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Abstract: A novel approach for stride segmentation, gait sequence extraction, and gait event detection
for inertial signals is presented. The approach operates by combining different local cyclicity
estimators and sensor channels, and can additionally employ a priori knowledge on the fiducial
points of gait events. The approach is universal as it can work on signals acquired by different inertial
measurement unit (IMU) sensor types, is template-free, and operates unsupervised. A thorough
evaluation was performed with two datasets: our own collected FRIgait dataset available for open
use, containing long-term inertial measurements collected from 57 subjects using smartphones within
the span of more than one year, and an FAU eGait dataset containing inertial data from shoe-mounted
sensors collected from three cohorts of subjects: healthy, geriatric, and Parkinson’s disease patients.
The evaluation was performed in controlled and uncontrolled conditions. When compared to the
ground truth of the labelled FRIgait and eGait datasets, the results of our evaluation revealed the
high robustness, efficiency (F-measure of about 98%), and accuracy (mean absolute error MAE in
about the range of one sample) of the proposed approach. Based on these results, we conclude that
the proposed approach shows great potential for its applicability in procedures and algorithms for
movement analysis.

Keywords: inertial sensors; stride segmentation; gait assessment; inertial signals; biomedical
signal processing

1. Introduction

Efficient and robust stride segmentation is a well-known procedure that has become widely
applicable with the appearance of novel measuring principles for human motion, and is fundamental
for the related analysis procedures. Stride segmentation is becoming increasingly attractive with respect
to the development of the IoT (Internet of things) paradigm [1]. Contemporary measuring principles
are based on ubiquitous and pervasive sensing and computing by leveraging service-oriented and
cloud architectures that enable remote and continuous monitoring of human motion data collected
by sensing devices during daily living. Thus, the IoT paradigm has enabled the transition of the
monitoring, observation, and analysis principles of human motion from controlled environments
in the areas of biomedicine and biomechanics, to daily life. This has been achieved by the
introduction and development of novel advanced approaches, especially in the fields of telemedicine,
neurorehabilitation, sports, fitness, biometry, navigation, localization, and many others that enable
and fully support the realization of human motion analysis tasks in everyday environments [2–5].

Motion data during gait is collected in the form of biomedical signals that can be obtained
by a variety of sensing devices capable of detecting motion dynamics, usually in terms of motion
trajectories. Wearable sensors [6] are very attractive and fully compliant with the IoT paradigm. These
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sensors measure the motion dynamics of a specific part of human body according to where the sensing
device is attached. Motion dynamics are interpreted by instantaneous accelerations measured by
accelerometers, angular speed by gyroscopes, and magnetic field by magnetometers. Since they are
most commonly implemented as MEMS, they are attractive and widely used, especially due to their
light weight, low cost, small size, and low energy consumption. In fact, nowadays they are integrated
in practically every smart device, thus making inertial/magnetic data-based processing approaches
widely applicable. Furthermore, inertial/magnetic sensors have already been established by thorough
gait analysis in the clinical environment by novel approaches [7,8], where efficient and robust stride
segmentation is of great importance [9,10].

The majority of successful approaches for gait analysis rely on the observation of particular strides.
A single stride represents an elementary part of a gait sequence and can be defined as single gait cycle [11].
Stride time is the time interval between two successive occurrences of gait cycles. Each stride can be
interpreted by fiducial points—time instants that determine specific gait event or phase (i.e., heel strike,
toe-off, mid-stance, etc.). Each gait sequence consists of consecutive strides that are represented by
signals corresponding to measured physical quantity (i.e., acceleration). Gait properties are reflected
through the morphology of strides that is described by motion dynamics as observed in the sensing
point of the particular part of human body. Due to the cyclical property of the gait it can be inferred that
the morphology of strides will be similar for a particular subject and its stride in specific conditions [12],
where gait-affecting factors (i.e., health, mood, surface, etc.) can significantly influence the morphology
of strides. During gait analysis, a proper declaration of gait events and phases is also of particular
importance. Consequentially, through a proper interpretation of stride morphology and gait events,
the main task of gait analysis is to extract specific gait parameters. At this point it is important to
emphasize that the performance of practically all recent gait analysis approaches is highly dependent on
the performance of stride segmentation. Thus, it plays a crucial role in many gait-related problems in
several areas of application and research, from simple (step counter [13–15], gait frequency estimation)
to advanced i.e., physiological gait parameter estimation [16] (step length [17–19], gait speed [20–22],
6MWT [23], etc.), gait-based authentication [12], navigation [5], localization [4], human characteristics [24],
activity [14], and gait action [25], among others.

Related Work

Gait segmentation approaches can be categorized according to operation principle, employed
sensor type, stride treatment, and applicability mode. With respect to the operation principle,
due to their simplicity and low computational demands, peak-based approaches are amongst the
most popular and are usually extended with special enhancements in order to improve robustness,
i.e., special filtering, zero-crossing detection, adaptive thresholding, etc. [4,5,15,23–26]. Peak-based
approaches are suitable in the situations where precise segmentation of individual strides is not
crucial. Therefore, the most recent relevant approaches rely on gait morphology, including machine
learning and pattern recognition approaches such as dynamic time warping, the hidden Markov
model, k-means clustering, wavelet transformation, etc. [9,10,13,21,27].

From the perspective of usability, inertial/magnetic sensor types that are employed for stride
segmentation can be divided into two groups: special-purpose sensors and multi-purpose sensors.
Special-purpose sensors are constructed so that they are compliant to the problem they are solving by
measurement and data processing, usually directly related to the field of application, i.e., biomedicine,
neurorehabilitation, etc. These sensors are implemented as special evaluation boards and are directly
mounted on specific body positions, either directly or indirectly (i.e., shoe sensors). They are applied
for more accurate estimation of gait parameters. Therefore, they demand fixed mounting and higher
sampling frequencies and resolution, resulting in stable, descriptive, and low-noise gait patterns
within acquired inertial/magnetic signals. The corresponding relevant stride segmentation approaches
are compliant with these properties [9,10,21,25]. In contrast, the multi-purpose sensors that are
nowadays integrated in smart devices (phones, tablets) are subject to causal and relaxed use, and
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inertial/magnetic signals are sampled with low sampling frequency and lower resolution. Thus, the
majority of existing approaches are focused more on simple detection of strides (step counting), while
accurate positioning of strides (in terms of gait events) is far more challenging [4,13,15,26,27]. Finally,
the appearance of commercial activity sensor monitors should not be overlooked, as one of the most
important functionalities of these commercially available physical monitors for activity recognition is
also step detection—some of the most recent monitors have been evaluated by Strom et al. [14].

Individual strides represent a basis for stride segmentation approaches. According to the accuracy
of stride treatment, related approaches can be divided into two groups: simple and advanced. The first
group covers approaches that are considered sufficient if particular strides are simply detected and the
precision of its position is not the biggest concern. Such approaches are feasible for implementation
of step counters and simpler gait assessment procedures [4,13,26,27]. Conversely, accurate stride
segmentation is needed for better description of individual stride, usually in terms of gait events
needed for further procedures for thorough gait analysis [9,10,16,21,25].

As a result our recent research activities, we provide the following outcomes and scientific
contributions: (1) an introduction and evaluation of a robust approach for stride segmentation,
gait sequence extraction, and accurate assessment of gait events; and (2) presentation of a FRIgait
dataset that contains inertial/magnetic data acquired by smart devices during a free walk meant
to investigate and evaluate gait assessment procedures in realistic and uncontrolled conditions.
Labelled inertial/magnetic gait data collected by smartphones in daily life is of great importance when
developing and evaluating approaches for advanced gait analysis in uncontrollable scenarios. Existing
datasets, i.e., the largest available dataset proposed by Ngo et al. [28], are mainly focused on short-term
measurements in controlled conditions.

When compared with the most relevant approaches, the proposed approach reveals the following
advantages: (1) multi-method, multi-modal, and multi-sensor operation capability; (2) unsupervised
operability that does not apply any training procedure (as employed by learning-based approaches
similar to those published in recent works of [29,30]), nor any prior knowledge on the
shape/morphology of strides (templates); (3) sufficient consideration of time-variance in stride shapes
(transition phases); (4) accurate estimation of stride times; (5) accurate positioning of gait events;
(6) reliable extraction of gait sequences; and (7) flexible and modular operation capability. Performance
of the proposed approach in terms of robustness, efficiency, and accuracy was evaluated on FRIgait and
eGait datasets with the following aspects in order to address the research hypotheses: gait sequence
extraction performance, stride segmentation performance, and stride positioning accuracy.

