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Abstract: Fabric defect detection is a necessary and essential step of quality control in the textile
manufacturing industry. Traditional fabric inspections are usually performed by manual visual
methods, which are low in efficiency and poor in precision for long-term industrial applications.
In this paper, we propose an unsupervised learning-based automated approach to detect and localize
fabric defects without any manual intervention. This approach is used to reconstruct image patches
with a convolutional denoising autoencoder network at multiple Gaussian pyramid levels and to
synthesize detection results from the corresponding resolution channels. The reconstruction residual
of each image patch is used as the indicator for direct pixel-wise prediction. By segmenting and
synthesizing the reconstruction residual map at each resolution level, the final inspection result can
be generated. This newly developed method has several prominent advantages for fabric defect
detection. First, it can be trained with only a small amount of defect-free samples. This is especially
important for situations in which collecting large amounts of defective samples is difficult and
impracticable. Second, owing to the multi-modal integration strategy, it is relatively more robust
and accurate compared to general inspection methods (the results at each resolution level can be
viewed as a modality). Third, according to our results, it can address multiple types of textile fabrics,
from simple to more complex. Experimental results demonstrate that the proposed model is robust
and yields good overall performance with high precision and acceptable recall rates.

Keywords: fabric defect detection; unsupervised learning; deep neural network; convolutional
denoising autoencoder; Gaussian pyramid

1. Introduction

A fabric is a textile material, short for “textile fabric” [1], that is manufactured with textile
fibers and widely used in daily life. A fabric defect is a flaw on the fabric surface resulting from the
manufacturing process [2]. Unlike other processes, quality inspection of the fabric surface is highly
important to textile manufacturers before products reach customers. Traditionally, visual inspection
performed by experienced human inspectors has been used to ensure fabric quality, as shown in
Figure 1a. Limited by factors such as human fatigue and inattentiveness, visual detection methods can
hardly provide reliable and stable results [3]. Moreover, these results are usually subjective and cannot
be quantified.
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Figure 1. Fabric defect detection by (a) manual and (b) [4] automated optical inspection methods.

In recent years, with the rapid development of machine vision and digital image processing
techniques, automated fabric defect inspection has become popular and has gradually displaced the
traditional manual method. As shown in Figure 1b, automated inspection of fabric defects usually
involves three steps: image acquisition, defect detection and post-processing. The image acquisition
procedure is mainly responsible for the digital image capture of defective samples, and generally,
a line-scan charge coupled device (CCD) camera can be used. The defect detection procedure is
performed to localize and segment the flawed regions, and sometimes, it also includes quantitative
analysis. The last procedure refers to all subsequent processes after defect detection, e.g., defect type
classification and defect grade assessment. In this paper, we mainly concentrate on the defect detection
step, which is considered more challenging in fabric quality inspection.

Three main challenges exist in the defect detection task. First, there are a broad range of different
fabrics, which usually exhibit varied characteristics. As making general algorithms compatible with
various texture types is difficult, instability in the traditional fabric defect detection methods may occur.
According to [2,5], all fabrics can be classified using up to 17 established wallpaper groups dominated
by p1, p2, p3, p3m1, p31m, p4, p4m, p4g, pm, pg, pmg, pgg, p6, p6m, cm, cmm and pmm, which have
lattices based on parallelogram, rectangular, rhombic, square, or hexagonal shapes. In Figure 2,
we show some common defective fabric samples with different 2-D patterned textures. All this
variability increases the complexity of the defect detection problem, making it difficult to devise
a generalized method. Second, the categories and characteristics of fabric defects themselves are
generally varied. Currently, more than 70 categories of fabric defects defined by the textile industry
exist [2]. These defects can be caused by different factors, such as machine malfunctions, yarn problems,
and oil stains [6]. As shown in Figure 3, these defects can have vastly different manifestations in
the same category of fabric (the p1 group). Some defects, e.g., the ones in Figure 3a,c,d,f, appear as
regions of low contrast, nonuniform brightness, or irregular shape, which further contributes to
the difficulties. Third, collecting large numbers of fabric defect samples, especially some rare types,
is extremely difficult in industry, resulting in a data imbalance or a complete failure for some traditional
supervised methods.

