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Abstract: Human Activity Recognition (HAR) aims to identify the actions performed by humans
using signals collected from various sensors embedded in mobile devices. In recent years,
deep learning techniques have further improved HAR performance on several benchmark datasets.
In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN) for HAR
that employs a divide and conquer-based classifier learning coupled with test data sharpening.
Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary
classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for
recognizing individual activities. We then introduce test data sharpening during prediction phase
to further improve the activity recognition accuracy. While there have been numerous researches
exploring the benefits of activity signal denoising for HAR, few researches have examined the effect
of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR
benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only
method and other state of the art approaches.

Keywords: human activity recognition; one-dimensional convolutional neural network; test
data sharpening

1. Introduction

The proliferation of smartphones and other mobile devices have enabled real-time sensing of
human activities through device embedded sensors such as accelerometers, gyroscopes, cameras, GPS,
magnetometers, etc. Initially, one or more dedicated, standalone on-body sensors were attached to
the specific parts of the human body for Human Activity Recognition (HAR) [1–3]. As smartphone
usage became prevalent, HAR research shifted from using dedicated on-body sensors to exploiting
smartphone embedded sensors for human activity data collection [4–6]. The activity recognition
performance has greatly improved since the inception of HAR research, but the experimental set up
varied among existing researches, for example, the types of activities performed by human subjects,
the types of sensors employed, the signal sampling rates, the length of time series data segment,
the feature processing techniques such as feature transformation, selection, extraction, the choice of
classifier learning algorithms, and so on. These choices made comparative assessment of different
HAR approaches difficult.

As HAR research matured, several benchmark human activity datasets [7–11] became
publicly available, allowing straightforward comparison of different activity recognition methods.
Recently, many state of the art approaches employ deep a Convolutional Neural Network (CNN)
over other machine learning techniques, and these approaches, for example, exhibit high activity
recognition accuracy that exceed 95% [12–14] on the benchmark Human Activity Recognition Using
Smartphones Data Set (UCI HAR dataset) [10] that contain six activities. As deep learning approaches
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simultaneously learn both the suitable representations (i.e., features) and activity classifier from data,
less attention was given to the explicit feature processing for HAR. Indeed, several existing works did
exploit various feature processing techniques such as application of noise reduction filters to remove
noise from human activity signals [10,15] while others transformed raw activity signals to frequency
domain features using discrete Fourier transform [16] or discrete cosine transform [17]. However, few
have investigated the effect of performing data sharpening for improving HAR. Moreover, the effect of
data sharpening on test data alone and not on the training data was rarely examined.

In this paper, we present a novel one-dimensional (1D) CNN HAR that utilizes a divide and
conquer-based classifier learning with test data sharpening for improving HAR. Suppose that we
are faced with a 6-class HAR problem where the activities that need to be recognized are walking,
walking upstairs (WD), walking downstairs (WD), sitting, standing, and laying, as shown in Figure 1.
Instead of straightforwardly recognizing the individual activities using a single 6-class classifier,
we apply a divide and conquer approach and build a two-stage activity recognition process,
where abstract activities, i.e., dynamic and static activity, are first recognized using a 2-class or
binary classifier, and then individual activities are recognized using two 3-class classifiers. During the
prediction phase, we introduce test data sharpening in the middle of the two-stage activity recognition
process to further improve activity recognition performance.

Figure 1. Division of 6-class HAR into two-stage n-class HAR. Six activities, i.e., Walk, WU
(Walk Upstairs), WD (Walk Downstairs), Sit, Stand, and Lay, are divided into two groups of abstract
activities, Dynamic and Static, to form a 2-class HAR. Each abstract activity forms a 3-class HAR.

Figure 2 outlines the overall process of our divide and conquer-based 1D CNN HAR approach
applied to Figure 1. The classifier learning is conducted via a two-stage process: in the first stage,
a binary 1D CNN model for abstract activity recognition is learned for classifying dynamic and static
activities; in the second stage, two 3-class 1D CNN models are learned for classifying individual
activities. During the prediction phase, our method first classifies dynamic and static activity using the
first-stage abstract activity recognition model, and then proceeds to test data sharpening. After the
test data is sharpened, our approach inputs the sharpened test data into the relevant second-stage
individual activity recognition model to output the final individual activity. The parameters (i.e., σ

and α in Figure 2) required for appropriate test data sharpening is searched and selected using the
validation data after the entire two-stage classifier learning process is completed and all three 1D
CNN models are built. By breaking down the multi-class problem into simpler problem units and
introducing test data sharpening in the prediction phase, we can achieve better HAR performance.
We demonstrate the effectiveness of our approach using two benchmark HAR datasets, and show that
our approach outperforms both the 1D CNN models without test data sharpening and existing state of
the art approaches. The contributions of this paper are twofold:

1. We propose a divide and conquer approach for building two-stage HAR that incorporates test
data sharpening during prediction phase to enhance HAR performance.