2. Methodology

It is well known that gait is represented as a cyclostationary process [12]. Related work points
out that the majority of existing IMU-based approaches for stride segmentation are focused on the
detection of individual cyclic events that appear in inertial signals, either on a peak detection or
on a morphological basis. In contrast, the proposed method is based on the concept of observing
local cyclicity through varying fundamental frequencies in observed inertial signals (pitch tracking).
More precisely, the proposed approach is based on the estimation of instantaneous fundamental
frequency in terms of interval length between two consecutive strides (stride time). It is based on
the similarity between consecutive strides, followed by reconstruction of exact stride positions (time
instants). One of the crucial parts of the approach was inspired by interval length estimation procedure
proposed by Brüser et al. [31,32]. Their procedure was efficiently applied for estimation of inter-beat
intervals in ballistocardiographic signals.

The adapted core procedure is based on the processing of sequential analysis windows
that run through inertial/magnetic signals sampled by sampling frequency fsamp. The analysis
window should cover at least two strides upon which an instantaneous fundamental frequency is
estimated. The estimation procedure is based on an a priori knowledge on the boundaries of the
interval corresponding to fundamental frequencies of observed phenomena (stride), determined
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by fmax and fmin, respectively standing for the maximum and minimum expected stride frequency.
The corresponding admissible maximum and minimum stride times are defined as Nmax =

fsamp
fmin

and

Nmin =
fsamp
fmax

, respectively. These admissible interval lengths are then considered within the stride
time estimation procedure for each position of the analysis window. Analysis window positions
are determined by a fixed, sufficiently small step η. In this manner, a redundancy by multiple
sequential estimation of the same interval is obtained which is reflected in the robustness of the
proposed approach.

Let X represent a compound inertial signal of length ` collected by measurements during the
observation of the same phenomena with sampling frequency fsamp:

X(n, s) = [xs1(n) . . . xsL(n)] (1)

where s ∈ {s1 . . . sL} represents sensing modalities. i.e., in the case of a single sensing device compound
of an accelerometer, gyroscope, and magnetometer, and X(n, s) has nine components (sensor channels)
if all three sensors are 3-axial. Variable s can also denote components from multiple sensing devices,
virtual sensors, or transformed quantities (i.e., accelerometer magnitude). The compound signal X(n, s)
then undergoes three major steps: (1) robust estimation of stride times by employing component-wise
and fused estimation; (2) an assessment of stride positions; (3) extraction of gait sequences; and (4)
fusion and enhancement of assessed stride positions. A schematic representation of the proposed
procedure is depicted in Figure 1.

2.1. Robust Estimation of Stride Times

The estimation procedure is performed by an iterative approach that at k-th time
instant estimates the current stride time. This is performed by employing analysis windows
defined as Wk(ν, s) =

[
wk,s1(ν) . . . wk,sL(ν)

]
denoted by component-wise analysis windows

wk,s(ν) = X(nk + ν, s), ν ∈ {−Nmax, . . . , Nmax}, where nk stands for the central position of k-th
analysis window that increases according to predefined step η, and ν stands for lag in a manner that the
analysis window takes into account at least two consecutive strides and corresponds to the maximum
admissible interval length Nmax.

2.1.1. Component-Wise Estimation of Stride Times

In the first phase, stride times for all k-th analysis window positions are estimated for each
component s. Sets of times between two strides Nk,s are computed by the local cyclicity estimation
function F(.) applied to each analysis window that corresponds to the k-th time instant applied as a
probabilistic Bayesian approach, as proposed in [31]:

∀k, s : Nk,s = Fs(wk,s) = arg max
N

p (N|θs
1) . . . p

(
N
∣∣θs

eL

)
, N ∈ {Nmin, . . . , Nmax} (2)

where θ1, . . . , θeL stand for the set of preselected combinations of local cyclicity estimators,
N ∈ { Nmin, . . . , Nmax} stands for the interval of discrete admissible stride times, and p(N|θ)
represents posterior probability density function. In this manner, the most likely joint estimate
of stride time is obtained for the k-th analysis window. The maximum probability that determines the
most likely stride time also serves as a confidence value vk,s for the k-th analysis window in the s-th
component obtained as vk,s = max

N
p
(

N
∣∣θs

1
)

. . . p
(

N
∣∣θs

eL

)
. Values vk,s are crucial in the fusion process

of stride positions and reflect the importance of the currently estimated k-th stride time within each
component s.
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Figure 1. Pipeline of the proposed stride segmentation approach. (a) Component-wise local cyclicity
estimation; (b) Assessment of stride positions; (c) Alignment of assessed stride positions; (d) Fusion of
aligned stride positions; (e) Enhancement of assessed stride positions on the reference component.

2.1.2. Fused Estimation of Stride Times

Stride times are estimated as a joint probability by combining all preselected cyclicity estimators
in all sensing modalities in order to determine the most likely N from {Nmin, . . . , Nmax} implicitly in a
global context:

∀k : Nk = F(Wk) = arg max
N

p
(

N
∣∣θs1

e1

)
. . . p

(
N
∣∣θs1

eL

)
p
(

N
∣∣θs2

e1

)
. . . p

(
N
∣∣θsL

e1

)
. . . p

(
N
∣∣θsL

eL

)
(3)

Such a length estimation procedure is used for a robust assessment of stride times in a global
sense, and is applied for gait sequence extraction, enhancement of detected stride positions, and
final reconstruction. For this purpose, we also introduce function g(n) that for arbitrary position n
where n ≤ ` with resolution η determines the corresponding stride time for all values Nk obtained by
nearest-neighbour interpolation.

2.1.3. Local Cyclicity Estimators

We introduced local cyclicity estimators θ so that for each interval N from the set of admissible
stride times {Nmin, . . . , Nmax} we determined local cyclicity in terms of stride time probability for
each position of the analysis window. Several either simple or advanced estimators of different types
can be applied. The basic idea behind using local cyclicity estimators is that each of them plays
its own role within the joint probability estimation procedure. As described in [31], for instance,
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correlation-based methods are robust against noise and have different noise characteristics. Conversely,
shape-similarity-based methods can be also applied in a context of similarity estimation of two
adjacent observations (inter-stride similarity). In such a case, similarity-based methods like dynamic
time warping (DTW) exploit and compare the gait morphologies of two consecutive strides. Different
characteristics of estimators are exploited in a manner that they complement each other upon fusion.
Thus, the following four estimators that have proven their value by physiological parameter estimation
(e.g., heartbeat, gait, etc.) were examined: (1) autocorrelation (Rabiner et al. [33,34], Brüser et al. [31]);
(2) average magnitude difference function (Ross et al. [35], Brüser et al. [31]); (3) maximum amplitude
pairs (Brüser et al. [31]); and (4) dynamic time warping (DTW) (Barth et al. [10]).

2.2. Assessment of Stride Positions

Fiducial points are defined as pairs {position, amplitude} that indicate a particular action or event
in a single stride (heel strike, mid-stance, toe off, etc.). The properties of fiducial points depend on
many factors, including sensor instalment (i.e., fixed in shoes, carrying in pocket, etc.), body location
(i.e., hip, foot, etc.), and a particular component or channel (i.e., acceleration on the x axis, acceleration
magnitude, etc.). Furthermore, in the environment where sensor instalment and body location are
not known in advance (i.e., smartphone in pocket), such points do exist but usually cannot be strictly
determined and directly associated with specific gait events [12]. For example, prominent local
extrema within an acceleration magnitude signal obtained during naturalistic walking can reflect
abrupt changes that may indicate a particular gait event (i.e., heel strike).

