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Abstract: Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based
on edges is an important branch in the research of sparse stereo matching and plays an important
role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on
the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic
programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of
the disparity or semantic consistency constraint between the stereo images to adaptively search
parameters, which can improve the robustness of our method. The proposed method is compared
quantitatively and qualitatively with the traditional dynamic programming method, some dense
stereo matching methods, and the advanced edge-based method respectively. Experiments show that
our method can provide superior performance on the above comparison.

Keywords: sparse stereo matching; disparity estimation; semantic edge; dynamic programming;
binocular sensor

1. Introduction

Depth acquisition is crucial for environment perception of intelligent devices, and it plays an
important role in various applications, such as 3D reconstruction, Augmented Reality (AR), and vehicle
navigation. Sensors that can be used to obtain depth include laser sensors, visual sensors, and radar
sensors. Nowadays, laser and radar sensors have been widely used. With the progress of computer
vision algorithms, visual sensors represented by binocular cameras show strong competitiveness,
which are becoming an important research direction of automatic driving. Binocular sensors acquire
depth by estimating the disparities, which aims to calculate the coordinate difference between
corresponding points in the rectified stereo images. According to the principle of triangulation,
the depth of each point is easy to measure with its disparity, since the disparity is inversely proportional
to the distance from cameras.

Numerous algorithms have been widely studied to solve this problem over the past decades.
According to the density of the generated disparity maps, these methods can be divided into two
categories: dense stereo matching and sparse stereo matching. The dense matching methods
strive to obtain each pixel’s disparity. Although the traditional methods, such as Graph Cuts
(GC) [1,2], Semi-Global Matching (SGM) [3], and the emerging approaches based on deep learning,
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like MC-CNN [4,5], have achieved high accuracy, there is an intractable problem of heavy computation
in these dense methods. While the sparse methods based on points and lines are less studied than
dense matching in recent years, they are not given up by the researchers who seek the balance between
accuracy and efficiency because of the advantage of less computational complexity.

Point-based sparse methods have been effectively applied for the richly textured regions, but they
fail in textureless areas [6]. The methods based on straight and curved lines possess universality,
but most of the lines or edges extraction methods are based on low-level features with the lack of scene
understanding. Calculating only these pixels’ disparities cannot guarantee that the basic demands for
visual navigation are satisfied, which means that these algorithms have difficulties with being applied
in practice.

In this paper, we propose a new sparse disparity estimation method for outdoor navigation.
The proposed approach focuses on the pixel matching of semantic edges because those contours not
only segment out objects in the scene, but also give them different meanings. Estimating disparities of
these semantic edges can meet the basic requirements of recognition, location, and obstacle avoidance in
navigation completely. We also put forward an adaptive dynamic programming algorithm, which can
automatically select the parameters to improve the robustness of our method.

We organize the remainder of this paper as follows. Section 2 introduces the related work
about the stereo matching. The specific matching approach will be introduced in detail in Section 3.
Some qualitative and quantitative experiments are demonstrated in Section 4. Section 5 makes a brief
summary at the end of this paper.

2. Related Work

According to [7], the dense stereo matching can be generally divided into four steps:
cost calculation, cost aggregation, disparity optimization, and optionally refinement. In fact, plenty of
sparse methods also follow these four steps.

Absolute Difference (AD), the Sum of the Absolute Difference (SAD), Census transform (Census),
and Normalization Cross Correlation (NCC) are all classic cost calculation methods [8]. Then [9] found
that the combination of different costs can draw on each other’s strength. They combined AD and
Census to get a better result. This idea has been widely applied and we will also draw lessons from it.
With the development of deep learning, the methods of calculating cost using neural networks, like [5],
have also achieved excellent results in dataset tests. However, these methods are still limited in the
ground truth of datasets for training. Our method still will choose the classic costs.

There are a variety of ways to aggregate costs. Mean filtering, median filtering, etc. can be
regarded as aggregation with a window of fixed size. The more popular one is the adaptive aggregation
method with irregular windows. Ke Zhang et al. [10] proposed the cross-based aggregation that
determines the support window by comparing the similarity between the surrounding pixels and the
anchor pixels, and suggested considering the left and right images together. However, this method is
time-consuming. In this paper, we do not take the step of cost aggregation, but choose to increase the
window size appropriately.

The disparity optimization has been widely studied, creating a variety of algorithms.
Winner-Take-All (WTA) is the simplest one without considering global information.
Dynamic programming (DP) has been widely used in dense and sparse matching, and is the
method to be adopted in this paper. Belief propagation (BP) and Graph Cuts (GC) based on Markov
random field also have excellent performance. In recent years, the most widely used is Semi-Global
Matching (SGM). This algorithm employs multi-path one-dimensional optimizations to solve
two-dimensional optimization problem by designing the constraints between each anchor pixel and its
neighborhoods. This method is still very competitive since being proposed, and some results based on
SGM will be compared with our method in Section 4.