2. We present a systematic method for identifying useful parameters (i.e., σ and α) needed for test
data sharpening.
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Figure 2. Overview of our divide and conquer-based 1D CNN HAR with test data sharpening.
Our approach employs two-stage classifier learning during the learning phase and introduces test data
sharpening during the prediction phase.

The rest of the paper is structured as follows. The existing works on neural network-based HAR,
two-stage HAR, and feature processing methods are reviewed in Section 2. The details of our divide and
conquer-based 1D CNN approach with test data sharpening is presented in Section 3. The evaluation of
our approach on two popular benchmark HAR datasets are reported in Section 4, and the experimental
results are analyzed in Section 5. Finally, we conclude this paper in Section 6.

2. Related Work

In this section, we look at existing neural network-based HAR and other two-stage classifier
learning techniques, and graze through some feature processing methods used in HAR along with
signal sharpening in the image processing domain.

2.1. Neural Network-Based HAR

With the striking development in deep learning methods, many state of the art HAR algorithms
now employ various deep neural network algorithms for recognizing human activities. Before deep
learning was adopted, shallow neural network classifiers, namely Multi-Layer Perceptron (MLP),
was utilized as a promising neural network algorithm for HAR. For example, et al. [18] compared
decision tree, logistic regression, and MLP, and found that MLP triumphed in HAR. Dernbach et al. [19]
compared MLP with naive Bayes and tree-based methods on simple (e.g., biking, climbing, stairs,
driving, lying, running, sitting, standing, and walking) and complex (e.g., cleaning kitchen, cooking,
medication, sweeping, washing hands, and watering plants) activity recognition, and found that MLP
outperformed the rest. Bayat et al. [20] investigated the performance of MLP as both an individual
classifier and as part of an ensemble classifier; as an individual classifier, MLP outperformed Support
Vector Machine (SVM), random forest, logistic model trees, logistic regression, and additive logistic
regression. Weiss and Lockhart [21] compared the relative performance of impersonal and personal
activity recognition models using decision trees, k-nearest neighbor, naive Bayes, logistic regression,
MLP, and so on, and found that MLP performed the best for personal models. Kwon et al. [22]
investigated the influence of the smartphone triaxial accelerometer’s each axis on HAR using MLP.
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Although MLP has shown competitive activity recognition performance, the algorithm is known
to output poor recognition performance when it falls into local optima. Moreover, adding many hidden
layers to MLP was difficult due to the vanishing gradient problem during back propagation [23].
To overcome such limitations of shallow classifier, deep neural network learning methods were
introduced. For instance, Alsheikh et al. [24] implemented deep activity recognition models based
on deep belief networks (DBNs). The first layer of their DBN consisted of Gaussian-binary Restricted
Boltzman Machine (RBM), which modeled the energy content in continuous accelerometer data;
the subsequent layers were modeled using binary-binary RBMs.

More recently, CNN-based algorithms have been applied to HAR for its advantages in capturing
local dependency of activity signals and preserving feature scale invariance [25]. Existing works
using CNN for HAR include [12,14,25,26]. Other approaches exploited deep Recurrent Neural
Network (RNN) [27] or combined Long Short-Term Memory (LSTM) RNN with CNN. Ordonez and
Roggen [28] proposed DeepConvLSTM that combined convolutional and recurrent layers. Here,
abstract representations of input sensor data were extracted as feature maps in the convolutional layer,
and the temporal dynamics of feature map activations were modeled in the recurrent layers.
Edel and Köppe [29] proposed binarized bidirectional LSTM-RNNs that reduced memory consumption
and replaced most of the arithmetic operations with bitwise operations achieving an increase in
power-efficiency. In this study, we construct multiple 1D CNNs with various layer constitution.

