WSN. Firstly,
we consider L = 36 and sk = 15. Moreover, let pi

k = 0.1, i = 7, 8, 9, 10, 13, 14, 15, 16, 20, 21, 22, 23, 24,
and the other sensing probabilities are between 0.8 and 1. Secondly, we also consider L = 49 and
sk = 15. Moreover, let pi

k = 0.1, i = 14, . . . , 18, 22, . . . , 26, 30, . . . , 34, and the other sensing probabilities
are between 0.8 and 1. The following simulation results contain three parts. The first part is about
the sensor selection in the application of wireless sensor network, the second part is about the mean
squared error based on the selected sensors, and the third part is about the computation time.

• Figures 6 and 7 present the location of L = 36 and L = 49 sensors, respectively. The target is
showed at the time 10 s, and we use our algorithm in Proposition 3 to select the optimal sk = 15
sensors. When the uncertainty in the dynamic system is ignored, the recent method in [28] can
be used to select the required sensors, and the results are shown in Figures 8 and 9. Comparing
Figure 6 with Figure 8, some sensors are close to the target, such as sensor 8 and sensor 15,
but they are not selected in Figure 6. In Figure 8, they are selected and the only closer sensors
can be selected. The reason is that the sensing probability of sensor 8 and sensor 15 is very low,
and they may be not given us much useful information, although they are close to the target.
Comparing Figure 7 with Figure 9, it has a similar phenomenon, such as sensor 16 and 31 not
being selected in Figure 7, but they are selected in Figure 9.

• In Figures 10 and 11, the mean squared errors of position in x- and y-directions are plotted for
the algorithm given in Proposition 3 and the algorithms in [5,28]. It shows that our algorithm
can derive the best performance. The reason is that our algorithm considers the influence of
uncertain observation, and the optimal selected sensors are obtained. Although the algorithm
in [5] considers the uncertain observation, it is difficult to obtain the optimal selected sensors,
since it involves relaxing the variable {0, 1} to the interval [0, 1]. From Figures 12 and 13, we can
also see that the proposed method also performs best in the case of L = 49, thus the performance
of the new method is stable with the increase of the number of sensors.

• The computation times of obtaining PCRB are plotted in Figures 14 and 15 for the three algorithms,
respectively. Figures 14 and 15 show that the computation time of the method in Proposition 3 is
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much smaller than that of the other two methods. The reason is that the method in Proposition 3
is an analytical solution. Therefore, the proposed algorithm in Proposition 3 is more suitable for
the large sensor networks.
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Figure 6. L = 36 sensors placement and selected sensors sk = 15 based on the algorithm in
Proposition 3.
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Figure 7. L = 49 sensors placement and selected sensors sk = 15 based on the algorithm in
Proposition 3.
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Figure 8. L = 36 sensors placement and selected sensors sk = 15 based on the algorithm in [28].
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Figure 9. L = 49 sensors placement and selected sensors sk = 15 based on the algorithm in [28].
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Figure 10. The mean squared error of position in the x-direction is plotted as function of time steps
with L = 36 sensors.
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Figure 11. The mean squared error of position in the y-direction is plotted as function of time steps
with L = 36 sensors.
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Figure 12. The mean squared error of position in the x-direction is plotted as function of time steps
with L = 49 sensors.
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Figure 13. The mean squared error of position in the y-direction is plotted as function of time steps
with L = 49 sensors.
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Figure 14. The computation time of obtaining PCRB is plotted as function of time steps with
L = 36 sensors.
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Figure 15. The computation time of obtaining PCRB is plotted as function of time steps with
L = 49 sensors.

6. Conclusions

This paper has proposed two methods to derive the PCRB to effectively overcome the difficulties
caused by uncertainty. The first method is based on the recursive formula of the Cramér–Rao bound
and the Gaussian mixture model. Nevertheless, it needs to compute a complex integral based on the
joint probability density function of the sensor measurements and the target state. The computational
burden of this method is relatively high, especially in large sensor networks. Inspired by the idea of
the expectation maximization algorithm, the second method is to introduce some 0–1 latent variables
to treat the Gaussian mixture model. Since the regular condition of the posterior Cramér–Rao bound is
unsatisfied for the discrete uncertain system, we use some continuous variables to approximate the
discrete latent variables. Then, a new Cramér–Rao bound can be achieved by a limiting process of
the Cramér–Rao bound of the continuous system. It avoids the complex integral, which can reduce
the computation burden. Thus, the sensor selection problems for the nonlinear uncertain dynamic
system with linear equality or inequality constraints can be efficiently solved, and the optimal solution
of the sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor
selection of large-scale sensor networks. Two typical numerical examples verify the effectiveness of
the proposed methods.
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13. Tichavský, P.; Muravchik, C.H.; Nehorai, A. Posterior Cramér–Rao bounds for discrete-time nonlinear

filtering. IEEE Trans. Signal Process. 1998, 46, 1386–1396.
14. Kirubarajan, T.; Bar-Shalom, Y. Low observable target motion analysis using amplitude information.

IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1367–1384.
15. Zheng, Y.; Ozdemir, O.; Niu, R.; Varshney, P.K. New conditional posterior Cramér–Rao lower bounds for

nonlinear sequential Bayesian estimation. IEEE Trans. Signal Process. 2012, 60, 5549–5556.
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