In this paper, we do not modify the disparities obtained by optimization, so we will not introduce
the refinement methods. Next, we will mainly discuss the related edge-based methods. They can also
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be divided into two kinds: based on straight lines and based on curved edges. Line-based approaches
assume that lots of straight lines can be detected in the images. They have achieved results in stereo [11]
and Structure From Motion (SFM) [12]. However, when there are fewer lines detectable in the scene,
such as our outdoor navigation scenarios, these approaches are useless.

Curve-based approaches are improved with the development of edge extraction methods.
In [13], the positions of edges are detected by differentiating and then linked to connected edges.
Then, dynamic programming is used in intra- and inter-scanline search with edge-delimited intervals
as elements to be matched. The advantage of [13] is that the inter-scanline constraint is taken into
consideration, but the constraint is so strong that only the edges crossing multiple scanlines are
preserved, without considering the horizontal edges. Moreover, the inter-scanline search results in a
high cost of computation.

In [14], a sparse BP algorithm is designed to match the nodes of the mesh of left image, formed by
edge and non-edge pixels, with the all pixels of the right image. Compared with the dense BP,
the computational complexity of [14] is reduced. However, only the number of pixels to be matched is
reduced, the matching search range of each pixel is not changed. The possible mismatches of dense BP
algorithm cannot be avoided yet.

The methods proposed in [15–17] are all based on canny edges. In [15], some corresponding
corner points are selected as seed points, and then the correspondences between edges around those
seed points are determined. Seed points are helpful to narrow the range of edges to be matched, but
the mismatches of seeds can lead to edge matching errors.

The methods of cost calculation and aggregation are the same in [16,17]. They choose the minimum
of both asymmetric pixel-strips on either side of a candidate edge as the matching cost of the edge.
In [16], a confidence-based refinement algorithm is applied after the initial WTA process, while a
dynamic programming algorithm is implemented on each edge segment in [17]. They both take into
consideration the consistency and smoothness of edges. However, the description of each edge pixel
can be ambiguous, which is easy for causing a mismatch.

Subhayan Mukherjee et al. [18] uses K-means clustering to segment the left image, and refines the
segment boundaries by morphological filtering. Then, SAD and WTA are used to match the edges of
the left image with the full right image. Finally, a dense disparity map can be obtained by disparity
propagation. The idea of using K-means segment boundaries is novel, but the value of k needs to be
specified according to different images. In addition, the defects of WTA and sparse-dense matching
mentioned above do not get addressed.

Dexmont Peña et al. [19] extended the Edge Drawing (ED) algorithm on stereo pairs, matched
only a few anchor points and then propagated disparities along the edges. Using the proposed method,
the number of computations can be greatly decreased. However, this method is highly dependent on
the matching accuracy of anchor points. A tiny match error can be propagated to the entire edge.

With the development of deep learning, the semantic edge extraction method has been researched.
Gedas Bertasius et al. [20] used VGG [21] to detect edges and then used semantic segmentation
networks to classify edges. The newest [22] proposed an end-to-end network that detected semantic
edge with multi-category labels. Our method will be based on Ref. [22]’s edges to estimate disparities,
considering edge points as candidates to be matched and using an improved dynamic programming
algorithm to obtain the global optimal solution for each scanline, which will be described in
detail below.

3. Proposed Method

In this section, our proposed Semantic Edge Matching (SEM) method is described in detail,
which is illustrated in Figure 1. The input of our method is a calibrated and rectified stereo image
pair, and the output is a disparity map, which is calculated sparsely for semantic edges in the scene.
For this purpose, we first use the CASENet to detect the semantic edges of the left and right images,
respectively. These extracted edge pixels are candidates to be matched in this paper. In order to find the
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correspondence between pixels in stereo images, we attribute the matching of each scan-line’s pixels
to the alignment of two sequences, and then this problem can be solved by a dynamic programming
paradigm. Before solving the matching problem, we first need to measure the similarity between the
matching candidates, and this is the calculation of the cost. In Section 3.2, we will introduce the cost
computing methods used in experiments. Next, we propose an Adaptive Dynamic Programming
(ADP) algorithm because the traditional dynamic programming method has the difficulty of selecting
empirical parameters, which should not be the same for different scenes. ADP makes use of the
potential consistency in stereo image pairs to select optimal parameters adaptively, and two kinds
of consistencies can be applied in it. The results of our method will be analyzed qualitatively and
quantitatively in Section 4. In the following subsections, we will elaborate on each step of our method.

Figure 1. Pipeline of our proposed method.