Though challenging, numerous researchers have devoted substantial efforts to these issues.
Considering the different appearances of inspected fabrics, Ngan et al. [2] broadly categorized the
methods into two main groups, non-motif-based and motif-based methods. Most works focus on
the non-motif-based group [7–12]. Specifically, Bissi et al. [13] presented an algorithm for automated
texture defect detection in uniform and structured fabrics based on a complex symmetric Gabor filter
bank and principal component analysis (PCA). Experimental results using the TILDA textile texture
database have verified the robustness and computation-saving performance of this method. However,
this method does not generalize well for some slightly complex patterned textures. Harinath et al. [14]
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proposed a wavelet transform-based method for fabric defect detection, which is well suited for quality
inspection due to its multi-resolution feature extraction. However, similar spectral approaches are
usually computationally demanding. Qu et al. [15] proposed a defect detection algorithm for fabrics
with complex textures based on a dual-scale over-complete dictionary. This method can enhance the
self-adaptability of defect detection by considering large variations in the defect sizes. It also achieved
excellent detection performance on comparison datasets. However, this method requires the inspected
images to be aligned with the training samples in the dictionary. In addition, it is not efficient in
detecting low contrast defects. In addition to these non-motif-based methods, only a few studies have
conducted the defect detection task by considering elementary fabric motifs as a basic manipulation
unit (motif-based) [2]. These methods usually require a defect-free ground truth for comparison of the
motifs, or they analyze the energy of motif subtraction to highlight defects [16]. This method is not
robust and can be time consuming. In addition, it is generally not suitable for the p1 group (this group
refer to fabric which is composed of one fundamental lattice with one motif only). Therefore, we will
mainly concentrate on the non-motif-based models in later discussions and experiments.

Figure 2. Defective fabric samples with different patterned textures.

Figure 3. Different types of defects in cotton fabric; from (a) to (f), the defects are classified as oil
polluted, heterozygous, scratched, flying-fiber, perforated and gauzy types.

In this paper, we present a novel unsupervised learning-based model that is capable of coping
with different types of defects in the p1 and non-p1 groups. This model is a multi-scale convolutional
denoising autoencoder (MSCDAE) architecture. The inputs into the network at each scale are generated
by a Gaussian pyramid to cope with defects of different sizes. Instead of considering elementary
motifs as a basic manipulation unit, this model tries to train the multiple convolutional denoising
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autoencoder (CDAE) networks with randomly sampled image blocks (also known as image patches)
from defect-free samples. In fabric samples of the same type, these image patches, which do not contain
defective areas, are usually highly similar. Therefore, after training, the CDAE network is capable of
modeling the distribution of these defect-free image patches in the patch domain. Filters in the trained
CDAE network will be sensitive to similar patches and thus show large responses to them. For patches
that contain defective areas, their appearances and distributions in the patch domain will usually
be quite different. The trained model may therefore be less sensitive to them, and relatively small
responses will be generated. By measuring the residual between the response and the original input,
direct pixel-wise prediction can easily be conducted. Finally, by synthesizing prediction results from
multiple pyramid layers, the final inspection representation for a candidate sample can be generated.

The main contributions of this paper are summarized in the following points.

• We proposed a new non-motif-based method MSCDAE which has the advantage of good
compatibility for fabric defect detection. This method is a learning-based model that is suitable
for the p1 and non-p1 types of fabrics. Experimental results have verified its good performance.

• The multi-pyramid and CDAE architectures in this model are novel and subtle. Specifically,
processing in a multi-scale manner with pyramids may ensure the capture of sufficient textural
properties, which are often data independent. In addition, applying the CDAE network can
distinguish defective and defect-free patches easily through the use of reconstruction residual
maps, which are more intuitive.

• This model is conducted in an unsupervised way, and no labeled ground truth or human
intervention is needed. Furthermore, only defect-free samples are required for the training
of this model. All these properties make it easier to apply the method in practice.

The remainder of this paper is organized as follows. In Section 2, we briefly review the fabric
defect detection methods and the foundations of the CDAE network. The reconstruction residual
of this network serves as the core indicator of direct pixel-wise prediction for defect detection in
later experiments. Then, in Section 3, procedures of the proposed MSCDAE model are described
in detail, and steps to train this model and test candidate images are summarized. In Section 4,
the overall performance of the proposed method is analyzed and compared with other well-known
defect inspection methods. Relevant points about parameter selection are also discussed in this section.
Implementation details of the proposed method are illustrated in Section 5. Finally, we give our
conclusions in Section 6.

