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Abstract: In synthetic aperture radar (SAR) ocean remote sensing, it is very difficult to estimate an 

accurate azimuth antenna pattern (AAP) from low-scattering SAR images without strong scattering 

targets. Therefore, an azimuth antenna pattern estimation method based on Doppler spectrum in 

SAR ocean images is proposed in this paper. In order to preserve the complete AAP information, 

an azimuth unweighted matched filter is used to re-image the SAR raw data in the proposed 

method. Then, the shape factor of AAP can be obtained by linear statistics of the relationship 

between Doppler center and edge frequency spectrum in Doppler spectrum of each distance gate. 

In addition, the impact of the uniformity and signal-to-noise ratio of SAR ocean images on the 

estimation results are also analyzed by simulation. Finally, the feasibility of proposed method is 

verified by data from ERS-2 (European remote sensing satellite (ERS) was the European Space 

Agency’s first Earth-observing satellite). Experimental results show that the AAP estimated by 

proposed method has a good estimation result. 

Keywords: azimuth antenna pattern; Doppler spectrum; low-scattering region; SAR Ocean images 

 

1. Introduction 

In synthetic aperture radar (SAR) images, the accurate knowledge of the antenna patterns is of 

great significance for precise image processing and calibration [1]. Currently, whether airborne or 

spaceborne SAR, azimuth antenna pattern (AAP) monitoring is all mainly performed by exploiting 

transponders [2], which are quite expensive to be deployed and maintained. For the current 

spaceborne SAR, the antenna pattern changes little and does not require real-time calibration. For 

airborne SAR, it is necessary to perform a re-calibration test in every flight experiment, which makes 

it very important to measure the real-time values of the AAP. Therefore, in order to reduce the 

complexity and cost of the antenna calibration, it is worthwhile to extract the accurate information of 

the antenna pattern from SAR images. 

Currently, several methods have been proposed for estimating the AAP from SAR images. For 

example, in 2003, Guarnieri, A.M. et al. [3,4] proposed a method to estimate the AAP from a strong 

point target in SAR images. In 2007, Tan, H. et al. [5] proposed a new simulated method to estimate 

the AAP using a strong point target. In this paper, the two-way AAP is estimated by applying the 

short-time Fourier transform to the original echo of the strong target. From 2011 to 2014,  

Guccione, P. et al. [6–8] proposed a method to estimate the AAP using the persistent strong point 

scatterers. The targets they use in this method have instead the following two features: (1) multiple 
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images need to be collected in the same area; (2) the strong scattering targets contained in the image 

should have sparsity and time stability. 

The above methods of estimating AAP from SAR images all have one thing in common: that is, 

the SAR image used to estimate the antenna pattern must contain at least one strong scattering point 

target with time stability. However, when we estimate the AAP from SAR ocean images, there is 

usually no strong scattering target with time stability. Therefore, the methods above cannot work. 

In order to estimate the AAP more conveniently from ocean SAR images, an AAP estimation 

method based on Doppler spectrum in SAR ocean images is proposed in this paper. The procedure 

of the proposed method is as follows. Firstly, the relationship between the AAP and the Doppler 

spectrum is deduced by analyzing the composition of the Doppler spectrum of the SAR images. 

Secondly, the proper model parameters are estimated via the relationship between Doppler center 

spectrum and edge spectrum. Finally, the real value of the AAP is calculated by substituting the 

estimated AAP parameters into the model. In addition, the accuracy of the estimated AAP is 

indirectly verified by comparing the real Doppler spectrum with the Doppler spectrum calculated by 

the estimated AAP. 

The rest of this paper is organized as follows. Section 2 gives the details of the methods and 

principles used in this method. In Section 3, simulation analysis of the applicability of the proposed 

method are presented. In Section 4, two real SAR data are used as examples for experimental 

validation. Finally, conclusions are presented in Section 5. 