3.1. Semantic Edge Detection and Semantic Edge Matching Formulation

As a kind of important feature of images, edges are widely used in a series of computer vision
problems. There are many existing methods of edge extraction, from the low-level method using
simple convolutional filters such as Sobel [23] and Canny [24] to the high-level method with semantic
neural networks such as High-for-Low approach (HFL) [20]. In this paper, our selected method is
CASENet [22], which is a semantic edge detection network with category-aware. There are two main
reasons why we choose this method:
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1. CASENnet differs from the traditional methods in that it detects not the low-level edges, but the
external contours of each object in the image. Since the lines inside of the object are not detected,
there are fewer matching candidates in this paper, which can reduce the interference of some
similar edges.

2. Unlike the traditional edge detection to solve a binary classification problem, in which a pixel
belongs to edges or not, CASENet employs a new modeling approach that allows pixels in
contours belonging to more than one category. In other words, CASENet detects object contours
with semantic meaning. Therefore, only matching these pixels can satisfy the basic ranging
requirement in navigation because the distance of each target in the scene can be calculated.
At the same time, the multi-contour features of the edge pixels also make it possible for each pixel
to measure the similarity in semantic space. This feature will be taken advantage of in Section 3.3.

An example of CASENnet’s result is shown in Figure 3, and the meanings of different colors are
the same as in [22]. There is still one thing with which we should be concerned. The width of each edge
extracted by CASENet is several pixels rather than one pixel. With these edge pixels as the matching
candidates, we formulate the semantic edge matching problem in this paper as:

Given two arrays {L1, L2, ..., Lm} and {R1, R2, ..., Rn} for each pair of scan-lines in left image
IL and right image IR, we aim to find the alignment M of minimum cost C(M), in which:

(1) Li = (xLi , yLi ) and Rj = (xRj , yRj) are the coordinates of pixels to be matched in left and right
images respectively, and there exists yLi = yRj .

(2) M is a set of pairs {Li, Rj} in order. More specifically, each item in left array {L1, L2, ..., Lm} has
at most one corresponding item in right array {R1, R2, ..., Rn} and vice versa, and if there are two
pairs {Li1 , Rj1} and {Li2 , Rj2}, there must be j1 > j2 when i1 > i2.

(3) The cost of M is defined as:

C(M) = ∑
{Li ,Rj}∈M

CLi ,Rj + ∑
LiorRjunmatched

Cgap, (1)

where CLi ,Rj is the color cost between Li and Rj, which represents the similarity between the two
pixels; Cgap is the unmatched cost if Li or Rj has no matched item.

The formulated problem can be solved by dynamic programming paradigm. However, the
traditional dynamic programming method suffers parameters selection difficulty. Therefore, we
propose an improved method with an adaptive parameter to solve the above problem. Then, the
disparity d of each pixel in left image can be calculated by

dL = xLi − xRj . (2)

Different from other stereo matching methods, we do not set the value of maximum disparity
in our method. However, in order to show the results more clearly, we set a maximum disparity for
consistent staining. The color range is shown as Figure 1.

3.2. Color Cost Calculation

The first and most important step of stereo matching is to describe the potential property of each
waiting-for-matched pixel effectively, and then scale the comparability between different pixels. That is
to say, the matching cost is computed at first to represent the similarity of pixels. We will introduce
three kinds of matching costs below, which will be used in our method.

The first one is SAD, which can be implemented quickly by using the mean filtering on AD.
They both assume that the brightnesses of corresponding pixels are consistent. The mathematical
expression of AD and SAD is as Equations (3) and (4), respectively:

CAD(x, y, d) = |IL(x, y)− IR(x− d, y)|, (3)



Sensors 2018, 18, 1074 6 of 19

CSAD(x, y, d) = ∑
(x′ ,y′)∈N(x,y)

|IL(x′, y′)− IR(x′ − d, y′)|, (4)

where N(x,y) is the neighborhood of pixel (x, y), and it is usually a rectangular window with size
WSAD × HSAD. The WSAD is the width of N(x,y) and the HSAD is the height.

Another cost is Census, which encodes each pixel into a binary descriptor and calculates the
similarity between different pixels by Hamming distance. It encodes the brightness relation between
the anchor pixel and its neighbors rather than the brightnesses themselves, so it is robust to the
radiometric change. However, it has ambiguities in repetitive and similar structures. The mathematical
expressions of it is as Equation (5):

CCensus(x, y, d) = HammingDistance(ρ(IL(x, y)), ρ(IR(x− d, y))), (5)

in which, ρ(I(x, y)) = ⊗(x′ ,y′)∈N(x,y)

{
1 I(x′, y′) > I(x, y)

0 otherwise
, ⊗ denotes concatenation and N(x,y) is

also the neighborhood of pixel (x, y) with a rectangular window size WCensus × HCensus. An example
of CCensus is shown as Figure 2.

Figure 2. Example of Census cost. The similarity is measured by Hamming distance.