The aforementioned properties can be exploited by constructing a procedure for assessment of
fiducial points. We begin using estimated stride times between two consecutive strides Nk,s that in fact
represent a temporal distance between two fiducial points. Exactly two fiducial points are expected to
appear in a particular analysis window, one in the left part and another in the right part of the window
for the k-th analysis window of the s-th component. LetMk represent a set of fiducial point candidates
in the right half of the k-th analysis window w. The global position of the proper fiducial point can be
then extracted by using function f (.) defined with regards to the type of observed fiducial points in
the context of the observed gait event within the s-th component:

tk,s = nk + f (wk,s[m], Nk,s) , m ∈Mk ∧ nk ≤ m ≤ Nk,s (4)

Functions that define fiducial points can be either general or specific. From the perspective
of applicability, they can be employed automatically or defined by the user in advance. Let us
state some typical examples. The first example is heel strike as a gait event observed by inertial
sensors embedded in shoes, where the inertial signal abruptly decelerates when the heel hits the
surface [18]. This is reflected as local extrema (either maxima or minima) within inertial signals. In this
case, f (.) should be defined as fMAX(x1[m], D) = arg max

m
(x1[m] + x1[m−D]) or fMIN(x1[m], D) =

arg min
m

(x1[m] + x1[m−D]), respectively. Another interesting example for the definition of fiducial

points in terms of gait analysis are zero-crossings. As described in [18], fiducial points represented
as a zero-crossing can be applied for detection of the toe-off of the gait by employing inertial sensors
embedded in shoes that indicate the gait event where the ankle joint changes its position from a flexion
to an extension. In such cases, fiducial points based on zero-crossings can be detected by employing
function fZC(x1[m], D) = arg min

m
||x1[m]| − |x1[m−D]||. In the same manner, function f (.) can be

defined in similar way for other types of fiducial points (i.e., points of inflection, peak prominence,
zero energy, etc.).

In contrast, it is known that in the case of signals acquired in uncontrollable scenarios one cannot
determine fiducial points explicitly in a context of gait events. However, it is certain that fiducial
points are always manifested within inertial signals in a discriminative way due to the cyclostationary
property of gait and admissible complexity of gait cycles. It turns out that by sensors attached on body
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locations with sufficient motion dynamics, complex gait patterns and fiducial points can be assessed
automatically in terms of prominent local extrema.

2.2.1. Stride Position Assessment Procedure

Since step η is intentionally considerably smaller with respect to the length of analysis window,
multiple replicated values tk,s are obtained for a particular fiducial point as it covered by many analysis
windows. A set of interval-length candidates Di for the i-th interval that corresponds to the i-th unique
fiducial point is obtained asDi =

{
dk,s
∣∣tk,s = t̂i,s

}
. The estimated interval length d̂i,s is then obtained as:

d̂i,s = DU
i (j), j = arg maxR(DU

i ,Di) (5)

where DU
i stands for a set of unique values of set Di and R(A,B) represents an operation that

determines the number of appearances for each element from the set A within a set B. Furthermore,
the confidence measure of i-th fiducial point for the s-th component is determined as a mean value of
the corresponding values for unique i-th fiducial points:

v̂i,s =
1

P(t̂i,s)
∑

{k|tk,s=t̂i,s}
vk,s (6)

where P(.) stands for the number of elements in set. Thus, for each component, a set of triplets(
d̂i,s, t̂i,s, v̂i,s

)
respectively representing the estimated interval length, time position, and confidence

measure of a particular stride is obtained. As a consequence of noise (i.e., high-frequency oscillations)
that can appear in inertial/magnetic signals, misplaced detections in a range of few samples around
proper locations may appear when employing f (.) on each analysis windows. To address this issue,
we start from the fact that due to step η, the number of expected unique replicated stride estimations
that appear around the i-th position is known in advance and is denoted as lexp. Consequentially, the
number of detected stride estimations denoted by lcnt should be close to the expected number of stride
estimations. Thus, the following triplets are only preserved by setting the value h close to 1:{(

d̂i,s, t̂i,s, v̂i,s

)∣∣∣∣ lcnt(i)
lexp(i)

> h
}

(7)

where the number of expected replicated estimates is computed as

lcnt(i) =
{
P(tk,s)

∣∣tk,s = t̂i,s
}

and lexp(i) =
t̂i,s

η
. (8)

2.2.2. Removal of Unreliable and Incorrect Strides

The obtained set of triplets may also contain strides that may reflect low stride confidence through
stride confidence value vi. Besides that, it can also contain incorrect strides detected due to sensor
variability noise in the phases of inactivity or periodic motion noise. To remove those unreliable
and incorrect detections, two types of fixed and robust thresholds can be applied: stride confidence
threshold hv and noise variability threshold hr. Threshold hv is defined directly with stride confidence
value vi—all strides with value vi lower than hv are omitted from the set of triplets. Threshold hr

can be directly defined with the dynamic range of the observed phenomena for a particular sensor
component, i.e., either on the measured variability of sensor noise or minimal expected dynamic range
if the activity level of the observed phenomena is known in advance (i.e., gait).

The procedure of setting these thresholds does not assume much effort. In fact, their use is
optional and strictly depends on the nature of observed data. It turns out that a single fixed value for a
particular threshold, either for a specific sensor component or a combination of estimators, is enough.
Further insight and practical details are given in Section 2.5.
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2.3. Extraction of Gait Sequences

Gait sequences are extracted with a special backtracing procedure. It assumes that the assessed
strides represented by triplets (di, ti, vi) are sorted in time. Then, each estimated stride time di on
position ti is compared to the corresponding globally estimated one through g(i) at the same time
instant. It is expected that times between detected strides di will be close to those estimated with g(ti).
Therefore, we rely on the assumption that the absolute difference between these values defined as ∆
will stay within Nmin, as the values larger than Nmin will appear only in situations where strides are
not detected—either because the user stopped walking (sequences with silence) or as a result of other
external disturbances that affect gait pattern (i.e., activity noise).

The procedure starts with the latest assessed stride position, which is determined as end of the
last gait sequence. If value ∆ obtained by comparing it with the previous stride position is smaller than
Nmin, then the previous stride is added to the current gait sequence. If not, the initial stride position
(onset) of the current gait sequence is determined by employing value di of the current stride and the
corresponding definition function for fiducial points f (.). The previous stride then represents a final
stride (termination) of a new gait sequence. The procedure completes its work when all triplets are
addressed. Consequentially, gaps between sequences represent phases with silences. The output of the
procedure is represented by the set of onsets and terminations for each component in the form of pairs
(Sonset(j), Send(j)) for the j-th sequence.

2.4. Fusion and Enhancement of Stride Positions

The fusion and enhancement procedure of stride positions is applicable in cases when selection
of the reference component and extraction of the most reliable fiducial points is automatized.
This is an efficient solution for addressing the problem of transitions and dynamically changing
gait patterns acquired by measuring gait in uncontrollable scenarios. We start from stride positions and
corresponding gait sequences obtained in the previous step. First, for each j-th sequence, a reliability
score is estimated as the mean absolute error between di and g(ti) corresponding to the strides within
each sequence. In descending order according to the assessed mean absolute error, sequences are
added to the global output. Sequences that overlap each other are merged together. The procedure is
finished when the entire temporal space is covered.

A single reference component can be selected either manually or automatically. Manual selection
of the reference component can be also applied in the case when the most reliable component is
identified in advance, i.e., as the gyro z-axis in shoe sensors for determining zero velocity [18]. In case
of automatic selection, the best single-reference component sref is determined as:

sref = arg min
s

{
1

P(∆ts)
∑

i

∣∣g(t̂i,s)− ∆t̂i,s
∣∣} , ∆ti,s =

{
t̂i,s − t̂i−1,s

}
, i > 1 (9)

In the subsequent step, initial temporal alignment of the particular strides on the reference
component sref per j-th sequence is performed for all components s. Let r̂s(n) represent the compound
sparse vector obtained as the linear combination of Kronecker delta function on the estimated stride
time instants with stride confidence values vi,s:

r̂s(n) = ∑
i

v̂i,sδ
(
n− t̂i,s

)
. (10)

As stride confidence values vi,s stress the importance of i-th stride in the context of a particular
component s, strides with higher confidence will be reflected as pulses with higher values in sparse vector
r̂s(n). Thus, time instants are aligned according to fixed lags `s obtained by normalized cross-correlation
between reference sparse vector r̂sref and all remaining sparse signals for the j-th sequence:
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∀s, s 6= sref : `s = arg max
τ

∣∣(r̂sref ? r̂s
)
(τ)
∣∣ , τ ∈ {−Nmax . . . Nmax} (11)

where lag τ is constrained according to physiological boundaries of the gait frequency. Aligned sparse
vectors are then obtained as lagged versions of vectors r̂s by lags `s for the particular component s on
each of the j gait sequences:

rs(n) = r̂s(n− `s) (12)

It is expected that this will significantly reduce the effect of delay specific for different types of
fiducial points.