2. Azimuth Antenna Pattern Estimation Method Based on Doppler Spectrum 

2.1. The Principle of the Proposed Method 

2.1.1. Analysis of Doppler Spectrum Composition 

From the SAR imaging theory, it is well known that the shape of system noise, azimuthal 

ambiguity, and the backscattering signal present different patterns in the Doppler spectrum of the 

SAR raw signal (here, it is supposed that the range match filtering and range cell migration correction 

have been done), i.e., the system noise power density is a certain constant in the Doppler spectrum, 

whereas the shape of the Doppler spectrum of the backscattering signal and azimuthal ambiguity 

depend on the antenna pattern: the backscattering signal and azimuthal ambiguity correspond to the 

main lobe and side lobe respectively. Therefore, the Doppler spectrum of the SAR raw signal can be 

expressed as [9] 

      0
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where  0 0,x y  are the center positions of the area upon which the Fourier transformation is applied; 

x  and y  are the coordinates in the flight and look directions respectively,  E  refers to the 

mathematic expectation, f  denotes the Doppler frequency, and  p f  denotes the azimuth power 

spectrum of the SAR raw signal.  aP f  is the power spectrum function of an ideal point target with 

a 0 dB normalized radar cross-section (NRCS), its shape is determined by the two-way AAP. Further, 

0
f  is the Doppler centroid, 

r
F  refers to the pulse repeat frequency of the SAR system, 

0
N  is the 

intrinsic noise floor of the SAR system,  0 0,x yx nD y nD    is the mean NRCS of the pixels located 

between 
0 0/ 2,x yx nD L y nD      and 

0 0/ 2,x yx nD L y nD      ( L  is the data length for calculating the 

Doppler spectrum), 
x

D  and yD  are the displacements between the position of the azimuth 

ambiguity signal and the real target position in the flight and look directions, respectively. They can 

be written as [10] 
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where R  is the slant range of the target,   is the radar wavelength, and V  is the velocity of the 

SAR platform. 

Generally, in Equation (1), among the azimuthal ambiguity signals, only the first azimuth 

antenna side-lobes, which correspond to n = −1 and 1, are strong enough that cannot be omitted [9]. 

Hence, Equation (1) can be simplified as 
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Equation (3) indicates that the shape of the averaged power spectrum of backscattering signal, 

azimuth ambiguity and system noise are determined by the AAP (  aP f ) and 0
N . 

2.1.2. Methods and Solutions to Estimate the Antenna Pattern from the Doppler Spectrum 

In general, 
y xD D  If the data length for calculating the Doppler spectrum is much larger than 

x
D  (for example, 

x
L D ) and SAR image scattering intensity in the observation area is relatively 

uniform, the  0 0,x yx D y D    and  0 0,x yx D y D    can be approximated by 

     0 0 0 0 0 0, , ,x y x yx D y D x D y D x y         (4) 

Hence, Equation (3) becomes 

          0
0 0 0 0a a r a r

r

N
E p f x P f f P f f F P f f F

F
                (5) 

where 
0

/
r

N F  is the average of the noise. Here, Equation (5) has been sufficiently averaged. Then, on 

the basis of Formula (5), the derivation process of estimating the antenna pattern from the SAR image 

is as follows. 

 aP f  can have multiple unknown parameters. Therefore, we assume that the two-way AAP is 

expressed as 

1 2
( ) ( , , , , )
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P f P b b b f  (6) 

where 1 2 3
, , , ,

m
b b b b  represent the parameters of AAP, m is the number of parameter. 

However, in general, the number of the AAP parameters are limited. The Gaussian model [11] 

or the 4sinc  model [3,7,8] is chosen as the AAP model. The ideal antenna pattern power spectrum is 

the 4sinc model (for example, 4sinc
2

antL
f

v

 
 
 

, 
ant

L  is the antenna length) [7], especially for satellites such 

as ERS2 (European remote sensing satellite (ERS) was the European Space Agency's first  

Earth-observing satellite), RADARSAT (RADARSAT is a Canadian remote sensing Earth observation 

satellite program overseen by the Canadian Space Agency), Envisat (Environmental Satellite) and 

most of the airborne SAR. Therefore, the applicability of this method is to estimate the AAP using the 

one parameter model as an example (in Appendix A, the method of estimating multi-parameter AAP 

will be given). The following section will show how to estimate the AAP from a one-parameter  

estimation model. 