The last cost is the combination of CSAD(x, y, d) and CCensus(x, y, d) shown as Equation (6),
which is similar to the AD-Census Cost in [9]. However, we reduced the number of parameters
to be determined, which improves the robustness of our method. Only one constant coefficient
α should be given:

CSADCen(x, y, d) = CSAD(x, y, d) + α× CCensus(x, y, d). (6)

In fact, the SAD cost and Census cost we used in this paper are normalized. With the above costs,
the {CLi ,Rj} in Equation (1) are prepared. The results of our method using different kinds of costs will
be compared in Section 4.

3.3. Adaptive Dynamic Programming

The minimization problem of Equation (1) can be solved by dynamic programming paradigm:

OPT(i, j) =



j× Cgap if i = 0,

min


CLi ,Rj + OPT(i− 1, j− 1)

Cgap + OPT(i− 1, j)

Cgap + OPT(i, j− 1)

otherwise,

i× Cgap if j = 0,

(7)

where OPT(i, j) is the minimum cost of aligning arrays {L1, L2, ..., Li} and {R1, R2, ..., Rj}. The CLi ,Rj

is calculated as Section 3.2. The Cgap is usually an empirical constant, which plays an important role
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but is hard to choose. When Cgap is too large, it will cause more mismatches; and when Cgap is too
small, it will cause most pixels unmatched. A moderate value is very difficult to select in applications,
as shown in Figure 3.

Figure 3. Influence of different Cgaps. Too small Cgap will cause lots of unmatched pixels, while too
large Cgap will cause lots of mismatches.

In order to improve the robustness, we propose an improved dynamic programming algorithm,
which makes use of the underlying consistency between stereo images to select the value of Cgap

adaptively. We put forward two kinds of consistency constraints that can be used: disparity consistency
constraint and semantic consistency constraint. We also try to utilize them at the same time. However,
the experiments in Section 4 show that it is not necessary because the semantic consistency constraint
in this case is much stronger than the disparity constraint.

3.3.1. Adaptive Dynamic Programming with Disparity Consistency Constraint

Once the correspondence between two pixels in stereo images is determined, Equation (8) must
exist because of the consistency between left and right disparity maps. In stereo matching, it is called
LRC (Left-Right Consistency) check and is usually used for mismatch detection:

dL(x, y) = dR(x− dL(x, y), y). (8)

Actually, this method can not detect all mismatches. Although the probability is low, there still
exist consistent errors in left and right disparities. However, it is still the most popular detection
method since it is easy to implement and is effective in practice. In this part, we count the number of
pixel pairs that satisfy Equation (8) to obtain the value of Cgap dynamically, The details are shown in
Algorithm 1.
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The MatchingCost function aims to calculate each similarity between Li, i ∈ {1, 2, ..., m} and
Rj, j ∈ {1, 2, ..., n}, so the numbers of items in {CLi ,Rj} and {CRj ,Li} are m× n, respectively. In effect,
{CRj ,Li} can be obtained from {CLi ,Rj} without recalculating. Generating the disparity map of left
image is to try to find a matching relationship between {L1, L2, ..., Lm} and {R1, R2, ..., Rn}, while
generating the disparity map of the right image is to try to find a matching relationship between
{Rn, Rn−1, ..., R1} and {Lm, Lm−1, ..., L1}. With each image as the base, the coordinate system and the
matching order are different. In the case of dynamic programming, different matching orders may
result in different results. An example is given in Figure 4.

Figure 4. Example of different matching orders. For the same sequences to be matched, the results
will be different if the coordinate systems are not the same. The red dotted lines in the results indicate
inconsistent pairs on both sides.

Instead of fixing the value of Cgap, we provide a range of values for the search of each scan-line’s
optimal Cgap. When the Census cost is chosen, the bottom of the search range (λmin) will be set as 0,
the top of the search range (λmax) will be set as WCensus × HCensus, and the search interval (λinter) will be
set as 1. This is due to the binary descriptor of Census. The maximum, the minimum, and the smallest
interval of Census cost are 0, the length of descriptor, and 1, respectively. When the SAD cost is selected,
the search interval (λinter) will be set as 0.01, and if {CLi,Rj} is sorted in ascending order, the λmin and
λmax will be set as Cθmin and Cθmax picked from the ordered cost {C1, C2, ..., Cm×n}. The θmin and θmax is
computed as Equations (9) and (10) based on empirical conjecture and experimental verification rather
than set as the theoretical minimum and maximum, since the distribution of SAD cost is not as predictable
as Census cost. Ideally, there should be at most lmin = min{m, n} values in the cost that are distinct from
the other values because there are at most lmin pairs of matches. However, in practice, the true match may
occur at the second or third smallest cost. Therefore, we set λmin as the k1lmin-th cost in {C1, C2, ..., Cm×n}
and the extent size (λmax − λmin) as k2lmin. k1 ∈ {1, 2, 3} and k2 ∈ {1, 2, 3} in this paper:

max θmin s.t. θmin ∈ {3× lmin, 2× lmin, lmin}
θmin < m× n, lmin = min{m, n},

(9)
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max θmax s.t. θmax − θmin ∈ {3× lmin, 2× lmin, lmin}
θmax < m× n, lmin = min{m, n}.