2.2. Two-Stage HAR

Two-stage approaches break down a multi-class classification problem into several smaller
multi-class problems. Sometimes they solve a complex activity classification problem using
classification results of simple activities. In other cases, they utilize different subsets of sensor data
at different steps of HAR. These two-stage approaches are interchangeably referred to as ‘two-level’,
‘two-step’, ‘two-phase’, ‘two-layer’ or ‘hierarchical’ approaches.

Many studies have introduced two-stage HAR. For example, Khan et al. [30] proposed a
hierarchical activity recognition method that first distinguished the static, transition or dynamic
state at the lower level, and then recognized more specific activities using linear-discriminant analysis
and artificial neural network (ANN) at the higher level.

Lee and Cho [31] proposed a two-step Hierarchical Hidden Markov model (HMM) where a user’s
action and activity were recognized sequentially. They defined user action as motion taken during
shorter time lengths; five types of actions (i.e., stand, walk, stair up, stair down and run) were tested for
action recognition. Once the user action was determined, a longer time window was set for recognizing
user activities. Here, a series of recognized actions were fit into a longer time window as input for
activity recognition. The user activities recognized were shopping, taking bus and moving by walking.
The authors trained separate HMMs for action and activity recognition.

Widhalm et al. [32] proposed a two-stage classification technique that used a randomized ensemble
of classifiers combined with a HMM in order to detect eight types of transport mode (i.e., bus, car,
bike, tram, train, subway, walk, and motorcycle). They trained an ensemble of one hundred one-level
decision trees with eight leaf nodes corresponding to the eight distinct modes of transport followed by
a discrete HMM.

Han et al. [33] proposed a hierarchical activity recognition framework that first performed
classification based on the current GPS data to see whether the GPS data matched one of the locations
in the registered location list. If the GPS data matched one of the location in the registered location list,
the user activity was recognized based on the GPS information alone or using other multimodal sensor
data such as accelerometer and gyroscope data. If the GPS data did not match any of the location in
the registered list, multimodal sensor data was used to identify user action. They used adaptive naive
Bayes algorithm for activity recognition.

Hsu et al. [34] proposed a two-phase activity recognition using SVM to overcome the variance of
smartphone sensor signals collected via different positions and orientations of the smartphone. In the
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first phase, the signals from the gyroscope were used to determine the position of the smartphone.
Here, they defined three position types: the front pocket of the pants; the back pocket of the pants;
and the shirt pocket, the backpack, the messenger bag, or the shoulder bag. Once the position type
was recognized, the activity type was recognized in the second phase. They constructed three activity
classifiers that corresponded to each of the three position types. For both phases of two-phase activity
recognition, SVM was used.

Filios et al. [35] proposed a hierarchical activity detection model which consisted of a two-layer
system that first detected motion and the surrounding environment (e.g., being in a coffee shop,
restaurant, supermarket, moving car, etc.) using accelerometer data and microphone signals, and then
detected more complex activities such as shopping, waiting in a queue, cleaning with a vacuum
cleaner, washing dishes, watching TV, etc. based on the detected motion and environment information.
They evaluated three decision tree-based algorithms and one k-nearest neighbor algorithm for
recognizing motion, environment and complex activity.

Ronao and Cho [36] proposed a two-stage method that used two-level Continuous HMMs
(CHMMs); the first-level CHMMs classified stationary and moving activities, and the second-level
CHMMs classified more fine-grained activities, i.e., walking, walking upstairs, and walking
downstairs for moving activities, and sitting, standing, and laying activities for stationary activities.
They constructed a total of eight CHMMs, two CHMMs at the first-level and six CHMMs at the
second-level, and chose different feature subsets when constructing different level CHMMs.

Our approach is similar to [36] in that we perform a two-stage classification where we classify
abstract activities (e.g., dynamic and static) first and then classify individual activities (e.g., walking,
standing, etc.) next. However, we build one binary 1D CNN model at the first stage and two multi-class
1D CNN models at the second stage. More importantly, we introduce test data sharpening in between
the two-stage HAR, selectively at the prediction phase only, and this differentiates our approach from
the rest of the two-stage HAR approaches.