The fusion procedure is initiated by construction of compound sparse matrix Ỹs(m, n), obtained as:

Ỹ(m, n) =
[
rs1(n) . . . rsL(n)

]
(13)

Non-zero values representing the confidence measure of detected strides will appear column-wise.
Thus, the marginal projection of sparse matrix Ỹ(m, n) over a temporal dimension is computed as
ỹ(n) = ∑

P(s)
m=1 Ỹ(m, n). The exact positions of fiducial points that represent stride positions are obtained

by window-based fusion, performed by convolution of marginal projection ỹ(n) using triangular
window h(n) as y(n) = (ỹ ∗ h) (n) with length L set to Nmax. In this manner, overlaying confidence
values are emphasized while outliers are suppressed. Peak values are then gathered in a set that can
be seen as a simple two-class problem. Then, reliable strides are simply extracted by an automatically
determined threshold obtained by applying a kernel density estimation of the distribution, and the
others are omitted.

To finalize the enhancement procedure, in order to remove possible slight displacements from
fiducial points defined by the reference component, let the pairs (tmax

i , ymax
i ) represent all detected

maxima peaks and their positions and (tmin
i , ymin

i ) represent minima peaks adjacent to (tmax
i , ymax

i )

computed from y(n). Final strides are then assessed as triples (di, ti, vi), where di = tmax
i+1 − tmin

i ,
ti = tmax

i and vi =
1
2
(∣∣ymax

i − ymin
i

∣∣+ ∣∣ymax
i − ymin

i+1

∣∣).
2.5. Evaluation Parameters

Gait sequences are defined as time intervals that cover consecutive strides corresponding to a
single comprehensive gait trial. The performance of gait sequence extraction was carried out in terms of
gait sequence coverage on the basis of individual time samples. Each time sample corresponds to one
of the following four classes: (1) true positive (TP): a time sample that corresponds to the gait sequence
in both ground truth and observed data; (2) true negative (TN): a time sample that does not correspond
to the gait sequence in both ground truth and observed data; (3) false positive (FP): a time sample that
does not correspond to the gait sequence in ground truth data but was falsely detected as part of the
gait sequence in observed data; and (4) false negative (FN): a time sample that corresponds to the gait
sequence in ground truth data but was pronounced as undetected in the observed data. Based on these
four classes, we provide standardized metrics of sensitivity TP/(TP+ FN), specificity TN/(FP+ TN),
precision TP/(TP + FP), recall FP/(FP + TN), and F-score, computed as 2 · precision·recall

precision+recall .
By evaluating stride segmentation performance, detected strides were divided into three groups.

The detected stride is declared as a TP if its time instant falls within ±100 ms of the labelled stride time
borders as suggested in [10]. All other detected strides that fall within labelled stride borders (except for
the TP which is in this case the closest to the manually labelled stride time instant), are declared as
FPs. This also includes strides that were detected outside manually segmented regions. Finally, if no
stride is detected in a particular labelled ground truth stride time border, the missing stride is declared
as an FN. Based on these three classes, the performance of a proposed stride detection procedure is
evaluated with precision, recall, and F-score.
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Since the proposed approach assumes a single stride confidence threshold from interval [0, 1] that
determines whether a particular stride should be considered or not, its value should be determined
prior to the detection procedure. We followed the concept proposed in [10], where the best threshold
for each combination of a particular population and used sensor axes was selected. Thus, a single
stride confidence threshold is determined for each of 30 combinations of the considered evaluators and
components. To prove the stability of the stride confidence threshold, precision and recall curves were
computed for each trial by varying the threshold with values that correspond to a proper co-domain.
The threshold at which the intersection of both curves appear is considered as the optimal threshold
that reflects the best trade-off between FP and FN strides. The final stride confidence threshold for
the observed method is then obtained as a mean value of these optimal thresholds. This approach to
threshold selection is justified by the assumption that the variability of threshold values around the
mean threshold will be low in the case of a stable and reliable recognition system. Therefore, standard
deviations of values around selected stride confidence threshold values are also observed in parallel.

Concerning stride positioning accuracy, one of of the most common used evaluation approaches
is to observe detected positions through the time intervals between two consecutive stride positions.
Therefore, let di represent the estimated stride time for the i-th time position and dref

i its corresponding
ground truth stride time. Absolute errors between estimated and ground truth stride times can be then
computed as AE = |di − dref

i |. From the set of estimated absolute errors, the following four metrics are
computed: mean absolute error, median absolute error, dispersion of errors by standard deviation of
absolute errors, and P95 of absolute errors yielding the value with 95% of errors below it.

Furthermore, the agreement between estimated and ground truth stride times is shown
by regression analysis, performed by employing least-squares regression on ground truth and
corresponding detected stride times, and Bland–Altman plots that depict the differences between
corresponding estimated and ground truth stride times (dref

i − di) against the mean value of stride

times ( dref
i +di

2 ). Stride positioning bias is another important aspect that should be observed during the
evaluation procedure. Bias can be assessed in terms of reference-to-detected delay of fiducial points.
A set of delays for all strides can be thus computed as the difference ti − tref

i . A positive value reveals
the number of samples for which the fiducial point was detected after an actual fiducial point, and
vice versa. Furthermore, low dispersion of these delays additionally confirms the accuracy of fiducial
point positioning and can be expressed by the standard deviation of the delays.

3. Experimental Datasets

3.1. FRIgait Dataset

We have performed a continuous collection of inertial/magnetic data in order to construct
dynamically growing, large-scale gait dataset collected from a large number of users by employing their
smart devices in the course of their daily lives. The FRIgait dataset is planned to be used as a reference for
the evaluation of gait assessment procedures during daily life since it provides comprehensive coverage
of gait-affecting parameters (footwear, health state, surface, etc.), the long-term monitoring ability of a
subject’s gait profile, and reduced awareness of the subject that he/she is being monitored. The dataset
is collected by our own developed cloud-based IoT integration platform that enables simple connectivity
of smart devices and continuous collection of inertial gait data by a large number of users. Widespread
gait monitoring is simplified by an intuitive mobile application that also gathers user-based gait-related
auxiliary information for a single walking trial. This information is used for evaluation purposes after
data analysis and includes data on gait-affecting patterns, walking manner, health state, etc.

The current version of the FRIgait dataset contains data collected over approximately 1.3 years.
Fifty-seven subjects ranging from ages 18 to 54 provided 278 walking trials lasting approximately
5.5 ± 5.7 min, where the longest walking trials lasted up to 30 min. The dataset includes gait data
employing different footwear and surfaces. It also includes regions with transitions. The data is measured
with more than 30 smartphone types. Besides that, data was collected from multiple body locations
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according to the lateral and frontal plane—please refer to Figure 2 for the sensor positioning layout.
Complete details on the proposed FRIgait dataset are given in Figure 3. In order to evaluate or directly
compare the results of gait segmentation or other related gait analysis approaches, authors are encouraged
to run their algorithms on the FRIgait dataset. The dataset is open and available upon request.

The FRIgait dataset contains inertial/magnetic data that is very appropriate for reliable evaluation
of the proposed gait segmentation approach as it includes sudden changes in gait frequency,
abrupt morphological changes in gait patterns, sequences with silences, and other activity sequences
(i.e., due to taking or putting the smartphone in measuring position), as well as gait patterns with
varying morphology, i.e., gait patterns using a smartphone stored in a purse provides different
information than when stored in a pocket.
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Figure 2. Layout of all smartphone positions considered in the FRIgait dataset.

Average Min. age Max. age
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403.0 ± 395.2 11,5 1637,6 364.2 ± 333.1 333.4 ± 340.2 5,6 1621 286.2 ± 277.4 63.3 ± 53.8 7 383,8 29.3 ± 37.6
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Figure 3. Properties of the FRIgait dataset.