(10)

The DPMatching function computes the optimal value of Equation (7) and finds the solution.
Since the dynamic programming algorithm is very classic, we will not give details in this paper.
The DisparityComputing function converts the alignment MLR to disparities {d1

L, d2
L, ..., dp

L} with
Equation (2), and the disparities {d1

R, d2
R, ..., dq

R} can be obtained in a similar way. The LRC function
eliminates those matches that do not satisfy Equation (8). The disparities {d1

L, d2
L, ..., dk

L} that achieve
the maximum consistency between left and right arrays are obtained by our algorithm, and the Cgap at
this time is the optimal value. Hence, one can see that the Cgap is self-adapting for each scan-line in
different images.

Algorithm 1: Adaptive Dynamic Programming with Disparity Consistency Constraint for Each
Pair of Scan-Lines in Stereo Images.

1 Function DisparityADPMatching(IL, IR, {L1, L2, ..., Lm}, {R1, R2, ..., Rn})
// computing the matching cost using equations in Section 3.2
// i ∈ {1, 2, ..., m}, j ∈ {1, 2, ..., n},{CLi ,Rj} and {CRi ,Lj} have m× n elements

respectively
2 {CLi ,Rj} = MatchingCost(IL, IR, {L1, L2, ..., Lm}, {R1, R2, ..., Rn});

3 {CRj ,Li} = MatchingCost(IR, IL, {Rn, Rn−1, ..., R1}, {Lm, Lm−1, ..., L1});

// initializing the counting number
4 Nmax = 0;

// searching for the value of Cgap dynamically
5 for (Cgap = λmin; Cgap < λmax; Cgap = Cgap + λinter) do

// using dynamic programming sloving Equation (7) and returning the
optimal solution M

// m and n are the length of {L1, ..., Lm}, {R1, ..., Rn} respectively
6 MLR = DPMatching(m, n, {CLi ,Rj}, Cgap);

7 MRL = DPMatching(m, n, {CRj ,Li}, Cgap);

// computing the disparities by Equation (2)
8 {d1

L, d2
L, ..., dp

L} = DisparityComputing(MLR);
9 {d1

R, d2
R, ..., dq

R} = DisparityComputing(MRL);
// removing the pairs that do not satisfy Equation (8)

10 {d1
L, d2

L, ..., dk
L}= LRC({d1

L, d2
L, ..., dp

L}, {d1
R, d2

R, ..., dq
R}, {L1, L2, ..., Lm});

// k is the number of pairs that satisfy Equation (8)
11 if Nmax < k then
12 Nmax = k;
13 DL = {d1

L, d2
L, ..., dk

L};
14 end
15 end
1717 return DL;
18 end

3.3.2. Adaptive Dynamic Programming with Semantic Consistency Constraint

In addition to the disparity consistency mentioned above, there should also exist semantic
consistency between the left and right images, shown as Equation (11), since we use the semantic edge
pixels as matching candidates. We name this algorithm as Semantic Left-Right Consistency (SLRC)
check. Assuming the output of CASENet is E, E(x, y) = {0, 1}s, 1 means belonging to a class, and 0 has
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the opposite meaning. The similarity between different vectors can be measured by Hamming Distance.
If only the equality is determined, the vectors can also be converted to decimal digits to compare:

EL(x, y) = ER(x− dL(x, y), y). (11)

By replacing the disparity consistency constraint with the semantic consistency constraint,
Algorithm 2 can be obtained. The functions, which include MatchingCost, DPMatching,
DisparityComputing, and the parameters, which include λmin, λmax, λinter are all the same as the
ones in Algorithm 1. Similar to the LRC function, the SLRC function eliminates those matches that do
not satisfy Equation (11). The greatest difference between Algorithms 1 and 2 lies on the right disparity
map. Algorithm 2 just needs the left disparity map to determine the semantics of matching pixels.
It makes Algorithm 2 faster than Algorithm 1.

Additionally, it is natural to merge the two algorithms using disparity and semantic constraints
at the same time, and we did it in Section 4. However, the results are the same as using semantic
constraints only in our experiments.

Algorithm 2: Adaptive Dynamic Programming with Semantic Consistency Constraint for Each
Pair of Scan-Lines in Stereo Images.