2.3. Feature Processing

A typical activity recognition process comprises the stages for data acquisition,
signal preprocessing and segmentation, feature extraction and selection, training, and classification [37].
The collected sensor signals usually contain noise that require filtering before being processed
for HAR. Vision-based HAR systems also focused on feature extraction to remove noise from given
data [38]. As a result, various preprocessing methods were introduced. For example, Khan et al. [30]
incorporated a three-point moving average filter to remove signal outliers. Kozina et al. [15] used
band-pass filter to eliminate both low-frequency acceleration that captured gravity component and
high-frequency signals generated by noise. In contrast, Suarez et al. [39] utilized a low-pass filter to
split the acceleration data into low- and a high-frequency components; these components were then
used with the raw accelerometer data to increase activity recognition accuracy.

After the raw signals were processed and filtered, the filtered signals were often segmented
using a fixed-size window, with or without the overlap of signals, to generate time series HAR data.
From the segmented time series data, additional features were generated; signal characteristics such as
time-domain and frequency-domain features were extensively utilized in HAR [40]. Such time-domain
features include various statistical metrics such as mean, variance, standard deviation, etc.,
and envelope metrics such as median, maximum, minimum, range, etc. [41]. The frequency-domain
features were computed using discrete Fourier transform (DFT) [16], discrete cosine transform
(DCT) [17], discrete wavelet transform [42], spatio-temporal features [43], etc. Some frequency-domain
features include peak frequency [41], power spectral density (PSD) [44], entropy [2], etc. A detailed
overview of HAR preprocessing techniques is given in [41].

A typical HAR process usually applies feature processing on the entire dataset, i.e., both on the
train and test data. To the best of our knowledge, there have been no research that have investigated
the effect of feature processing solely on the test data. Most feature processing techniques have focused
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on the removal of noise and signal outliers from the activity signal or on the generation of time
and frequency domain features. Almost no research, to our understanding, have applied test data
sharpening during the prediction phase to improve activity recognition. In this respect, our approach of
applying test data sharpening is novel and is worth the investigation.

With regard to signal sharpening, a technique called unsharp masking, which adds a
high-pass filtered, scaled version of an image onto image itself has been frequently used in the
image processing domain to improve visual appearance. Although this technique was seldom
used in HAR, we investigate the effect of applying unsharp masking to activity signal. Many
works on unsharp masking focus on enhancing the edge and detail of an image. For example,
Polesel et al. [45] proposed an adaptive filter that controls the contribution of the sharpening path such
that details are enhanced in high detail areas and little or no image sharpening occurs in smooth areas.
Deng [46] proposed a generalized unsharp masking algorithm that allows users to adjust the two
parameters to control the contrast and sharpness of the given image. Recently, Ye and Ma [47] proposed
blurriness-guided adaptive unsharp masking method that incorporates the blurriness information
into the enhancement process. Most works base their methods on the classic linear unsharp masking
technique where image detail is extracted, amplified, and added back to the original image to produce
an enhanced image. We follow this classic linear unsharp masking technique to sharpen activity signal
in our approach.

3. Divide & Conquer-based 1D CNN HAR with Test Data Sharpening

As outlined in Figure 2, our approach conducts two-stage activity recognition by introducing test
data sharpening in the middle of the two stages at prediction time. In this section, we first describe the
identification of abstract activities required for first-stage HAR, and then explain methods for test data
sharpening and selection of relevant sharpening parameter values.

3.1. Identifying Abstract Activity & Building 1st-Stage Classifier

At the outset, we tried to build a single sophisticated activity recognition classifier for
multi-class HAR, but during the research process, we discovered that for certain pairwise
activity classes, there were no misclassified instances. This finding could be easily visualized using an
activity recognition confusion matrix.

Figure 3 shows an example confusion matrix of decision tree classifier on 6-class HAR; the six
activity classes are those given in Figure 1. The rows indicate the actual activity classes and the
columns indicate the predicted classes. As shown, for some pairwise activity classes, there are no
misclassified instances; i.e., the bottom left and the top right 3 × 3 submatrices all contain zeros.
Meanwhile, the two red squares drawn over the confusion matrix contain both the correct and
misclassified instances, and these demarcated activity classes can be transformed into abstract
activity classes. The abstract activity classes are then utilized as target labels for building a binary
classifier for first-stage HAR. In the case of Figure 3 confusion matrix, we converted walk, WD, and
WU classes (Figure 3 top left) to dynamic class, and sit, stand, and lay classes (Figure 3 bottom right)
to static class. It is important to note that recognition performance of first-stage binary classifier
will determine the upper limit of the overall activity recognition accuracy since the second-stage
activity classifiers, however perfect, will not affect the initial binary classification accuracy. While the
divide and conquer approach is advantageous in that the complex (or many-class) classification
problem is reduced to multiple simple (or less-than-many-class) classification problems, the approach
requires that all classifiers reach reasonably good accuracy; a concerted effort among all simple
classifiers are needed. Hence, whether to exploit the divide and conquer approach should be decided
when at least the first-stage binary classification accuracy is reasonably high. In our experiments,
the activity recognition accuracy of two first-stage binary classifiers on two benchmark datasets
were 100%.
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Figure 3. Confusion matrix of decision tree classifier on 6-class HAR. For some pairwise activity classes,
there are no misclassified instances as indicated by the positions with zeros in the confusion matrix.