Since we are studying a single-parameter AAP estimation method, let m = 1. It is found through 

observation that Equation (5) can be simplified as an equation containing only two unknowns, AAP 

and system noise. therefore, the Equation (5) can be simplified by choosing two different frequency 

points in the Doppler spectrum (for example, 
1f  and 

2
f ), then the following linear relationship is 

derived out. 
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Equation (7) indicates that the relationship between  2E p f    and    1 2
E p f E p f        is linear, 

in which the constant term depends on the noise floor
0

N , and the linear coefficient  depends on 

 aP f  [see Equation (8)]. Theoretically, if there are more than two sufficiently averaged Doppler 

spectra,   and 
0

N  can be resolved by equation system (7). More Doppler spectra will result in a 

more precise estimation of   and 
0

N . To increase the estimation precision, 
1f  and 

2
f  should be 

selected to make    1 2
E p f E p f        as large as possible while  2E p f    as small as possible (in 

Appendix B, the influence of Doppler frequency point selection on AAP estimation accuracy is 

analyzed: that is why 
1 0
f f  and 

2 0
/ 2

r
f f F   are selected in this paper).  

After estimating  ,  aP f  can be obtained further. in order to simply the reading, the one 

parameter sinc  model is selected to estimate the AAP. Therefore, the two-way AAP model chosen 

in this paper is shown as 

  4sinca

f
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Substituting Equation (9) into Equation (8), Equation (8) becomes 
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where   is the slope of the Equation (7), the right side of Equation (10) is a unary function of b. In 

general, the Fr’s cover the range of: 0.9 1.5
r

b F b   [12], in this case, the above function is 

monotonically increasing. Therefore, the factor b can be obtained from Equation (10) by dichotomy, 

and then model  aP f  can be obtained by Equation (9). At the same time, the one-way AAP can be 

calculated out. 

Strictly speaking,  aP f  depends on the slant range of the target: for example, α is a function of 

the slant range. In fact, when the image scattering value distribution is homogeneous, the differences 

in α between different range cells can be omitted. In many cases (such as the second example in 

Section 4) the differences in α between different range cells cannot be omitted. Therefore, the entire 

image can be divided into subsets, then α and  aP f  can be estimated from the subset with homogeneous.  

2.2. Method Flow Chart and Summary 

The azimuthal matching filters of the standard imaging algorithm of commercial SAR products 

are generally weighted filters, which does not satisfy the basic requirements of the proposed method 

(the AAP information of the single-look complex (SLC) image obtained after weighted filtering will 

be distorted). Therefore, in order to retain the complete AAP information, the following steps are 

taken: in the first step, in SAR imaging, an unweighted azimuthal matching filter must be applied to 

the SAR raw data, and the SLC image of SAR data is obtained. In the second step, the Doppler center 

frequency must be estimated from the SLC image. Then, the Doppler centroids of the SLC image can 

be shifted to the zero-frequency. In the last step, the Doppler spectrum is calculated once every L 

pixels in the azimuthal data of each distance gate of the new SLC image. Then, the azimuth Doppler 

spectrum obtained from each distance gate is averaged separately to obtain a new range-Doppler 

image. By the statistics of the relationship between the Doppler central frequency and the edge 

frequency in every distance gate, the linear factor   is obtained. Finally, the appropriate AAP model 

is chosen to estimate the AAP of the SAR image. 
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The proposed method is summarized in Figure 1. 

Imaging algorithm

(the azimuthal matching filter should be an 

unweighted filter)

SAR  Raw  Data

SAR single-look 
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Doppler centroids of 

all range cells
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direction

Shift the Doppler spectrum centroid to zero 

Apply inverse Fourier transformation in flight 

direction
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single-look complex image

Calculate Doppler spectra by all of the pixels 

of the entire single-look complex image

Calculate                           and                for 

each spectrum

   0 2rP P F    2rP F 

Fit the linear relation between                            

and                  , and estimate the variables  α 

and N0 in equation (7)

   0 2rP P F  

 2rP F 

Use equation (10) to compute the 

spectrum shape factor b

α N0

Pa(f)

2. Shift the 

Doppler 

centroids to 

zero

3. Estimate the AAP

1.SAR imaging

AAP 

Model

 

Figure 1. The flow chart of the proposed method. SAR: synthetic aperture radar; AAP: azimuth 

antenna pattern. 