After acquisition, auxiliary information on gait provided by users through the mobile application
was extracted for each trial. Manual extraction of gait sequences and manual labelling of all stride
time instants was then performed for each trial by three different persons. In order to reduce manual
labelling bias, a majority voting scheme was performed on each stride to determine whether the stride
was valid or not. Strides were labelled sequentially according to the auxiliary information and stride
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prominence induced in inertial/magnetic signals, i.e., strides reflected as the most prominent peaks or
the most discriminative repetitive patterns. Thus, each stride label appears in at least one component
that represents the most distinguishable repetitive pattern. Besides that, we have also labelled signal
segments that determine transition phases.

3.2. eGait Dataset

In order to examine whether the proposed approach can be also directly applied in more
demanding and special measuring environments, where high stride segmentation accuracy should
be achieved, the eGait dataset collected at FAU Erlangen-Nürnberg provided by Barth et al. [10] was
used in the evaluation procedure. This dataset consists of inertial data acquired by two shoe-mounted
inertial sensors (each having a 3-axis accelerometer and gyroscope) that were mounted laterally on the
heels of the subject’s right and left shoes. The experiment included three cohorts: geriatric individuals,
PD patients, and healthy (control) subjects. Measurements were performed by considering two
different protocols. The first involved 4 × 10-m-long controlled walks at a comfortable self-selected
walking speed, while the second involved free walking, where subjects walked for two minutes inside
a building. This included straight and curved walking, stair climbing, sit-to-stand transitions, standing,
opening and closing the doors, etc. For each of three cohorts, 15 subjects participated in the experiment,
where 10 subjects performed controlled walking, and five subjects performed free walking. All stride
segments were labelled manually by considering angular velocity in the sagittal plane. For other
details on measurement, please refer to the original publication [10].

By employing this dataset, we want to assess the general applicability of the proposed approach
by its evaluation in specific conditions that differ from the concept covered by our FRIgait dataset. It is
expected that fixed positioning of sensing devices should additionally contribute to the improvement
of stride detection accuracy. Finally, evaluation results presented in [10] will be directly employed in
order to make a direct comparison of results of the proposed approach with peak-detection-approach
proposed by [36] and the template-based approach proposed by authors of the eGait dataset [10].

3.3. Experimental Parameters

We examined the performance of the proposed approach using several experimental parameters
for both employed datasets. All details on the experimental parameters used the evaluation procedure
are shown in Figure 4. For better comprehension, we introduce unified labels for applied local cyclicity
estimators, sensor components, and fiducial points. All labels are provided in Figure 4. To present
applied combination of cyclicity estimators, components, and fiducial points, the following form is
used: estimator-Components-spatial_axes-[fiducial_points]. For example, 123-Acc-A-[M|m] represents the
combination of cyclicity estimators labelled as 1, 2 and 3, with acceleration data on all three spatial axes,
and separately applies local maxima and minima as fiducial points. This would result in six output
components (all estimators applied on three spatial axes with two types of fiducial points for each axis).

The sampling frequency that was used in the evaluation procedure was equal to 25 Hz for the
FRIgait dataset and 102.4 Hz for the eGait dataset. This decision is tightly related to measuring concepts
that each of these two dataset originally address. First, for the purpose of efficient measurement
with smartphones it is desired that the sampling frequency is as low as possible, i.e., low power
consumption. It has been already shown that the sampling frequency 25 Hz is in this situation
sufficient for satisfactory resulting processing of gait measured with inertial sensors [3]. An equidistant
sampling interval has been achieved by employing linear interpolation on raw collected data that was
sampled by varying the highest possible sample rate, which depended on the type of the smartphone.
In contrast, the sampling rate by eGait is considerably higher and was left unchanged in order to
reduce accuracy error on the sample level (approximately 10 ms compared to 40 ms by sampling
frequency of 25 Hz) and to be directly comparable by the approach presented in [10].

Concerning a priori knowledge on gait frequency, according to Oberg [37], the expected human
physiological limitations on stride frequency were set to within the interval of between 0.5 Hz and
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3 Hz. These values were employed to determine expected values of Nmin and Nmax that were set to
0.33 s and 2 s, respectively. It should be mentioned that minimum are maximum stride frequencies
that appear in both datasets are equal to 0.55 and 1.2 Hz, respectively. Analysis window step η was set
to the length of approximately 100 ms, which about 30% of the shortest expected inter-stride interval
length. The noise variability threshold nr, which was applied on the eGait dataset only, addressed
sensor noise variability and was set to 0.1 g for acceleration data and 5 degrees/s for angular velocity.
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Figure 4. Experimental parameters used for evaluation of the proposed approach on FriGait and
eGait datasets.

For the evaluation procedure, we constructed a test framework that contains the following
local cyclicity estimators: auto-correlation, inverted average magnitude difference, maximum
amplitude pair-based estimators as fundamental frequency-observing estimators, and the DTW-based
estimator as a similarity-based estimator. These were labelled with the labels ‘1’, ‘2’, ‘3’, and ‘4’,
respectively. We also experimented with two fused versions of estimators, one labelled with ‘123’ as a
fusion of all fundamental frequency-observing estimators, and one with the added similarity-based
estimator, labelled as ‘1234’. Concerning employed sensor components, we experimented with the
following sensor channels or their combinations: acceleration magnitude computed from 3-axial
accelerometer measurements (a single component), 3-axial accelerometer measurements (three
components), 3-axial gyroscope measurements (three components), angular velocity energy (single
component), fusion of 3-axial accelerometer and gyroscope measurements (six components) and
fusion of 3-axial accelerometer, gyroscope, and magnetometer measurements (nine components). The
proposed approach was performed on datasets with all combinations of pairs estimator-component
of aforementioned constructs, where each pair can be defined as single method (i.e., ‘1234-AccGyr’).
In this manner, 30 (6 · 5) methods were constructed for the FRIgait dataset in order to get insight
into a possible trade-off between performance and computational complexity in terms of efficiency,
since the increased number of applied estimators or components can lead to increased computational
complexity of the proposed approach.

To evaluate the accuracy of the positioning of fiducial points, we began with the ground-truth
labelled data provided in the FRIgait and eGait datasets. To show the generality of the proposed
approach, the evaluation setup for stride segmentation was set the same for both datasets and relied
on extraction of fiducial points in terms of local maxima by applying function fMAX and local minima
by fMIN. For example, an estimation trial ’1234-AccGyr’ would result in segmented six sensor channels
by employing information on estimated stride times obtained by fusing four local cyclicity estimators.
As the FRIgait dataset contains free-walk data with varying sensor positions, prominent peaks can be
determined as fiducial points, but the morphology of the gait pattern is not expected to be preserved.
Since the labelled data in the FRIgait dataset is set on the most prominent peaks and the selection of the
best component and peak positioning may vary with time, fiducial points were selected automatically.
This also covered transition phases, since it was expected that the proposed approach would preserve
robustness on the account of some lost strides due to initialization of the new gait sequence within the
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transition phase. Conversely, due to the fixed sensor attachment in the eGait dataset, fiducial points can
be determined as stable and can be also interpreted as gait events due to regular and stable gait patterns.
Therefore, reference fiducial points could be defined in advance. As described by Barth et al. [10],
reference stride boundaries were in their dataset obtained by employing angular velocity in the sagittal
plane, where prominent negative peaks that determine the change in the foot rotation during one stride
were used in order to define stride start and end points (Gyr-z-[m]). By evaluating our approach with
the eGait dataset, we directly adapted these positions as fiducial points during the stride enhancement
step. Finally, in order to examine whether the proposed approach was able to accurately determine
gait events without any templates and in unsupervised way, we processed the eGait dataset with the
proposed approach by employing the same components and fiducial points as proposed in [18].