3.2. Building 2nd-Stage Classifier

Once we build a high-accuracy first-stage binary classifier, we proceed with the learning of the
second-stage individual activity recognition classifiers. The detailed design and implementation of
our second-stage 1D CNN models are described in Section 4. Once we finish building the best possible
classifiers for the second-stage individual activity recognition, we move to test data sharpening.

3.3. Sharpening Test Data

Figure 4 shows the overall signal sharpening process applied to single test data. The train and test
data for HAR are constructed in various formats, but usually they are formatted either as activity signal
time series data in the form of matrices or as activity signal feature vectors. In the case of Figure 4,
we assume that the test data is defined as an m-dimensional feature vector carrying various activity
signal features. The test data sharpening is proceeded as follows: Firstly, a Gaussian filter is applied to
the test data to remove minor features (see Figure 4 1© and Equation (1) below). The Gaussian filter
has the effect of attenuating high frequency signals, and the degree of attenuation is determined by
the σ parameter (Figure 4 2©). As a result, a denoised test data can be obtained. Next, the denoised
vector is subtracted from the original test data vector to produce a fine detail vector (Figure 4 3© and
Equation (2)). The fine detail vector is then scaled by some scaling factor α (Figure 4 4©) before being
added to the original test data vector (Figure 4 5© and Equation (3)) to produce a sharpened test data.

Figure 4. Test data sharpening using a Gaussian filter. Test data is first denoised using a Gaussian
filter ( 1©) using the σ parameter ( 2©), and the denoised result is subtracted from the test data to obtain
sharped details ( 3©). The sharpened details are then amplified to some degree using α parameter ( 4©)
and added to the original test data to obtain sharpened test data ( 5©).

Denoised(1, m) = GaussianFilter(TestData(1, m), σ) (1)

Detailed(1, m) = TestData(1, m)− Denoised(1, m) (2)

Sharpened(1, m) = TestData(1, m) + α × Detailed(1, m) (3)

Our idea of test data sharpening is borrowed from a popular signal enhancement technique
called unsharp masking used in image processing for sharpening images. The visual appearance of
an image may be improved significantly by emphasizing its high frequency contents to enhance the
edge and detail of the image [45]. Often the classic linear unsharp masking technique is employed to
enhance such details. The classic linear unsharp masking first generates a coarse image by removing
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the fine details from the image using a denoising filter, and then subtracts the coarse image from
the original image to obtain fine details. Then the technique adds the fine details, often scaled by
some factor first, to the original image to create a sharpened image. We have repurposed this unsharp
masking technique to HAR domain and applied it to test data sharpening. Figure 5 shows a sample
walking activity data before sharpening (blue line) and after sharpening (orange line).

Figure 5. A sample activity data describing walking activity. Each number in the horizontal axis
indicates various statistical features such as mean, standard deviation, minimum and maximum
calculated from a fixed length time series data collected from multiple sensors. The blue line indicates
data before sharpening and the orange line indicates data after sharpening.