2. Related Works and Foundations

As previously stated, traditional fabric defect detection methods can be categorized into two
main groups: non-motif-based and motif-based groups. According to [2,6,8,11], the majority of these
methods belong to the first group. In this group, methods can be further subdivided into six categories:
statistical, spectral, model-based, learning-based, structural and hybrid approaches [2], as shown in
Figure 4. The statistical approach is a widely used method that seeks to distinguish defective and
defect-free regions according to their different statistical characteristics, e.g., similarity, uniformity,
and regularity. Typical statistical approaches include the auto-correlation metric, co-occurrence matrix
and fractal dimension methods. The spectral approach is another widely used method for defect
inspection that highlights the difference between defective and defect-free regions in the frequency
domain. Fourier transformation, wavelet transformation and Gabor transformation are all typical
spectral methods [17,18]. Though effective, these methods are usually computationally demanding.
Model-based and structural approaches are relatively less common, possibly because these two
approaches are highly data dependent. The models designed or the texture primitives utilized are
varied for different types of patterned textures. The hybrid approach is a combined architecture that
integrates two or more strategies for defect inspection [11,13,19]. Hybrid approaches are usually
capable of coping with different types of defects, and their inspection performance tends to be more
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effective and robust. However, these methods also have high time and computation costs. Moreover,
it is generally difficult to design such a generalized approach. Motif-based approaches are methods
that consider elementary motifs as basic manipulation units. These methods generally have better
generality than the non-motif-based methods. However, currently, they cannot tackle the patterned
texture of the p1 group, e.g., plain and twill fabrics, very well. Additionally, they tend to be sensitive to
noise and nonuniform illumination in situations in which the working environment is relatively poor.
Here, we will mainly concentrate on the learning-based approach.

Figure 4. Different approaches for patterned fabric defect detection.

Learning-based approaches, especially methods with deep neural network architectures, are very
promising for defect inspection. In recent years, there have been many studies that have investigated
this field and explored better strategies for defect inspection [20–23]. However, the majority of these
studies use supervised learning, which often requires large amounts of labeled defective samples
for model training [23]. The autoencoder (AE) network is a typical unsupervised method that has
been widely used in shape retrieval [24], scene description [25], target recognition [26,27] and object
detection [28]. It can be trained without any labeled ground truth or human intervention. Since it
is also an important component of the proposed model, the foundations and developments of this
network will be briefly described below.

AE networks are based on an encoder-decoder paradigm that is usually trained in an unsupervised
fashion and in a fully connected form. Convolutional autoencoder (CAE) networks differ from
conventional AE networks in that they retain the structure information of the 2-D images and the
weights are shared among local positions. The architecture of a typical CAE contains an encoder
part with convolutional and pooling layers and an analogous decoder part with deconvolutional and
upsampling layers. The encoder and decoder parts can be defined as transitions φ and ψ such that:

φ : X → F ,

ψ : F → X ,

φ, ψ =arg min
φ, ψ
‖x− ψ (φ (x))‖2,

(1)

where x ∈ Rd = X refers to an image patch in the X domain, and z = φ (x) ∈ Rp = F refers to the
corresponding hidden layer map in the F domain. Assume that x′ denotes the reconstruction; then,
the encoder and decoder processes can be expanded as:

z =σ (W ◦ x + b) ,

x′ =σ′
(
W′ ◦ z + b′

)
,

(2)

where “◦” is the convolution process, W and W′ are the weight matrices, b and b′ are the bias vectors for
the encoder and decoder, respectively, and σ and σ′ are the nonlinear mapping processes, specifically,
the convolutional, pooling, deconvolutional, and upsampling processes. Particularly, the pooling and
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upsampling processes are usually conducted in the form of max-pooling and max-unpooling [29].
The CAE model can be trained to minimize the reconstruction errors (such as the mean squared errors):

L
(
x, x′

)
=

1
2N

N

∑
i=1
‖xi − x′i‖2 + λ · ∑

w∈{W,W′}
‖w‖F, (3)

where N is the number of samples, λ is a constant that balances the relative contributions of the

reconstruction and the regularization terms, and
√
‖xi − x′i‖2 is the reconstruction residual of the i-th

image patch.
The CDAE network is slightly different from the CAE in that it takes partially corrupted inputs for

model training and aims to recover the original undistorted inputs. This is done by first corrupting the
initial input x into x̃ by means of a stochastic mapping x̃ ∼ q (x̃|x). Assume that x̃′ is the reconstruction
of the corrupted data x̃; then, loss in the CDAE model is measured by the reconstruction error L (x, x̃′),
as shown in Figure 5b. The concrete form of L (x, x̃′) is similar to that of L (x, x′) in Equation (3).
In general, the CDAE model is conducted in a stacked form, which allows hierarchical feature extraction
from unlabeled samples, as shown in Figure 5c. A stochastic gradient descent algorithm [30] can be
easily used to optimize of all these neural network models.

Figure 5. Architectures of the (a) AE; (b) denoising AE; and (c) stacked AE models.

3. Proposed Methods

In this section, procedures of the proposed MSCDAE model are discussed in detail. Figure 6
shows the overall architecture of this model in the training and testing phases. Procedures in the
training phase mainly aim to learn the CDAE network in each pyramid level and calculate the optimal
threshold for defect segmentation, while those in the testing phase are processes used to inspect
a candidate defective image. Specific illustrations are presented as follows.