1 Function SemanticADPMatching(IL, IR, EL, ER, {L1, L2, ..., Lm}, {R1, R2, ..., Rn})
2 {CLi ,Rj} = MatchingCost(IL, IR, {L1, L2, ..., Lm}, {R1, R2, ..., Rn});

3 Nmax = 0;
4 for (Cgap = λmin; Cgap < λmax; Cgap = Cgap + λinter) do
5 MLR = DPMatching(m, n, {CLi ,Rj}, Cgap);

6 {d1
L, d2

L, ..., dp
L} = DisparityComputing(MLR);

// removing the pairs that do not satisfy Equation (11)
7 {d1

L, d2
L, ..., dk

L} = SLRC(EL, ER, {d1
L, d2

L, ..., dp
L}, {L1, L2, ..., Lm});

8 if Nmax < k then
9 Nmax = k;

10 DL = {d1
L, d2

L, ..., dk
L};

11 end
12 end
1414 return DL;
15 end

4. Experiments

In this section, we conduct experiments to study the performance of our method. We will
introduce the dataset we used and the evaluation indicators. Then, we will discuss the performance of
different window sizes, different costs, and our proposed method separately. We implemented our
algorithms on the MATLAB platform with a laptop of Intel Core-i7 CPU (4 cores @2.20 GHz) and 16
GB RAM. No parallel technology is used to accelerate our algorithms.

4.1. Dataset and Evaluation Methods

In existing public datasets, there is no one that has plenty of semantic annotations for outdoors
and dense enough ground truth of disparities at the same time. It has caused some difficulties for our
quantitative evaluation. The candidate datasets considering by us include KITTI Stereo [25,26] and
Cityscapes [27]. Both of them are captured by driving cars around the cities and contain the stereo
images. KITTI provides the disparity ground truth by a Velodyne laser scanner and a GPS localization
system [25]. However, the ground truth does not cover each whole image. The upper portion of the
image has no ground truth, and the ground truth of the lower part is interlaced. The results of our
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method are sparse for the entire images. There are very small overlaps between our results and ground
truth. In addition, KITTI has few semantic annotations provided by other researchers, like [28,29].
Most of these annotations are not in high quality. Cityscapes is a large-scale dataset with high quality
annotations of 5000 frames and weakly annotated of 20,000 frames [27]. The output of CASENet on it
is more reliable, which is the most important premise of our algorithm implementation. Although this
dataset contains no disparity ground truth, we can make the ground truth using reliable feature points
matching. As a consequence, we chose Cityscapes to evaluate our experiments. More specifically,
we pick out the Berlin data of 544 frames from Cityscapes as our evaluation dataset.

We used a variety of local feature extraction methods for interest points detecting, extracting,
and matching. SURF (Speed Up Robust Feature) [30], Harris [31], FAST (Features from Accelerated
Segment Test) [32], and BRISK (Binary Robust Invariant Scalable Keypoints) [33] are all taken into
account. Then, we applied GMS (Grid-based Motion Statistics) [34] to distinguish inliers from outliers
quickly. We can get a set of ground truth, in which there are about 70,000 truth values for each image
pairs in our dataset. Some examples are shown in Figure 5. With the ground truth made by us,
some quantitative evaluation can be done for reference. We compute the following two measures in
the remaining part of this paper:

Density =
ND

NI
, (12)

where ND is the number of the pixels with values in disparity maps, and NI is the number of each
whole image’s pixels. In our experiments, NI is equal to 825× 2009:

Error =
∑(x,y)∈D∩GT(|d(x, y)− dGT(x, y)|) > δd

ND∩GT
, (13)

where ND∩GT is the number of the pixels that have values in disparity maps and ground truth maps
simultaneously; δd is an error tolerance. We set the δd as 3, 2, and 1, respectively.

Figure 5. Examples of our ground truth. From top to bottom: the left images, the right images, and our
ground truth.

4.2. Performance of Different Window Sizes

The costs used in this paper are simple local ones, and there is no cost aggregation to enhance the
global information. In order to ensure that each candidate can be characterized well, it is crucial to
choose the appropriate window size. If the window is too small, it is not enough to support each pixel;
if it is too big, the calculation time will be increased. Therefore, we compare the effects of different
window sizes through experiments.
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We use SAD cost and our proposed ADP algorithm with SLRC in this subsection.
The corresponding performance indicators are recorded by changing the window size. To facilitate
the experiments, we set the height HSAD and width WSAD to the same value wSize. The results are
collected in Figure 6. Before wSize reaches 15, Density is gradually increasing and Errors are decreasing
with the increase of wSize. After that, Density is still increasing, but Errors are increasing slightly.
Therefore, we set the HSAD and WSAD as 15 in our next experiments. Actually, the HCensus and WCensus
are set as 15 too.

Figure 6. Effects of different window sizes.