3.4. Selecting Sigma & Alpha Values

As previously explained, the degree of test data sharpening is determined by the two parameters,
σ (Figure 4 2©) and α (Figure 4 4©). Since the amount of test data sharpening affects the second-stage
activity recognition accuracy, choosing a useful (σ, α) value combination is vital for successful
second-stage HAR. Here, we explain a method for systematically selecting relevant parameter values
for test data sharpening. Figure 6 displays two tables of second-stage activity recognition accuracy
using different (σ, α) value combinations on validation and test data. The bottom two rows of each
table indicate the maximum accuracy (indicated as MAX) and the average accuracy (AVG) using fixed
σ values with varying α values, and the rightmost two columns of each table indicate the maximum
accuracy (MAX) and the average accuracy (AVG) using a fixed α value with varying σ values. The cyan
colored cells in the two tables indicate the highest activity recognition accuracy achieved among the
various σ and α value (i.e., (σ, α)) combinations defined in the table. Notice that there exist multiple
(σ, α) combinations that achieve the highest activity recognition accuracy. In order to choose a single
(σ, α) combination among the numerous highest-accuracy value combinations, we find the maximum
of average accuracy (MaxAvgAcc in Figure 6) among the various average accuracies of σ and α values.
The orange and green colored cells at the bottom row and rightmost column of each table contain the
MaxAvgAcc for σ and α values.

Once we find the MaxAvgAcc, we search the cell position(s) where the two MaxAvgAccs meet;
this position is highlighted in purple in Figure 6. The purple cell in the left table has (σ = 8, α = 0.07),
and the purple cells on the right table has (σ = 5, α = [0.05, 0.06, 0.07, 0.08]). The left table contains a
final (σ = 8, α = 0.07) combinations for test data sharpening, but the right table contains multiple α

values that need to be narrowed down further. If we still have multiple (σ, α) combinations as with
the case of the right table, we calculate the average accuracy of the nearby accuracy triples either
horizontally or vertically first and then on both sides (i.e., 3 × 3 cells with the target value combination
positioned at the center).
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alpha sigma=5 sigma=6 sigma=7 sigma=8 sigma=9 MAX AVG alpha sigma=5 sigma=6 sigma=7 sigma=8 sigma=9 MAX AVG

0.00 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.00 0.96415 0.96415 0.96415 0.96415 0.96415 0.96415 0.96415 

0.01 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.01 0.96415 0.96415 0.96415 0.96415 0.96415 0.96415 0.96415 

0.02 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.02 0.96415 0.96415 0.96415 0.96415 0.96415 0.96415 0.96415 

0.03 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.03 0.96415 0.96415 0.96415 0.96543 0.96543 0.96543 0.96466 

0.04 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.04 0.96415 0.96543 0.96543 0.96543 0.96543 0.96543 0.96517 

0.05 0.96791 0.96791 0.96791 0.96919 0.96919 0.96919 0.96842 0.05 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 

0.06 0.96791 0.96791 0.96919 0.96919 0.96919 0.96919 0.96868 0.06 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 

0.07 0.96791 0.96919 0.96919 0.96919 0.96919 0.96919 0.96893 0.07 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 

0.08 0.96662 0.96791 0.96791 0.96919 0.96919 0.96919 0.96816 0.08 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 0.96543 

0.09 0.96662 0.96791 0.96791 0.96791 0.96919 0.96919 0.96791 0.09 0.96543 0.96543 0.96543 0.96415 0.96415 0.96543 0.96492 

0.10 0.96662 0.96791 0.96791 0.96791 0.96791 0.96791 0.96765 0.10 0.96543 0.96543 0.96543 0.96415 0.96415 0.96543 0.96492 

0.11 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.11 0.96543 0.96543 0.96415 0.96415 0.96415 0.96543 0.96466 

0.12 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.12 0.96543 0.96543 0.96415 0.96415 0.96415 0.96543 0.96466 

0.13 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.13 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.14 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.14 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.15 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.15 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.16 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.16 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.17 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.17 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.18 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.18 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.19 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.19 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 

0.20 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.96791 0.20 0.96543 0.96415 0.96415 0.96415 0.96415 0.96543 0.96440 
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0.26 0.96791 0.96791 0.96791 0.96662 0.96534 0.96791 0.96714 0.26 0.96543 0.96415 0.96287 0.96287 0.96287 0.96543 0.96364 
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0.28 0.96791 0.96662 0.96662 0.96662 0.96534 0.96791 0.96662 0.28 0.96543 0.96415 0.96287 0.96159 0.96159 0.96543 0.96312 
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AVG 0.96774 0.96782 0.96782 0.96787 0.96749 MaxAvgAcc AVG 0.96518 0.96444 0.96415 0.96390 0.96390 MaxAvgAcc

Figure 6. Validation/test data HAR accuracy using different (σ, α) combinations. The cyan colored
cells indicate the highest activity recognition accuracy. Maximum of average accuracy (MaxAvgAcc) is
searched for various average accuracies of σ and α values in order to find the suitable (σ, α) parameter
values (orange and green colored cells). Assuming that the left table is the HAR accuracy of validation
data, the purple cell where the two MaxAvgAccs meet identifies the suitable values (σ = 8, α = 0.07).
Assuming that the right table is the HAR accuracy of test data, the yellow cell at (σ = 8, α = 0.07)
achieves the highest accuracy of 96.543%.