3.1. MSCDAE Model Training

The training phase of the CDAE network in each pyramid level is conducted separately in the
proposed MSCDAE model. Specifically, this training phase mainly includes the image preprocessing,
patch extraction, model training and threshold determination procedures.

3.1.1. Image Preprocessing

All image preparations prior to the training procedure are included in this part: illumination
normalization, Gaussian pyramid downsampling, and noise corruption steps.

Illumination normalization: In general, in most existing methods, the defect inspection process
is highly sensitive to illumination variations. To reduce the rate of false detection, an illumination
normalization process based on Weber’s law [31] is first conducted. According to this law, stimuli are
perceived not in absolute terms but in relative terms. Assume that I is an image to be inspected; then,
the illumination normalization process can be implemented as:

I′ = WLD (I) , (4)



Sensors 2018, 18, 1064 7 of 18

where WLD(·) refers to a Weber local descriptor [32], which can be expressed as:

WLD (I) = arctan

(
∑

∆x∈A
∑

∆y∈A

I (x, y)− I (x− ∆x, y− ∆y)
I (x, y)

)
, (5)

where A = {−1, 0, 1}, and {(x− ∆x, y− ∆y)|∆x ∈ A, ∆y ∈ A} refers to the 8-neighborhood region of
point (x, y) (note that this process is redundant in the case where the changes in brightness are due to
a defect).

Figure 6. Overall architecture of the proposed MSCDAE model.

Gaussian pyramid downsampling: In a Gaussian pyramid, subsequent images are weighted using
a Gaussian blur and scaled down by resampling, as shown in Figure 6. Each pixel in a pyramid level
contains a local average that corresponds to a pixel neighborhood in a lower level of the pyramid.
That is:

I(n+1) = S↓G
(

I(n)
)

, n = 1, 2, · · · nl ; I(1) = I′, (6)
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where S↓ refers to the downsampling process, G(·) denotes the Gaussian convolution, nl is the number
of pyramid levels, and I′ is the image after illumination normalization.

Noise corruption: The salt and pepper noise model is utilized for data corruption in the MSCDAE

model. Let Ĩ(n) denote the corrupted image at level n and g̃i,j and gi,j refer to the gray level of the pixel
at position (i, j) in the corrupted and original clean images. The corrupted data are given by:

g̃i,j =

{
gi,j, with probability (1− p)
s, with probability p

, (7)

where

s =

{
0, with probability 0.5

255, with probability 0.5
. (8)

The probability p directly affects the degree of data contamination, and it can be determined by
cross-validation [33].

3.1.2. Patch Extraction

Patch extraction in this phase refers to the process used to create training sets for the proposed
model. For pixel-wise prediction, characterizing a pixel based on local neighborhood information
can be more robust than using only a single pixel. Nevertheless, the size of the local neighborhoods
is usually data dependent. Owing to the multi-scale pyramid structure, fixed size patch extraction
can be conducted at multi-scale levels instead of generating patches with various sizes, which is
computationally expensive. In this phase of model training, patches can be collected randomly from
the training samples. However, it should be noted that only defect-free images are utilized for model
training and that the patch set at each pyramid layer should not be confused with those from other
layers. After preparing training sets for each corresponding CDAE network, the model training process
can be conducted.

3.1.3. Model Training

As previously stated, patches that come from either defect-free or defective regions elicit very
different responses in the CDAE network after training. Therefore, it is natural to use the reconstruction
residual as the criterion for pixel-wise prediction in defect detection. Training of the proposed
MSCDAE network aims to model the distribution of defect-free image patches by minimizing the total
reconstruction loss of all patches in each image pyramid layer. In this paper, the optimization process
is conducted by applying a batch gradient descent algorithm in an error back propagation fashion.
We illustrate the procedures of one iteration epoch with m batches as follows:

Step 1: ∀ l, set4W (l) = 0,4b(l) = 0;
Step 2: for i = 1 to m,

a. Calculate the partial derivatives5W (l)L(x, x′) and5b(l)L (x, x′) ;
b. Partial differential superposition:
4W (l) = 4W (l) +5W (l)L (x, x′) ,4b(l) = 4b(l) +5b(l)L (x, x′) ;

Step 3: Update weight parameters:
a. Renew W (l) =W (l) − α · 4W (l), b(l) =b(l)− α · 4b(l);
b. Disrupt the order of patches in the dataset and finish the current iteration epoch;

where l denotes the l-th layer of the deep network, and α is the learning rate, which will be discussed
in later experiments. Procedures to optimize the parameters W ′ and b′ are similar and will not be
discussed here.
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3.1.4. Threshold Determination