4. Results

4.1. Smartphone Data during Free Walking

Concerning stride detection performance of the proposed approach on smartphone dataset,
Figure 5 presents the overall results gathered with the combinations of selected cyclicity estimators
(1, 2, 3, 4, 123, 1234) and components (AM, Acc, Gyr, AccGyr, AccGyrMag). The results are presented
separately for entire gait sequences and for transitions. First, estimated stride probability vi was
exploited in order to determine the proper stride confidence threshold for each combination. These
are revealed in Figure 5a. Stride detection performance for particular combinations of estimators and
components is shown in Figure 5b by precision, recall, and an F-score, for both entire sequences and
transitions. Overall stride detection accuracy is presented in Figure 5c with average errors.
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Figure 5. Overall stride segmentation results for smartphone data: (a) stride confidence threshold
variability analysis based on vi; (b) stride detection efficiency; (c) stride detection accuracy. The values
are also represented by a green-yellow-red color scale for a better representation.
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To examine the influence of sensor body position on stride detection performance, we investigated
stride detection efficiency and accuracy according to: (1) lateral sensor position including the
left, right and center positions; and (2) the body part on which the sensor was attached during
measurements including: hand, hip, thigh, loin, chest, buttock, and back. The obtained results are
shown in Figure 6a,b, where precision, recall, and an F-score were computed for overall data and
transitions, respectively. Corresponding stride position errors are shown in Figure 6c,d for lateral
sensor positions and different body parts, respectively. The figure also includes absolute errors for
overall data and transitions. The results of transitions for hand and back data are excluded from the
analysis due to an insignificant number of trials covering these particular body parts.
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Figure 6. Efficiency and accuracy of stride segmentation according to sensor location. Missing bars
represent zero-values. Black bars represent standard deviation. The values are also represented by a
green-yellow-red color scale for a better representation.

To evaluate stride detection accuracy, we used a combination of stride interval estimators (1234) and
corresponding components (AccGyr-A-[M|m]) that showed the best performance in terms of precision,
recall, and F-score. Fiducial points defined with local minima and maxima as an outcome of the proposed
approach were extracted automatically as per the most reliable sequence denoted with the highest average
vi in extracted sequences. Concerning detection accuracy, first we computed average detection bias
as a difference between expected (reference) stride time instants and stride time instants detected by
the proposed approach. Overall stride detection bias using a sampling frequency of 25 Hz yielded
0.0372 ± 1.0812 samples, while stride detection bias for transitions resulted in 0.0461 ± 1.4799 samples.

Due to the large number of stride times used in the analysis (n = 44,035), matching between detected
and corresponding ground truth stride times is visualized by contours that reveal the density of stride
times along an estimated regression line (Figure 7a, left-hand side). The same is applied for all regression
analysis and Bland–Altman plots in this paper. Regression analysis for all stride times on smartphone
data resulted in the coefficient of determination r2, with a value of 0.8766 and sum of squared error
SSE equal to one sample. Bland–Altman plots for all stride times on smartphone data are depicted in
Figure 7a, on the left-hand side, and reveal average values between reference and detected stride times
on the x-axis and corresponding differences between them on the y-axis. The average value of differences
between reference and detected stride times yielded 0.037 samples (straight line in the middle of the
plot). The reproducibility coefficient RPC was also computed as (±)1.96σ, where σ stands for standard
deviation, marking the values that lie within 95% of the differences. In this case, RPC resulted in 2.1
samples. Relative RPC and coefficient of variation CV were also computed and were equal to 8.4% and
4.3%, respectively. We also present the results of regression analysis and Bland–Altman plot for stride
times that corresponded to transitions. Results are shown in Figure 7b. In this analysis, 3734 stride times
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were considered. Concerning regression analysis, the coefficient of determination r2 was equal to 0.8124
and SSE was equal to 1.3 samples. The average value of differences was equal to 0.046 samples, RPC
resulted in 2.9 samples, and relative RPC and CV were 12% and 5.9%, respectively.
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Figure 7. Regression analysis and Bland–Altman plots of stride time matching between detected strides
and ground truth: (a) all strides; (b) transitions. Color map represents the number of strides.

4.2. Shoe-Mounted Sensors-Stride Detection

Stride detection results for shoe-mounted IMU sensors performed on the eGait dataset [10]
are shown in Figure 8, separately for each of the three cohorts, as well as with the overall results.
When employing the proposed approach on the eGait dataset, stride time estimation was performed
by combining all defined estimators (1234) with all available components in all spatial directions
(AccGyr-A-[M|m]). To be fully compliant with [10], Gyr-z-[m] was selected as the reference component
when locating stride time instants. Stride detection efficiency as evaluated by precision, recall,
and F-measure can be directly compared to the results published in [10]. Figure 8 also reveals the
obtained detection bias which seems to stay within one sample. Stride detection accuracy is presented
by the absolute value error that falls below one sample and P95 below two samples. Results of stride
sequence extraction are also presented. At this point it is also important to mention that during the free
walking experiment, authors in [10] were interested only in straight walking epochs and considered
other walking types (i.e., stair climbing) as false. In contrast with that, we are interested in aggravated
circumstances for stride segmentation. Since such circumstances were already covered by the FRIgait
dataset and due to the fact that corresponding epochs in eGait dataset are not labelled, these parts
were excluded from the analysis in order to ensure fair comparison.

Regression analysis and Bland–Altman plots for the eGait dataset are presented separately for the
overall results and each of the three cohorts. All results are presented in seconds. Figure 9a shows
the regression plot and Bland–Altman plot for the overall results. The analysis was performed on
3993 strides. Regression analysis yielded a coefficient of determination r2 equal to 0.9955 and SSE of
11 ms. Differences between reference and detected stride times were practically zero on average with
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RPC value of 21 ms, with relative RPC and CV equal to 1.8% and 0.92%, respectively. The corresponding
results for control as well as geriatric subjects and PD patients are depicted in Figure 9b–d, respectively.

Exp. type: Controls Geriatrics PD's Overall

Precision [%] 99.00 97.22 98.91 98.42

Recall [%] 97.73 97.82 97.84 97.80

F-measure [%] 98.36 97.52 98.37 98.11

Mean abs. err. [ms] 6.25 ± 5.70 7.10  ± 6.43 9.28 ± 8.35 7.68 ± 7.17

Mean abs. err. [ms] 5.96 ± 6.83 8.58 ± 8.76 7.53 ±7.68 7.36 ± 7.85

P95 abs. err [ms] 19.53 19.53 19.53 19.53

Sensitivity [%] 97.36 96.95 97.44 97.25

Specificity [%] 93.60 94.92 94.32 94.53

Precision [%] 98.14 95.87 97.60 97.15

Recall [%] 97.36 96.95 97.44 97.25

F-measure [%] 97.75 96.40 97.52 97.20

Stride detection efficiency

Stride detection bias

Stride sequence extraction efficiency

Stride time instant detection error

Figure 8. Overall results of the performance of proposed approach on eGait dataset.

Figure 10 provides a comparison of stride detection performance with the two most relevant
approaches: peak-based detection [36] and the DTW-based approach [10]. The precision, recall, and
F-measure are compared separately for each of the cohorts. It should be explained that the results
provided by Barth et al. for particular combinations of subject groups and metrics in the figure contain
the best results they obtained depending on the combination of components (sensor types) they used.
In contrast, our results were obtained by using only one predefined combination of estimators 1234 on
all available components in all spatial directions (AccGyr-A-[M|m]) and with Gyr-z-[m] selected as a
reference component, thus exposing the proposed approach as a more universal solution.