4.3. Performance of Adaptive Dynamic Programming

As previously mentioned, to determine the value of Cgap is a key challenge in the dynamic
programming algorithm. Cgaps that are too large or too small will result in unsatisfactory results (see in
Figures 3 and 7). To prove the validity of our proposed algorithm, we assign several values to Cgap to
compare with our adaptive algorithms. The cost we used in this subsection is still SAD.

Table 1 details the comparisons. When Cgap is equal to 0.0005, the Density is very low. It means
that 0.0005 is so small that many pixels cannot find correspondences. Although the Errors are low in
this case, the results can not be used in practice. When Cgap is equal to 0.1 or 0.9, the Density is high, but
the Errors are high too. Our proposed adaptive programming algorithm, no matter which constraint is
used, can guarantee a relatively high Density and relatively low Errors. The algorithm with disparity
constraint can obtain denser results, while the algorithm with semantic constraint can get higher
accuracy. The results of the algorithms with semantic constraint and combined constraint are exactly
the same. We will not consider the algorithm with combined constraints in the later experiments.
From Table 1, we can also see that the iterative step of our proposed adaptive programming increases
the runtime. As we inferred in the previous section, our proposed ADP algorithm with SLRC consumes
less time than with LRC.
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Figure 7. Examples of comparison between our method and the traditional dynamic programming
algorithm. From top to bottom: the left images, the semantic edges, the disparity maps of the following
algorithms separately: DP(Cgap = 0.0005), DP(Cgap = 0.1), DP(Cgap = 0.9), ADP(LRC), ADP(SLRC).

Table 1. Comparison between our method and the traditional dynamic programming algorithm.

Algorithm Density Error(δd = 3) Error(δd = 2) Error(δd = 1) Average Time (s)

SAD + DP (Cgap = 0.0005) 2.29% 3.29% 6.26% 19.18% 27.89 (Matlab)
SAD + DP (Cgap = 0.1) 10.14% 14.86% 22.18% 41.35% 23.62 (Matlab)
SAD + DP (Cgap = 0.9) 9.39% 37.61% 47.18% 64.25% 24.52 (Matlab)

SAD + ADP (LRC) 7.53% 3.35% 6.57% 20.12% 47.15 (Matlab)
SAD + ADP (SLRC) 6.01% 3.26% 6.47% 20.06% 30.40 (Matlab)

SAD + ADP (LRC + SLRC) 6.01% 3.26% 6.47% 20.06% 47.98 (Matlab)

4.4. Performance of Our Proposed Method

In this subsection, we will try the combinations of different costs and adaptive dynamic
programming algorithms with different constraints, and then compare our results with other methods.

The six combinations of our method are shown in Table 2 and Figure 9. As you can see, the accuracy
of using SAD cost is superior to that of using Census cost when the same ADP algorithm is employed.
The combined cost has the best performance by absorbing the advantages of both. In the case of
using the same kind of cost, the accuracy of ADP with SLRC is higher than that of ADP with LRC.
The advantages of SLRC are especially prominent with Census cost. The average computation time of
ADP with Census cost is much higher than others. One reason is the slow calculation of Census cost,
and the other one is the wide range of Cgap when Census cost is used.

In addition to comparing with the traditional dynamic programming algorithm, we will make
further efforts to compare our method with other ones in order to demonstrate the effectiveness of our
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method. So far as we know, there is no one only matching the extracted edges of CASENet as we did
in this paper, which makes difficulties for our comparison. For this, we have developed two schemes
as below.

The first one is to compare with other dense matching methods, like [16] did. We extract edge parts
from the whole disparity maps and only evaluate them. The extracted disparities are denser than our
results and can be compared with ours in both qualitative and quantitative evaluation. We contrast our
method with SGM [3] using the codes provided in [5]. Different costs are used, and there are two options
for SGM: with refinement or without. The refinement strategy also refers interpolation steps in [5]. We also
compare our method with MeshStereo [35], ELAS (Efficient LArge-scale Stereo) [36], SPSStereo [37] and
MC-CNN-fast [5] with the codes provided by their authors. Results are shown in Table 2 and Figure 8.
The best results of our method are superior to others’. Although the running time of our method is at a
disadvantage, it can be improved with code optimization and parallel computation.

The other one is to compare with SED (Simultaneous Edge Drawing) [19], another sparse matching
method based on edges. The Density of SED is 2.78% only. The intersection of SED’s results and our
ground truth is very small, so we can not make quantitative evaluation directly. Inspired by the evaluation
method of the KITTI stereo dataset [25,26], the initial disparity maps of SED are interpolated according to
the interpolation method provided by KITTI. The interpolated dense disparity maps are then evaluated
according to the comparison method mentioned above. The results of contrast are shown in Table 3.
The qualitative results are shown in Figure 9 for reference, and you can see many obvious mistakes before
interpolation. The contours of our method are more clear, and the errors are sporadic.

Table 2. Comparison between our method and other methods.