The segmentation threshold is a parameter that measures the reconstruction error and determines
if the corresponding image patch is defect-free or defective. The goal of threshold determination
is to find the optimal threshold value that achieves the trade-off between reducing the rate of false
negatives (points that are defective but judged to be defect-free) and reducing the rate of false positives
(points that are defect-free but judged to be defective) simultaneously. In the proposed MSCDAE
model, the segmentation threshold at each pyramid level is determined according to the corresponding
training set. Assume that ξ(i)=

{
ϑ(i) (xk) |k=1, 2, · · · , Np

}
refers to the reconstruction residual for a set

of patches in the i-th image pyramid layer, Np gives the total number of training patches, xk is the k-th

image patch, and ϑ(i) (xk) =
√
‖xk − x′k‖2 is the reconstruction residual between xk and x′k. Note that

the ϑ(i) values for the majority of defect-free pixels will be mainly concentrated near the mean value
and their distribution will be close to the Gaussian distribution. Therefore, the segmentation threshold
can be defined as T(i) = µ(i) + γ · σ(i), where µ(i) and σ(i) are the mean and standard deviation of set
ξ(i). The parameter γ can be adjusted according to the segmentation sensitivity. In later experiments,
we will set γ = 2 according to experimental verification. Note that the thresholds are determined by
using the training patches, which are all defect-free.

After model training, novelty detection and defect localization processes can be easily conducted
for a candidate textural image. Detailed procedures are presented below.

3.2. MSCDAE Model Testing

The testing phase of the MSCDAE model is shown in Figure 6. This phase mainly includes
the image preprocessing, patch extraction, residual map construction, defect segmentation and
synthesization procedures.

3.2.1. Image Preprocessing

The steps in the image preprocessing parts of the testing phase are slightly different from
those in the training phase in that the noise corruption step is not necessary for inspecting
a candidate image. As for the illumination normalization and Gaussian pyramid downsampling
steps, the implementations are the same.

3.2.2. Patch Extraction

After preprocessing, patches will be extracted such that the textural images can be inspected.
In the testing phase, this process should be strictly conducted row by row or column by column to
maximize convenience when generating the residual map [34] (in the training phase, patches can
be extracted randomly). Suppose the patch size is w× h and the stride interval is s. The dimension
of the patch set generated from an image with size W×H can be expressed as [Np, Nc, w, h],
where Np = d[(W − w) /s + 1]e × d[(H − h) /s + 1]e refers to the number of patch samples and
Nc ∈ {1, 3} refers to the number of image channels. The extraction strategy and parameters (w, h
and s) applied are the same as those in the training phase.

3.2.3. Residual Map Construction

To predict a pixel, a local receptive field, x, with size w× h in its neighborhood will be extracted
and then passed forward to the trained model. This is shown in Figure 6. The reconstruction residual
ϑ (x) serves as the criterion and represents the extent to which the point belongs to a defective area.
Therefore, in each image pyramid layer, a residual map can be constructed for subsequent processing.
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3.2.4. Defect Segmentation

Defect segmentation is conducted on the residual map in each image pyramid layer as follows:

ς(i)
(

xj,k

)
=

{
0
1

if ϑ(i)
(

xj,k

)
≤ T(i)

otherwise
, (9)

where ϑ(i)
(

xj,k

)
refers to the reconstruction residual at position (j, k) in the i-th layer, and ς(i)

(
xj,k

)
is

the corresponding label after segmentation. Note that the defective points are labeled “1”.

3.2.5. Result Synthesization

Result synthesization is conducted mainly to improve the robustness and accuracy of the defect
inspection task. Here, we follow the strategy given in [35,36], in which the authors combine information
from multiple pyramid levels. This method assumes that a defect must appear in at least two adjacent
levels. Therefore, a logical AND operation can be implemented in every pair of adjacent levels to
reduce false detections. This operation is expressed as:

ς(i,i+1) (x) = ς(i) (x) & ς(i+1) (x) . (10)

Note that each residual map is scaled up to be the same size as the original input images.
The symbol “&” refers to the AND operation between pixels at the same position in two adjacent maps.
Next, the resulting maps are associated with a logical OR operation to generate the final result. That is:

ς (x) = ς(1,2) (x) | ς(2,3) (x) · · · | ς(n−1,n) (x) , (11)

where “|” refers to the OR operation between pixels at the same position, and ς (x) is considered the
final consolidated map. Note that a morphologically open operation can be carried out to remove
noise interference if necessary.

4. Experiments and Discussion

In this section, we will first introduce the datasets and evaluation criteria used in the subsequent
experiments. Then, several sets of experiments are presented to evaluate the performance of the
proposed MSCDAE model. Detailed descriptions are given below.