3. Simulation Analysis of the Applicability of the Proposed Method 

3.1. Parameters Settings of the Simulation 

In order to satisfy the approximation of Equation (4), the ratio of the average NRCS of the 

ambiguous signal position to that of the true target position is chosen as 0.9 in this section. The 

simulation parameters are shown in Table 1. 

Table 1. Parameters of the simulated data. 

Parametric Name Parametric Symbol Parametric Value 

Pulse repetition frequency r
F  1679.902 (Hz) 

Number of Doppler spectrum pixels _Azi len  128 

Simulation repeat number _Repeat number  800 

Look number of SAR image M  10 

Signal-to-Noise Ratio SNR  5 dB 

AAP scale factor b  0.849
r

F  

Ratio of the scattering values of the blurred signal 

and the real target position 
   0 0 0 0, / ,x yx D y D x y    0.9 
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3.2. Simulation Results 

Based on the parameters in Table 1, we can generate simulation data of the Doppler power 

spectrum as shown in Figure 2. 

  
(a) (b) 

Figure 2. Simulated Doppler power spectrum. (a) Before multi-looking; (b) after multi-looking. 

We assume that the simulated power spectrum is  P f , and then use the same method to 

generate several Doppler power spectra to form a two-dimensional frequency domain image. The 

statistical relationship between    0 / 2rP P F   and  / 2rP F  from this simulated two-dimensional 

image is shown in Figure 3. 

 

Figure 3. Relationship between    0 2rP P F 
 and  2rP F

 for the simulated data. 

From Figure 3, it can be seen that the relationship between    0 2rP P F   and  / 2rP F  is a 

linear relationship, approximately. This result validates the correctness of Equation (7). The variable 

  in Equation (7) is the slope of the fitted line in Figure 3. The scale factor b is calculated by the 

Equation (10), and then the AAP can be obtained by substituting b into Equation (9). The comparison 

between the estimated two-way AAP and theoretical two-way AAP model is shown in Figure 4.  

In addition, by substituting the estimated AAP into Equation (3), the power spectrum can be 

obtained. The comparison chart between the estimated Doppler power spectrum and simulated one 

is shown in Figure 5. 
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Figure 4. The comparison between the estimated two-way AAP and theoretical two-way AAP model. 

 

Figure 5. The comparison between the simulated power spectrum and estimated power spectrum. 

Figure 5 shows that the estimated Doppler power spectrum is very close to the simulated 

original power spectrum. This result shows the feasibility of the proposed method. 

3.3. Performance Analysis 

To further confirm the effectiveness of the proposed method, 800 random Monte Carlo 

experiments are performed. The mean and the root mean square error (RMSE) of the estimated results 

are shown in Table 2. 

Table 2. The performance analysis of the proposed method. 

AAP Parameters 
Mean 

RMSE 
Real Value Estimated Value 

/
r

b F  0.849 0.843 0.025 

From Table 2, it can be seen that the mean of the estimated value is very close to the real value, 

and that the RMSE of the parameter estimation achieved by the proposed method is rather low. The 

results show that the proposed method is very accurate. 
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3.4. Applicability Analysis of the Proposed Method 

The influence of the uniformity of SAR image intensity and signal-to-noise ratio (SNR) on the 

estimation accuracy is mainly analyzed in this Section. 

3.4.1. The Influence of SAR Image Uniformity on Estimation results 

In order to satisfy the approximation of Equation (4), the SAR ocean image intensity used to 

estimate the antenna pattern should be approximately uniform. Therefore, the influence of the 

intensity homogeneity of SAR marine images on the estimation results is analyzed in this section.  

Generally, SAR signals are affected by not only additional noise but also multiplicative speckle 

noise. As an example, we assume that the SAR signals can be described by a gamma distribution [13]. 

The probability distribution function of the SAR signal intensity can be expressed as 

1( , , )
( )

N
N If I N I e

N


  


 (11) 

where I  is the SAR signal intensity,   is the scale parameter, N  is the number of multi-looking. 

The mean of the distribution function is N  , and its standard deviation is N  . Therefore,

/ 1/ N   . 