4.3. Shoe-Mounted Sensors-Detection of Gait Events

In evaluating the performance of gait event detection, ground truth data was determined by the
eGait toolbox [18], a verified and reliable framework for assessment of gait parameters. Good matching
of detected gait events with those assessed from the eGait toolbox would confirm the proposed
approach for the gait event-detection task. We experimented with three types of gait events: toe-off,
heel strike, and mid-stance. Obtained results were then directly compared with the corresponding
ones from the eGait toolbox which served as ground truth. For stride time estimation, we combined
all available estimators (1234). Concerning the components and fiducial points, we proceeded in
the same way as proposed in [18]. For toe-off detection, we employed the gyroscope z-axis with
zero-crossings as defined fiducial points (Gyr-z-[z]). Heel strike events were determined by employing
a function that detects abrupt changes in acceleration on the y-axis (Acc-y-[h]). Mid-stances were
determined by considering the zero-energy of gyroscope data (GE-x-[s]). The performance of the
proposed approach was evaluated for all data and separately for each of the three cohorts. For each
of these, we also separately considered the controlled 40-m walk and free walk. The results of the
detection performance are shown in Figure 11a–c for toe-off, heel strike, and mid-stance events,
respectively, where further insight into detection performance is given with the evaluation parameters
as follows. A portion of considered gait events (coverage) determines the portion of gait events in
terms of the ratio between true positives and all reference events. Please note that due to the nature
of our approach and strictness of the definition function, there were no false positives detected. We
also provide an exact number of strides, considered in an analysis, as well as detection bias (mean, std,
and median) against reference gait events. Detection accuracy is estimated by mean, std, and median
absolute error between detected and reference gait events. The correlation coefficient and its p-value
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are also computed. When observing the results, one should have in mind that the sampling frequency
of 102.4 Hz was used in the analysis, meaning that a one-sample difference corresponds to a time
interval of around 9.7 ms.
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Figure 9. Regression analysis and Bland–Altman plots for stride detection accuracy on the eGait dataset
over different cohorts: (a) overall; (b) control subjects; (c) geriatric subjects; (d) PD patients. Colour
map represents the number of strides.
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Salarian Barth Sprager Salarian Barth Sprager Salarian Barth Sprager

Controls 77 97 99 99 98 97 86 98 98

Geriatrics 84 94 94 97 98 99 90 96 96

PDs 76 98 97 99 98 98 86 98 97

Controls 68 96 99 99 97 98 81 96 98

Geriatrics 85 94 97 95 96 98 90 95 98

PDs 71 97 98 100 97 98 83 97 98

F-MeasureRecallPrecision

Free Walk

40 m Walk

Figure 10. Comparison of the performance of proposed approach with relevant state-of-the-art
approaches performed using the eGait dataset.

Group Experiment type
Portion of considered 

gait events

No. of considered 

strides
Bias [ms]

Median bias 

[ms]

Mean absolute 

error [ms]

Median 

absolute 

error [ms]

Correlation 

coefficient
p-value

All 94.55% 1024 0.00 ± 3.96 0.00 0.23 ± 3.95 0.23 1.00 0.00

40 m Walk 87.91% 189 -0.10 ± 9.06 0.00 1.03 ± 9.01 1.03 1.00 0.00

Free Walk 96.20% 835 0.02 ± 0.83 0.00 0.05 ± 0.83 0.05 1.00 0.00

All 96.43% 351 0.11 ± 2.09 0.00 0.11 ± 2.09 0.11 1.00 0.00

40 m Walk 97.78% 44 0.89 ± 5.89 0.00 0.89 ± 5.89 0.89 1.00 0.00

Free Walk 96.24% 307 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 1.00 0.00

All 88.96% 266 -0.11 ± 7.37 0.00 0.70 ± 7.34 0.70 1.00 0.00

40 m 80.67% 96 -0.61 ± 12.09 0.00 1.63 ± 12.00 1.63 1.00 0.00

Free Walk 94.44% 170 0.17 ± 1.67 0.00 0.17 ± 1.67 0.17 1.00 0.00

All 96.90% 407 -0.02 ± 0.48 0.00 0.02 ± 0.48 0.02 1.00 0.00

40 m Walk 96.08% 49 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 1.00 0.00

Free Walk 97.02% 358 -0.03 ± 0.52 0.00 0.03 ± 0.52 0.03 1.00 0.00

All subjects

Controls

Geriatrics

PDs

Gait event: Toe-off

(a)

Group Experiment type
Portion of considered 

gait events

No. of considered 

strides
Bias [ms]

Median bias 

[ms]

Mean absolute 

error [ms]

Median 

absolute 

error [ms]

Correlation 

coefficient
p-value

All 77.88% 845 24.19 ± 50.85 0.00 25.53 ± 50.19 25.53 1.00 0.00

40 m Walk 61.86% 133 35.91 ± 61.30 0.00 40.75 ± 58.17 40.75 1.00 0.00

Free Walk 81.84% 712 22.00 ± 48.39 0.00 22.69 ± 48.07 22.69 1.00 0.00

All 82.74% 302 5.98 ± 28.81 0.00 7.41 ± 28.48 7.41 1.00 0.00

40 m Walk 60.00% 27 -2.17 ± 30.32 0.00 13.74 ± 26.98 13.74 1.00 0.00

Free Walk 85.94% 275 6.78 ± 28.59 0.00 6.78 ± 28.59 6.78 1.00 0.00

All 86.67% 260 18.52 ± 46.41 0.00 19.34 ± 46.07 19.34 1.00 0.00

40 m 68.07% 81 49.79 ± 65.78 0.00 52.45 ± 63.65 52.45 1.00 0.00

Free Walk 98.90% 179 4.36 ± 23.31 0.00 4.36 ± 23.31 4.36 1.00 0.00

All 67.38% 283 48.83 ± 62.29 9.77 50.55 ± 60.90 50.55 1.00 0.00

40 m Walk 49.02% 25 32.03 ± 54.34 0.00 32.03 ± 54.34 32.03 1.00 0.00

Free Walk 69.92% 258 50.46 ± 62.86 9.77 52.35 ± 61.29 52.35 1.00 0.00

All subjects

Controls

Geriatrics

PDs

Gait event: Heel strike

(b)

Group Experiment type
Portion of considered 

gait events

No. of considered 

strides
Bias [ms]

Median bias 

[ms]

Mean absolute 

error [ms]

Median 

absolute 

error [ms]

Correlation 

coefficient
p-value

All 97.70% 1060 -58.70 ± 39.81 -58.59 62.42 ± 33.67 62.42 1.00 0.00

40 m Walk 90.70% 195 -74.17 ± 45.10 -68.36 76.27 ± 41.42 76.27 1.00 0.00

Free Walk 99.43% 865 -55.21 ± 37.68 -58.59 59.29 ± 30.85 59.29 1.00 0.00

All 99.18% 362 -67.82 ± 30.38 -68.36 68.58 ± 28.63 68.58 1.00 0.00

40 m Walk 93.33% 42 -72.54 ± 31.56 -58.59 72.54 ± 31.56 72.54 1.00 0.00

Free Walk 100.00% 320 -67.20 ± 30.21 -68.36 68.05 ± 28.23 68.05 1.00 0.00

All 94.00% 282 -51.60 ± 58.51 -48.83 63.72 ± 44.95 63.72 1.00 0.00

40 m 86.55% 103 -88.36 ± 50.36 -87.89 92.35 ± 42.54 92.35 1.00 0.00

Free Walk 98.90% 179 -30.44 ± 52.14 -29.30 47.25 ± 37.50 47.25 1.00 0.00

All 99.05% 416 -55.57 ± 28.41 -58.59 56.18 ± 27.18 56.18 1.00 0.00

40 m Walk 98.04% 50 -46.29 ± 26.82 -39.06 46.29 ± 26.82 46.29 1.00 0.00

Free Walk 99.19% 366 -56.83 ± 28.42 -58.59 57.53 ± 26.99 57.53 1.00 0.00

All subjects

Controls

Geriatrics

PDs

Gait event: Mid-stance

(c)

Figure 11. Performance of the proposed approach for detection of gait events, performed on the eGait
dataset and validated with eGait system: (a) toe-off; (b) heel-strike; and (c) mid-stance.

Matching between gait events detected with the proposed approach and ground truth gait
events from the eGait toolbox is also evaluated by regression analysis and Bland–Altman plots.
A graphical representation of the results is shown in Figure 12. Figure 12a reveals results for toe-off
detection. Regression analysis yielded an r2 of 0.9988 and an SSE of 4 ms. The difference between
reference and detected gait events was practically zero on average with RPC also being very close
to zero. Relative RPC and CV were equal to 0.74% and 0.38%, respectively. Concerning heel strike
gait events, the r2 was 0.8762 and SSE was 56 ms. The difference between the reference and detected
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gait events was on average also practically zero, while the RPC was 0.11 s, with relative RPC and
CV being 9.8% and 5%, respectively. Detected mid-stances resulted in r2 equal to 0.8834 and SSE of
46 ms. The difference between reference and detected gait events was on average also practically zero,
while the RPC was 0.095 s, with the relative RPC and CV being 8.6% and 4.4%, respectively.
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Figure 12. Regression analysis and Bland–Altman plots for accuracy on gait event extraction from the
eGait data: (a) toe-off; (b) heel-strike; and (c) mid-stance. Colour map represents the number of strides.