4.1. Datasets and Evaluation Criteria

Four datasets were utilized in this study: Fabrics [37], KTH-TIPS [38], Kylberg Texture [39],
and ms-Texture, which we created. The Fabrics dataset consists of approximately 2000 samples
of garments and fabrics, with some of them captured under different illumination conditions.
The KTH-TIPS image database was created to extend the CURet database in two directions,
providing variations in scale as well as pose and illumination, by imaging other samples of a subset of
its materials in different settings [38]. It is an challenging dataset for defect detection. Kylberg Texture
is also a widely used database of 28 texture classes. Patterned textures in this database are very
different from each other. All patches have been normalized for convenient processing. The ms-Texture
is a dataset created with our automatic optical inspection (AOI) test bench, as shown in Figure 7a.
Samples are collected with a line-scan CCD camera and may have multiple different types of defects.
Some typical defect-free and defective samples are shown in Figure 7b. In later experiments, our models
are verified with these databases to evaluate their robustness and stability.
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Figure 7. (a) The automatic optical inspection test bench utilized for fabric defect detection;
(b) Defect-free and defective samples collected by the test bench.

The evaluation criteria utilized in our experiments include two aspects: image-level and pixel-level
performance metrics. The former measure the accuracy of tagging images as defective or defect-free.
They are widely used metrics for defect inspection and include the detection rate DR, false alarm rate
FR, and detection accuracy DAcc. These metrics are defined as follows:

DR =
TP

Ndefect
× 100%,

FR =
FP

Ndefect-free
× 100%,

DAcc =
TP + TN

TP + FN + TN + FP
× 100%,

(12)

where TP and FN refer to the ratios of defective samples that are detected as defective and defect-free,
respectively. TN and FP refer to the ratios of defect-free samples that are correctly detected as defect-free
and falsely detected as defective, respectively. Analogously, Ndefect-free and Ndefect designate the total
numbers of corresponding samples. Pixel-level metrics evaluate the inspection accuracy by directly
measuring the predicted pixels. As shown in Figure 8, TPp refers to the proportion of correctly
segmented defective areas in the foreground, and FPp refers to the proportion of falsely segmented
defective areas in the background. The meanings of indicators TNp and FNp are similar. Therefore,
the quantitative inspection performance can be evaluated with:

Recall =
TPp

TPp + FNp
× 100%,

Precision =
TPp

TPp + FPp
× 100%,

F1-Measure =
2 · Precision · Recall
Precision + Recall

× 100%,

(13)

where the F1-Measure indicator is a comprehensive evaluator that uses both the Recall and
Precision indicators.
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Figure 8. Definition of the TNp, FNp, TPp, and FPp indicators.

4.2. Analysis of the Defect Detection Principle

As stated before, the proposed MSCDAE model is a defect detection architecture based on
a Gaussian pyramid, and the final detection result of this model is the synthesis of results from
multiple pyramid scales. Whether this fusion mechanism is beneficial to the overall performance still
needs to be validated.

Figure 9 shows the detection results for two typical fabric samples. Both the final and intermediate
results given by the proposed MSCDAE model are shown. Note that when synthesizing the final results,
the reconstruction residual map in each pyramid layer is interpolated to the same size as the defective
raw image sample. By analyzing these results, we can conclude the following: (1) The sensitivity of
the trained CDAE network in different pyramid layers is different according to the texture information,
so the detection results of the defects are also different. As shown in Figure 9a, the repetitive textures
have nearly disappeared in level 3. Therefore, defects tend to be inspected easier in this level. However,
compared with the results in level 1, the results from high resolution scales are relatively coarse.
Thus, synthesizing results from different levels is more favorable for obtaining more accurate results;
(2) The utilized fusion mechanism is capable of enhancing robustness and eliminating false detections.
As shown in Figure 9b, the small defect at the top right of the figure has vanished in level 3. However,
it can be accurately detected in level 1 and level 2. Many small defects are over-detected in level 1.
However, they can be corrected in level 2 and level 3. Therefore, the proposed MSCDAE model tends
to be more robust and accurate for defect inspection than models with only a single resolution scale.

Figure 9. Final and intermediate defect detection results of the proposed MSCDAE model on (a) cotton
and (b) canvas fabrics.
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4.3. Evaluation of Defect Detection Performance

As stated in Section 4.2, the Gaussian pyramid architecture and reconstruction residual mechanism
utilized in the proposed MSCDAE model are capable of improving the robustness and accuracy for
fabric defect detection. Here, we will verify this statement. In Figure 10, we show the results obtained
for several typical fabric defects using the MSCDAE model. Each fabric sample comes from different
textural series with 20 samples. These results are the final prediction performance after synthesis.
As a whole, the MSCDAE model shows good performance for both p1 and non-p1 defects. In addition,
it has good adaptability for defects of different scales, e.g., the defects in Figure 10a,d. Moreover, it can
be seen from this figure that for samples with relatively complex patterned textures, defective regions
tend to be over-detected with the proposed model. This phenomenon is mainly due to the fact that the
texture characteristics of these texture types are not completely repetitive but have anisotropy in local
regions, e.g., the samples in Figure 10f–h.