As we all know, for a SAR image, the greater the number of multi-looking, the smoother the 

image, and the stronger the image uniformity is. For ease of understanding, the impact of SAR image 

uniformity on the estimation results is simulated below. Among them, the uniformity of SAR images 

is mainly caused by the change of multi-looking. 

According to Equation (11), the influence of the uniformity of SAR image intensity on the 

estimation results is simulated, the simulation parameters are shown in Table 3. 

Table 3. The simulation parameters in Figure 6. 

 Values 

The average of the scattering coefficient (  ) 0
SNR N  

The standard deviation of the scattering coefficient (  ) 0 0.12  

Simulation repeat number 800 

The average of the scattering coefficient in Table 3 is a fixed value. When changing the value of 

/  , the curve of the RMSE of the estimated /
r

b F  is shown in Figure 6. 

 

Figure 6. The RMSE of the estimated /
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b F  as a function of   . 
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As can be seen from Figure 6, the larger the ratio of the variance of the image scattering 

coefficient to the mean value, the larger the error of the estimation value. The dashed red line in 

Figure 6 is the RMSE threshold calculated when the estimated error is equal to 5% of the true value. 

This means that when    is less than or equal to 0.121, the estimation result is considered to be 

more accurate. This means that the more uniform the SAR ocean image selected for estimating the 

antenna pattern, the closer the estimation results are to the real value. 

3.4.2. The Influence of the SNR of SAR Image on Estimation Results 

The simulations were performed under different SNRs. The parameters of the simulations are 

given in Table 4. 

Table 4. Simulation parameters. 

 Values 

 0 0 0,x y N  0–10 dB 

 0 0 0,x yx D y D N     0 0 00.9 ,x y N  

Simulation repeat number 800 

Pixel number used for calculating one Doppler spectrum 80 

According to the parameters in Table 4, the effect of SNR on estimation accuracy is shown  

in Figure 7. 

 

Figure 7. The comparison of estimated results and real values. The blue solid line is the real values of 

simulation data, the blue dotted line is the estimated values which is estimated by the proposed 

method, the red dashed line is the reference value ( /
r

b F  = 0.8895) which is 5% larger than the real 

values. The values between red dashed line and blue solid line are considered to be more accurate 

results. SNR: signal-to-noise ratio. 

From Figure 7, it can be seen that with the increasing of SNR, the estimated values are close to 

real values. When the SNR is larger than 4.865 dB, the relative error between the estimated result and 

real value is less than 5%. Therefore, it can be considered that the estimated result reaches enough 

estimation accuracy. 

4. Validation of the Proposed Method Based on Spaceborne SAR Data 

In this section, two ERS-2 satellite SAR images will be used to estimate the AAP. The satellite 

parameters of ERS-2 are shown in Table 5. 
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Table 5. The related SAR parameters of the ERS-2. 

Pulse Repetition 

Frequency ( r
F ) 

Platform Velocity 

(V) (m/s) 

Antenna Length a
L  

(m) 

Pulse Width 

( μs ) 

Bandwidth 

(MHz) 

Wavelength 

(m) 

1679.902 7131.7 10 37.12 15.5478 0.0566 

The theoretical scale factor b can be calculated from the parameter values in 0, which  

is 0.849
r

F . 

4.1. The SAR Ocean Images Preprocessing for Experimental Validation 

Figure 8 is a SAR ocean image acquired by ERS-2 on 9 June 2008 near the Taiwan in China. There 

is a large area of uniform scattering SAR ocean image in Figure 8. 

 

Figure 8. ERS-2 SAR image near the Taiwan in China collected on 9 June 2008, at 02:25 UTC. 

The red dashed frame, Frame A, in Figure 8 will be used for validation. There are 3450 pixels in 

the look direction and 14,336 pixels in the flight direction in the SLC image of Frame A. The procedure 

for estimating AAP from Frame A in Figure 8 is as follows. 

The first step is to estimate the Doppler centroid 
0

f  for each range cell [12,14–19], and then 

shifting the Doppler spectrum centroid of the SLC image to zero. Although ocean currents can lead 

to an additional local shift of the Doppler centroid [19–21], however, the Doppler shift resulting from 

the ocean current is generally less than 5% of the pulse repetition frequency, which can be neglected 

in the method proposed in this paper.  