5. Discussion

From Figure 5a it can be seen that the stride confidence threshold is stable over all combinations
of local cyclicty estimators and components as the standard deviations for each combination are
considerably low. Selected values and medians of thresholds are rather stable and converge towards
0.11. That indicates the satisfactory robustness of the proposed approach and good performance also
without considering noise threshold. Concerning stride detection performance on the FRIgait dataset,
it can be seen from Figure 5b that combining more estimators and more components leads to better
results. From these results it is also obvious that magnetic data operating with minima and maxima
as gait events does not contribute to the overall efficiency, which is meaningful due to the nature of
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raw magnetic signals during gait. In general, precision, recall, and F-score are completely comparable
with recent state-of-the-art methods regardless of the fact that FRIgait dataset was acquired in more
challenging conditions. Evaluation on isolated transitions shows just a 2–3% lower performance when
compared to overall results, which is still acceptable and reveals that proposed approach copes well
also with more demanding situations. The results of stride segmentation accuracy for the FRIgait
dataset are in line with the efficiency—the mean average error for successful combinations of estimators
and components is less than one sample. The accuracy (Figure 5c) is slightly poorer for transitions,
which was expected due to higher dispersion of detections. Still, 95% of errors fall within the interval
of ±0.2 s.

The results also show that stride segmentation performance is not significantly affected by using
a measuring device on different body sides. Results for the left and right side of the body for all strides
and isolated transitions are practically the same, with the results of the centre position just slightly
below them. The same applies for accuracy, with small mean average error within the bounds of
one sample, but with a higher dispersion of errors by transitions. It is interesting that similar results
are obtained for measurements on different body parts. Slightly poorer performance is shown for
transitions, especially on the positions that are higher on the body. This is also obvious from the
accuracy results. This can be explained by the fact that higher body positions have a lower influence
on gait dynamics, and consequentially less discriminative stride patterns collected by sensors attached
to these positions. Concerning overall accuracy of stride time extraction, it can be seen in Figure 7a,b
that accurate estimation of stride times obtained from the proposed approach on smartphone data
is confirmed by the correlation analysis and Bland–Altman plot, where both show good matching
between detected and reference stride times. Regardless of the fact that a sampling frequency of 25 Hz
was used for the evaluation of the approach, the difference between the stride times is very close to
zero, with errors falling within two samples with a standard deviation of 1.96.

The proposed approach validated on the eGait dataset reveals robust and accurate performance
on inertial data acquired from shoe sensors. First, it should be emphasized that these results were
obtained based on the assumption that just the noise threshold is enough for efficient stride extraction.
In contrast with smartphone data, where different positions convey different signal shapes and
dynamics, inertial data collected from shoe-mounted sensors conveys stable dynamics. Therefore,
the stride segmentation procedure can be performed by solely using a noise threshold that is directly
related to a component or sensor (i.e., acceleration noise) and vi does not need to be considered.
In general, the results of the evaluation are very promising, since shoe-mounted sensors produce
very clear and quasi-repetitive stride patterns, and the proposed approach is very efficient on such
data. This is confirmed by the overall efficiency of stride segmentation of over 98%, with stride
detection bias within one sample varying by approximately ±1 sample at a sampling frequency of
102.4 Hz. The MAE is under one sample, with 95% of errors falling within the window of ±2 samples.
Consequentially, there is also very accurate matching between estimated stride times with the ground
truth, as shown by the regression analysis and the Bland–Altman plot in Figure 9. Furthermore, if we
directly compare the obtained results with similar recent approaches on the same dataset (Figure 10),
we can see that the proposed approach slightly outperforms the approaches published in [10,36],
where the following important facts that speak in favor of our approach should be considered: (1) our
approach does not need any templates, and segmentation can be efficiently performed by simply
using noise threshold; (2) it uses same setup for both controlled and free walk; and (3) unlike [10],
where an optimal combination of components is used per cohort, the proposed approach uses a single
combination of estimators and components for all cohorts.

Evaluation of gait event extraction by using the proposed approach revealed very good matching
with the eGait system [18] that represents a known and accurate reference. Each of three detected
gait events (toe-off, heel-strike, and mid-stance) were examined separately. Concerning TO events,
results reveal practically perfect matching with the eGait system with near-zero errors, as can be seen
in Figure 11a and Figure 12a. Detection of toe-off events is the least problematic since these events
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are defined as zero-crossings on the gyroscope z-axis that are clearly distinguishable in most cases.
In contrast, heel strike events turn out to be most difficult to detect. Namely, the decision function
anticipates an abrupt spike in the negative direction in acceleration on the y-axis, that is in most
cases somehow blurred within the signal. This is mostly the case in transitions. Thus, the proposed
approach resulted in decreased detection coverage, especially during free walks that contain many
transitions. However, detection accuracy is still high and with minimal difference compared to the
eGait system. In order to increase the coverage, one way would be to redefine the decision function
for a gait event on account of slightly reduced detection accuracy. In contrast with heel-strike events,
mid-stance events resulted in very good coverage, but decreased accuracy when compared to the eGait
system. The problem is in the non-strict definition of a mid-stance gait event, which is represented
by a quite broad and flat zero-valued plateau in the gyroscope signal that represents zero-velocity
time instants. These are crucial for further processing algorithms (i.e., stride length estimation).
However, decreased accuracy compared with the eGait system falls within a few 10 ms. That means
that detected mid-stance gait events are detected within the plateau and are accurate enough to
produce a comparable functionality with zero velocity-based gait assessment algorithms. Furthermore,
when comparing the results with the eGait system based on experiment type and between all three
cohorts, it can be concluded that the consistency of these results further proves the universality of the
proposed approach.

The results also show that the proposed approach shows considerable reliability and self
adaptability based on local cyclicity, and thus also copes well with transitions. However, the approach
might have some issues with isolated strides as it expects at least two consecutive strides within a
stride sequence. Besides that, detection of the onsets of transitions might be challenging. The approach
also assumes that stride onsets and terminations fall in the exact same location, which is most likely
during natural walking. This was also obvious in the experimental datasets, i.e., eGait [10] for
elderly and PD patients. Furthermore, the proposed approach also showed good performance in
situations where components and corresponding fiducial points were not defined in advance (i.e.,
by application of accurate step detection on smartphones). It is true that in a controlled environment
(i.e., shoe-mounted sensors) the approach reveals even more accurate results, but operability of the
approach on data collected in uncontrollable scenarios is also very efficient. Thorough evaluation of
the proposed approach revealed comparable or even improved results when compared with the latest
state-of-the-art (i.e., [10,26]), and even with commercially available solutions [14], thus proving the
universality of the proposed approach.

6. Conclusions

We have presented a robust, efficient, and accurate approach for stride segmentation of inertial
signals based on local cyclicity estimation and sensor fusion, which is also capable of stride sequence
extraction and gait event detection. We have shown that the proposed approach is able to operate with
different combinations of local cyclicity estimators and components. Besides two optional parameters,
the stride reliability threshold hv used in uncontrolled conditions and the noise variability threshold hr

that depends on a used sensor type, the approach also does not rely on any templates or supervision.
Due to its local nature of operability, it is also efficient for transitions. Due to its robustness, the
proposed approach can be directly used for reliable assessment of temporal gait parameters, including
stride time, cadence, etc. The design of the approach also allows the implementation and operability
in real time, i.e., on-the-fly combined with other gait assessment approaches.

Thus, we believe that the advantages of the proposed approach and scientific contributions
exposed in light of its evaluation show good potential for wide applicability in the corresponding
scientific communities. The presented approach has already been implemented and operates in
our real-time prototype platform for gait recognition based on [3] as a module for gait sequence
extraction and stride segmentation. Our further research activities will also rely on the proposed
approach, especially in the fields of long-term gait monitoring and development of novel algorithms
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for assessment of spatio-temporal gait parameters in uncontrollable scenarios, as well as advanced
semi-supervised smart annotation for movement activity data.
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