Figure 10. Defect inspection results using the proposed MSCDAE model. The images (a)–(d) and
(e)–(h) belong to the p1 and non-p1 types of defects, and they are representative samples in each
sample series.

Table 1 shows average quantitative results for the proposed model on these defective sample
series, and similar conclusions can be drawn from these data. Specifically, the MSCDAE model
shows good performance on the Recall indicator, which is utilized to evaluate the detection accuracy.
The results for the Precision indicator indicate that the proposed model has good suppression ability
for over-inspection and missing inspection, to a certain extent. Furthermore, as shown in Table 2,
the detection performance on the comparison datasets using the image-level criteria is verified. It can
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be seen that the overall inspection accuracy reaches over 80.0% on all these datasets. This experimental
result further demonstrates the robustness of the MSCDAE model.

Table 1. Quantitative pixel-level defect detection results for the proposed MSCDAE model on samples
from (a) to (h) series (each series contains 20 images with real defects).

Criterion(%) (a) Series (b) Series (c) Series (d) Series (e) Series (f) Series (g) Series (h) Series

Recall 0.5316 0.6102 0.9177 0.8366 0.9098 0.7936 0.9521 0.9355
Precision 0.6531 0.7349 0.6453 0.7573 0.4251 0.6517 0.3758 0.3942

F1-Measure 0.5861 0.6667 0.7578 0.7950 0.5794 0.7157 0.5389 0.5547

Table 2. Quantitative image-level defect detection results for the proposed MSCDAE model on the
Fabrics, KTH-TIPS, Kylberg Texture and ms-Texture datasets.

Criterion(%) DR FR DAcc

Fabrics (62 samples) 87.5 (21/24) 18.4 (7/38) 83.8
KTH-TIPS (128 samples) 84.1 (37/44) 14.3 (12/84) 85.2

Kylberg Texture (132 samples) 85.3 (29/34) 21.4 (21/98) 80.3
ms-Texture (50 samples) 84.6 (11/13) 16.2 (6/37) 84.0

4.4. Comparison of Defect Detection Performances

To verify the performance of the proposed MSCDAE model more fully, in this section, we will
compare the inspection results of this model with those of several unsupervised algorithms,
specifically the discrete cosine transform (DCT) [40], the phase only transform (PHOT) [10] and the
nonlocal sparse representation (NLSR) [41] approaches. The DCT model is a typical defect inspection
method that tries to eliminate random texture patterns and retain anomalies in the restored image by
reconstructing the frequency matrix without selected large-magnitude frequency values. The PHOT
approach is based on the discrete Fourier transform and attempts to remove any regularities and
preserve only irregular patterns for defect inspection. The NLSR is an efficient defect detection
model based on a non-locally centralized sparse representation. Nonlocal similarities in the fabric
structure information are exploited to improve the image restoration effect, thereby increasing the
defect detection rates.

As shown in Figure 11, we compared the performance of these methods on several patterned
textures of p1 and non-p1 types. According to these experimental results, it can be seen that the
DCT-based method exhibits good performance for conventional fabric textures, e.g., the samples in
Figure 11a,d,g. However, for relatively more complex fabric textures, e.g., the samples in Figure 11e,f,h,
repetitive textures cannot be absolutely removed in the restored images because of differences in local
texture characteristics and defect scales. These factors may affect the accuracy of the defect detection
process. The PHOT approach is also a method that presents good performance, especially for defects
with small sizes, e.g., the samples in Figure 11b,c. However, this method is greatly influenced by
the segmentation threshold, and it fails for some textures of non-p1 types, such as the samples in
Figure 11e,g. The NLSR is a method based on sparse coding and shows relatively similar performance
to the proposed MSCDAE model. This method has certain adaptability to different types of fabric
textures, but it can also be easily influenced by atoms in the learned dictionary because of the dictionary
encoding mechanism utilized. In other words, the performance can be easily affected by the training
samples. In addition, noise in the testing samples may also influence the final inspection results. In the
proposed MSCDAE model, the effects of certain types of noise have been taken into consideration in
the training process of the CDAE networks at each pyramid level, and thus, it tends to have better
robustness to noise, e.g., the samples in Figure 11g,h.
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Figure 11. Defect detection results obtained with different methods for various textural samples. Top to
bottom are the original defective samples, ground-truth regions, and results obtained by the DCT,
PHOT, NLSR and MSCDAE models. Defects (a) to (h) are representative samples in each sample series.