The second step is to calculate Doppler spectra from the SLC image. In this example, each 

Doppler spectrum is a 128-point discrete spectrum that is averaged by 224 times in the flight direction 

and 30 times in the look direction. Then, we can obtain 115 Doppler spectra. The azimuthal length 

used for calculating one Doppler spectrum is about 121 km (for example, L = 121 km). whereas 
x

D  is 

only about 5.67 km. In this case, L and 
x

D  satisfy the approximation condition of Equation (4) (for 

example, 
x

L D ). 

Figure 9 is an ocean image acquired by ERS-2 on 30 April 2005 in the South China Sea. 

There are 4912 pixels in the look direction and 28,695 pixels in the flight direction in the SLC 

image used in this Figure. From Figure 9, the SAR ocean image in this example contains some regions 

with poor uniformity, therefore, we select two regions as shown in Frame B and Frame C for 
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verification and comparison. Frame B is an area with poor uniformity and Frame C is an area with 

strong uniformity. Then, the two areas will be further processed. 

 

Figure 9. ERS-2 SAR ocean image of South China Sea collected on 30 April 2005, at 02:28 UTC. 

As in the first example, the first step is to estimate the Doppler centroid
0

f for each range cell, 

and then shift the Doppler spectrum centroid of the SLC image to zero frequency. The second step is 

to calculate Doppler spectra from the SLC image. Each Doppler spectrum in this example is also a 

128-point discrete spectrum, which is averaged by 10 times in the flight direction and 70 times in the 

look direction. We can obtain 491 Doppler spectra from the SLC image in Frame B and Frame C, 

respectively. The azimuthal length used for calculating one Doppler spectrum also satisfy the 

approximation condition of Equation (4) (for example, 
x

L D ). 

4.2. The Experimental Verification Results 

Denoting  'P f  as the shifted Doppler spectrum    '

0
P f E p f f    , the relationship between 

   ' '0 / 2rP P F   and  ' / 2rP F for Frame A, B and C are depicted in Figure 10. 
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(b) Non-uniform area (Frame B) (c) Uniform area (Frame C) 

Figure 10. The comparison of statistical results between the uniform and non-uniform scattering 

regions in the second example. (a) Relationship between    ' '0 / 2rP P F   and  ' / 2rP F  in Frame 

A, and the goodness of fit for the curve is 0.9994; (b) Relationship between    ' '0 / 2rP P F   and 

 ' / 2rP F in Frame B, and the goodness of fit for the curve is 0.9954; (c) Relationship between 

   ' '0 / 2rP P F   and  ' / 2rP F  in Frame C, and the goodness of fit for the curve is 0.9984. 

From Figure 10, the statistical results of regions with non-uniform scattering (Frame B) are more 

scattered, whereas statistics of uniform regions (Frame A and Frame C) are closer to linear fitting 

curves. However, it can be seen that the relationship between  ' / 2rP F  and    ' '0 / 2rP P F   is all 

very close to a linear function in those three areas. 

After obtaining  , the scale factors 0.9
r

b F , 0.93
r

b F  and 0.91
r

b F can be obtained 

respectively from Frame A, Frame B and Frame C by solving Equation (10).  

In order to better reflect the estimation accuracy of the proposed method, the AAP characteristics 

are shown in Table 6 by comparing the measured values of Ottawa transponder [22], the estimated 

values of the proposed method, and the theoretical calculated values. 

Table 6. The AAP characteristics measured with Ottawa transponder, the estimated values and the 

theoretical values. 

 Frame A Frame B Frame C 

 
Mainlobe 

Width (°) 

PSLR(Peak 

Sidelobe 

Ratio) (dB) 

ISLR (Integral 

Sidelobe 

Ratio) (dB) 

Mainlobe 

Width (°) 

PSLR 

(dB) 

ISLR 

(dB) 

Mainlobe 

Width (°) 

PSLR 

(dB) 

ISLR 

(dB) 

Transponder 

values 
0.3030 −12.48 −10.27 0.3030 −12.48 −10.27 0.3030 −12.48 −10.27 

Estimated 

values 
0.3014 −13.26 −10.27 0.3150 −13.26 −10.28 0.3048 −13.26 −10.27 

Theoretical 

values 
0.2874 −13.26 −10.28 0.2874 −13.26 −10.28 0.2874 −13.26 −10.28 

From Table 6, it can be concluded that the AAP obtained by transponder are very consistent 

with those estimated by the proposed method. 