Algorithm Density Error(δd = 3) Error(δd = 2) Error(δd = 1) Average Time (s)

SAD + SGM 11.24% 2.90% 5.75% 17.87% 20.42 (GPU)
SAD + SGM + Refinement 11.25% 3.02% 5.89% 18.06% 22.65 (GPU)

Census + SGM 11.23% 3.81% 7.77% 22.85% 20.42 (GPU)
Census + SGM + Refinement 11.24% 3.56% 7.16% 21.97% 22.65 (GPU)

MeshStereo [35] 11.69% 6.88% 11.02% 26.35% 19.81 (C++)
ELAS [36] 10.35% 3.22% 7.42% 29.46% 0.97 (C++)

SPSStereo [37] 11.72% 3.17% 7.44% 28.04% 9.11 (C++)
MC-CNN-fast [5] 11.72% 2.79% 6.11% 22.05% 11.61 (GPU)

SAD + ADP (LRC) 7.53% 3.35% 6.57% 20.12% 47.15 (Matlab)
SAD + ADP (SLRC) 6.01% 3.26% 6.47% 20.06% 30.40 (Matlab)
Census + ADP (LRC) 10.33% 12.60% 17.85% 34.22% 1198 (Matlab)

Census + ADP (SLRC) 5.85% 5.47% 8.89% 20.82% 831.2 (Matlab)
SAD + 0.1Census + ADP (LRC) 8.37% 2.88% 5.58% 17.73% 127.9 (Matlab)

SAD + 0.1Census + ADP (SLRC) 6.61% 2.75% 5.44% 17.59% 47.05 (Matlab)

Table 3. Comparison between our method and SED [19].

Algorithm Density Error(δd = 3) Error(δd = 2) Error(δd = 1) Average Time (s)

SED [19] 2.78% - - - 2.01 (C++)
SED after interpolation 11.67% 13.86% 20.96% 39.16% -

SAD + 0.1Census + ADP (LRC) 8.37% 2.88% 5.58% 17.73% 127.9 (Matlab)
SAD + 0.1Census + ADP (SLRC) 6.61% 2.75% 5.44% 17.59% 47.05 (Matlab)
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Figure 8. Examples of comparison between our method and other methods. From top to bottom:
the left images, the semantic edges, the disparity maps of the following methods separately: SAD +
0.1Census + ADP (LRC), SAD + 0.1Census + ADP (SLRC), SAD + SGM + Refinement, Census + SGM +
Refinement, MeshStereo [35], ELAS [36], SPSStereo [37], MC-CNN-fast [5].
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Figure 9. Examples of comparison between our method and SED [19]. From top to bottom: the left
images, the semantic edges, the disparity maps of the following methods separately: SAD + ADP
(LRC), SAD + ADP (SLRC), Census + ADP (LRC), Census + ADP (SLRC), SAD + 0.1Census + ADP
(LRC), SAD + 0.1Census + ADP (SLRC), SED [19], SED after interpolation.

5. Conclusions

In this paper, we present a semantic edge based stereo matching method using an improved
adaptive dynamic programming algorithm. The robustness of our method benefits from the reduction
of empirical parameters. The single SAD or Census cost can have a considerable effect with our ADP
algorithm. When the two costs are combined, we reduce the number of parameters that need to
be determined to one. The combined cost can obtain the best results according to our experiments.
In ADP, the empirical parameter that is difficult to select in a traditional algorithm is replaced by a
range of parameters. The bounds of the range are decided based on the characteristics of the cost by
ADP automatically, and the optimal value in the range is obtained based on the disparity or semantic
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consistency constraint. Different from many other methods, we do not need to set the maximum
disparity to improve our performance. The maximum disparity is difficult to estimate in practical
applications. Experiments demonstrate that our method offers high accuracy performance and can
be put down as one of the top edge-based methods. Furthermore, this study can be extended by
considering the constraints between adjacent scan-lines. In our future work, we would like to improve
the accuracy of dense stereo matching method with semantic segmentations.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Absolute Difference
ADP Adaptive Dynamic Programming
AR Augmented Reality
BRISK Binary Robust Invariant Scalable Keypoints
BP Belief Propagation
Census Census Transform
DP Dynamic Programming
ED Edge Drawing
ELAS Efficient LArge-scale Stereo
FAST Features from Accelerated Segment Test
GC Graph Cuts
GMS Grid-Based Motion Statistics
HFL High-for-Low approach
LRC Left-Right Consistency
NCC Normalization Cross Correlation
SAD the Sum of the Absolute Difference
SED Simultaneous Edge Drawing
SEM Semantic Edge Matching
SFM Structure From Motion
SGM Semi-Global Matching
SLRC Semantic Left-Right Consistency
SURF Speed Up Robust Feature
WTA Winner-Take-All
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