Furthermore, as shown in Table 3, we quantified the average results of the compared methods on
these sample series (pixel-level). According to these quantitative results, the following conclusions
can be drawn: (1) On the whole, methods based on local image patches (NLSR and MSCDAE) tend
to have better stability than those based on global image reconstruction (DCT and PHOT). The latter
have relatively poor performance on samples in Figure 11e,f according to the Recall and Precision
indicators; (2) The proposed MSCDAE model is a method with a multi-pyramid architecture, and the
CDAE network at each scale is sensitive to textures with different scales. Therefore, it tends to
have better robustness compared with the NLSR method; (3) The proposed MSCDAE model has
the best comprehensive performance compared with all these methods. The pixel-level quantitative
experimental results in this table also demonstrate the superiority and stability of the MSCDAE model.

Finally, we quantified the average image-level performance of the compared methods on the
four datasets, as shown in Table 4. Similar conclusions can be drawn that methods based on local
image patches (NLSR and MSCDAE) tend to have better detection accuracy than those based on
global image reconstruction (DCT and PHOT) on the whole. The proposed MSCDAE mode have the
best comprehensive performance compared with all the compared methods. This experiment further
demonstrates the superiority of the MSCDAE model.
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Table 3. Comparison of quantitative pixel-level segmentation results obtained with different methods
for various textural sample series (each series contains 20 samples with real or synthetic defects).

XXXXXXXXXSamples
Criteria Recall Precision F1-Measure

DCT PHOT NLSR Ours DCT PHOT NLSR Ours DCT PHOT NLSR Ours
(a) series 0.7352 0.6131 0.9325 0.9256 0.8985 0.2417 0.7148 0.8353 0.8087 0.0.3467 0.8093 0.8781

(b) series 0.7912 0.5484 0.7743 0.7959 0.3251 0.7254 0.4487 0.6584 0.4608 0.6246 0.5682 0.7206

(c) series 0.8359 0.5495 0.7018 0.7347 0.1025 0.8571 0.4497 0.8953 0.1826 0.6697 0.5482 0.8071

(d) series 0.8547 0.6988 0.8416 0.9451 0.8222 0.6134 0.5491 0.8121 0.8381 0.6533 0.6646 0.8736

(e) series 0.3035 0.4862 0.5351 0.4795 0.1032 0.2142 0.1749 0.6024 0.1540 0.2974 0.2636 0.5540

(f) series 0.2435 0.5101 0.7482 0.8353 0.1759 0.1016 0.5412 0.6333 0.2043 0.1694 0.6281 0.7204

(g) series 0.8912 0.1117 0.6381 0.6479 0.3540 0.1984 0.2264 0.3951 0.5067 0.1429 0.3342 0.4909

(h) series 0.7781 0.5426 0.4105 0.7414 0.1684 0.1158 0.3003 0.6357 0.2769 0.1909 0.3469 0.6845

Table 4. Comparison of quantitative image-level defect detection results for the compared algorithms
on the Fabrics, KTH-TIPS, Kylberg Texture and ms-Texture datasets.

Accuracy (%) DCT PHOT NLSR Ours

Fabrics (62 samples) 71.0 62.9 79.0 83.8
KTH-TIPS (128 samples) 69.5 64.8 75.8 85.2

Kylberg Texture (132 samples) 76.5 68.2 81.1 80.3
ms-Texture (50 samples) 78 54.0 68.0 84.0

5. Implementation Details

The experiments in this manuscript are conducted on a server with 12 cores, 128 GB memory and
GTX 980Ti Nvidia GPU. The languages utilized for the proposed MSCDAE model and the compared
methods are Python and Matlab. Thanks to the deep learning library Keras [42] and the third-party
libraries included in this module.

6. Conclusions

In this paper, an unsupervised and efficient fabric defect detection model, MSCDAE, based on
multi-scale convolutional denoising autoencoder networks has been proposed. This model has the
capacity to synthesize results from multiple pyramid levels, highlighting defective regions through
the reconstruction residual maps generated with the CDAE networks. It is a generalized that which
can be trained with only a small number of defect-free samples (no labeled ground truth or human
intervention is needed). In addition, it has the ability to address multiple types of textile fabrics and
defects. Visual and quantitative results on samples from the Fabrics, KTC-TIPS, Kylberg Texture and
ms-Texture datasets have demonstrated the superiority and robustness of this model. In the future,
more experiments will be carried out to further improve the accuracy and stability of this model for
more complicated patterned fabric textures.
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AE Autoencoder
AOI Automatic optical inspection
CAE Convolutional autoencoder
CCD Charge coupled device
CDAE Convolutional denoising autoencoder
DCT Discrete cosine transform
GPU Graphics processing unit
MSCDAE Multi-scale convolutional denoising autoencoder
NLSR Nonlocal sparse representation
PCA Principal component analysis
PHOT Phase only transform
WLD Weber local descriptor
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