The results of estimated AAP are compared with the result measured by Ottawa transponder, 

which is shown in Figure 11. 
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(a) Uniform area (Frame A) 

  
(b) Non-uniform area (Frame B) (c) Uniform area (Frame C) 

Figure 11. The comparison chart between the estimated AAP model, the result measured by Ottawa 

transponder and theoretical one-way model ( 2sinc ( )
2

aL
f

V
, 

a
L is the length of antenna). (a) The 

estimated AAP from Frame A; (b) the estimated AAP from Frame B; (c) the estimated AAP from 

Frame C. 

It is obvious to see from Figure 11 that the AAP estimated from Frame A and Frame C is closer 

to the result measured by Ottawa transponder than that estimated from Frame B.  

From the simulation data in Section 3, we also know that the proposed method has higher 

estimation accuracy. Therefore, from the analysis of Doppler spectrum in Figure 12, it can also be 

concluded that the estimated AAP model is more suitable for real SAR data than the theoretical AAP. 

In Figure 12, the centroids of the measured and the estimated spectra are both shifted to zero. 

Figure 12 shows that the spectrum model estimated by the proposed method is superior to the 

theoretical spectrum model. In addition, the estimated spectrum of the uniform scattering region 

(Frame A and Frame C) is closer to the SAR real Doppler spectrum than that of the non-uniform 

region (Frame B). This shows the feasibility of the proposed method. At the same time, Figure 12 also 

shows that the 4sinc model is more suitable for the two-way AAP modeling of ERS-2 data. 

In the above experiment, the number of pixels used to calculate the Doppler spectrum is chosen 

as 128, and which satisfy the approximate condition of Equation (4). When the number of pixels used 

to calculate the Doppler spectrum is changed, the estimation accuracy also will be changed. The 

results are shown in Table 7. 
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(a) (b) 

Figure 12. The comparison between the estimated spectrum, measured spectrum and theoretical 

spectrum. (a) Frame A in Figure 8; (b) Frame B and Frame C in Figure 9. 

Table 7. The effect of the number of pixels used to calculate the Doppler spectrum on the estimation 

results of /
r

b F . 

Number of Pixels Used to Calculate the Doppler Spectrum 32 64 128 

Frame B (Non-uniform area) 0.951 0.942 0.930 

Frame C (Uniform area) 0.924 0.905 0.901 

After the analysis of the results in Table 7, we can get the following conclusions: (1) The more 

uniform the selected image area, the higher the estimated accuracy is; (2) Under the same degree of 

uniformity, the more pixels used to calculate the Doppler frequency, the better the estimation effect. 

5. Conclusions 

In order to solve the problem that AAP cannot be estimated from low-scattering SAR images 

without strong scattering targets, an AAP estimation method based on the Doppler spectrum in SAR 

ocean images is proposed. The procedure is as follows. First of all, the region of the SAR ocean image 

with more uniform scattering intensity is selected. Then, the power spectrum of each distance gate 

can be calculated respectively. Secondly, two frequency points are selected from the power spectrum 

of each distance gate for mathematical statistics. Lastly, the shape factor of AAP is estimated based 

on the linear relationship of the statistical results, and then AAP is obtained. In addition, the accuracy 

of the estimated AAP is indirectly verified by comparing the real Doppler spectrum with the Doppler 

spectrum calculated by the estimated two-way AAP. At the same time, we also verify the accuracy 

of the one-way AAP estimated by the proposed method through comparison with transponder values. 

In Appendix A, the estimation method of multi-parameter AAP is given. In Appendix B, the 

selection of two frequency points in the above estimation process is analyzed by the simulation, and 

the conclusion is that when the Doppler center frequency and the Doppler spectrum edge frequency 

are selected, the estimation result is the closest to the true value. 

In order to analyze the practicability and feasibility of the proposed method, the influence of the 

uniformity of SAR image intensity and SNR on the estimation accuracy is simulated in this paper. 

After simulation, we conclude that the RMSE of the estimation results is larger when the uniformity 

of the SAR ocean image intensity is getting worse. When /   = 1.21, the RMSE of the estimation 

result reaches the threshold, which is calculated when the estimated error is 5 percent of the true 

value. This threshold is limited to the conclusion which simulated by the Gamma distribution. In 

addition, the proposed method is also validated through simulation experiments and real SAR data. 

The verification results are in good agreement with the theoretical analysis. Meanwhile, when the 

influence of SNR on the estimation accuracy is simulated, the value when the estimated error is 5% 

of the true value is selected as the threshold. Therefore, we conclude that the proposed method can 
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achieve good estimation results when the SNR is more than 4.865 dB; when the SNR is lower than 

4.865 dB, the estimation error is larger. 

However, the method we developed in this study is based on the condition that we have a 

known SAR AAP model. For an SAR image with unknown AAP model, the theory and method 

proposed in this paper need to be further improved. Therefore, more common AAP models are under 

study and will be part of the future work. 
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Appendix A. Multi-Parameter AAP Estimation Method 

In this appendix, a multi-parameter AAP estimation method for 1m   in Equation (6) is given. 

In order to estimate the whole unknown parameters of AAP, we select 1m  number of different 

frequency points on the Doppler spectrum, for example, 
1f , 

2
f , , 

m
f , substituting them into 

Equation (5), the following equation can be derived 
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 (A2) 

Equation (A1) indicates that the relationship between  1m
E p f


    and    1 1m

E p f E p f


       is 

linear. This is consistent with the analysis of Equation (7). According to the analysis in Appendix B, 

1f  in Equation (A1) is selected as Doppler center frequency (
0

f ) position, 
2

f , , 
1m

f


 are selected 

as the Doppler spectrum edge position as far as possible.  

Substituting Equation (6) into Equation (A2), Equation (A2) becomes 
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(A3) 

To solve all the unknown variables from Equation (A3), the Newton iterative method can be 

adopted. Then, the AAP can be obtained when all the variables that have been solved are substituting 

into Equation (6). 

Appendix B. The Influence of Doppler Frequency Point Setting on AAP Estimation Accuracy 

In this appendix, the influence of Doppler frequency point setting on AAP estimation accuracy 

will be verified by simulations. The linear relationship statistics of Equation (7) is made by selecting 

two frequency points (
1f  and 

2
f ) in the Doppler spectrum. Among them, 

2
f  is chosen as the 

following five different frequency positions. They are the spectrum left edge (the first frequency 

point), the 30th frequency point, Doppler centroid (the 64th frequency point), the 90th frequency 

point and the spectrum right edge (the 128th frequency point). 
1f  traverses the entire spectrum. The 

estimated results of /
r

b F  are shown in a, b, c, d, e in Figure A1. 

  
(a) (b) 

  
(c) (d) 

-1000 -500 0 500 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

 

 

X: -656.2

Y: 0.847

f
1
 (Hz)

b
/F

r

estimated values

real values

-1000 -500 0 500 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f
1
(Hz)

b
/F

r

 

 

estimated values

real values

-1000 -500 0 500 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f
1
(Hz)

b
/F

r

 

 

estimated values

real values

-1000 -500 0 500 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f
1
 (Hz)

b
/F

r

 

 

estimated values

real values



Sensors 2018, 18, 1081  17 of 18 

 

 
(e) 

Figure A1. The statistical results of /
r

b F  estimated by selecting different frequencies. (a) 
2

f  is the 

first frequency point, which represents the left edge of the Doppler spectrum; (b) 
2

f  is the 30th 

frequency point; (c) 
2

f  is the 64th frequency point, which is the Doppler centroid frequency; (d) 
2

f  

is the 90th frequency point; (e) 
2

f  is the 128th frequency point, which represents the right edge of 

the Doppler spectrum; 
1f  is the whole spectrum in (a–e). 

As we can see from Figure A1, the estimated accuracy of /
r

b F  is the highest when 
2

f  is the 

spectrum edge and 
1f  is close to the Doppler centroid.  
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