Although test data sharpening is performed during prediction time, (σ, α) values for test data
sharpening is determined using the validation data during the classifier learning phase after all
two-stage classifiers are learned. Assuming that the left table in Figure 6 is the activity recognition
result using the validation data, (σ = 8, α = 0.07) is determined as the final test data sharpening
parameter values. If we suppose the right table to contain test data HAR performance with varying
degrees of test data sharpening, using the (σ = 8, α = 0.07) pair achieves the highest activity
recognition accuracy of 96.543% (see right table yellow cell). On the other hand, if we assume this
time that the right table is the validation data and the left table is the result of sharpened test data,
the three value combinations are selected (purple cells with bold font based on horizontal averaging
of nearby triples), but when we apply any of these value combinations on test data sharpening
(left table yellow cells), we obtain the test data accuracies of 96.791% or 96.662%. In this case,
we fail to increase the baseline test data accuracy, which is given at the top row of left table where
α = 0 (refer to Equation (3)). The effectiveness of the test data enhancement depends on the
representativeness of the validation data, but incorporating a broader range of σ and α values will help
in choosing better parameter value combinations. In the case of the failed example just mentioned,
if we expand our σ range to encompass 3 to 12, the candidate value combinations are reduced to
(σ = 5, α = [0.05, 0.06, 0.07]), and we can remove (σ = 5, α = 0.08), which leads to worse accuracy.

4. Evaluation Experiments

We used two public HAR datasets [8,10] in the evaluation experiments to compare our approach
to other state of the art approaches and to our 1D CNN with no test data sharpening approach.
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4.1. Benchmark Datasets

4.1.1. OPPORTUNITY Activity Recognition Dataset

The OPPORTUNITY Activity Recognition Dataset (OPPORTUNITY dataset) [8] (https://arch
ive.ics.uci.edu/ml/datasets/opportunity+activity+recognition) comprises body movement signals
of four human subjects collected at 30Hz using body-worn sensors attached to various positions
of the body. Each human subject performed five data recording sessions where they conducted
naturalistic activities of daily living (ADL) and one drill session where they conducted a predefined
set of activities instructed by the data collectors. The collected activity classes consisted of four basic
activities, i.e., stand, sit, walk, and lie, and seventeen mid-level gestures such as opening and closing of the
fridge, etc. In our experiment, we focused on recognizing the four basic activities.

We used the same test data employed in the OPPORTUNITY challenge as described in [48]
(Task A: multimodal activity recognition: modes of locomotion) to evaluate our approach, but used
smaller train data and larger validation data to train the model and to select the test data sharpening
parameters. Note that we did not use any of the drill session data since the drill data contained
artificially staged activity data. As a result, we trained our 1D CNN models using ADL1, ADL2,
and ADL3 for Subject 1 and ADL1 and ADL2 for Subjects 2 and 3; we validated our model using ADL4
and ADL5 for Subject 1 and ADL3 for Subjects 2 and 3; we tested our model on ADL4 and ADL5 for
Subjects 2 and 3. Following the OPPORTUNITY challenge’s experimental setup, we set the length of
the sliding window as 500 ms with a step size of 250 ms. Each data contained 15 sample recordings.
Prior to sampling, we grouped data according to same activity class labels so that no transition of
activities were present in any of the sample recordings.

Although the OPPORTUNITY dataset contained rich sensor data collected using a total of
nineteen sensors, we divided the sensors into lower and upper body sensors, and experimented with
these two groups sensors. For the sensor data located at the lower part of human body, we selected
three triaxial accelerometer placed at the upper (RKN^) and lower (RKN_) right knee and the right
hip (HIP), and two inertial measurement units placed at the right shoe (R-SHOE) and left shoe
(L-SHOE) as illustrated in Figure 7 (left). For the sensor data located at the upper part of human body,
we selected six triaxial accelerometers located at the right upper arm (RUA^), right upper arm (RUA_),
left upper arm (LUA^), left upper arm (LUA_), left wrist (LWR), and left hand (LH), and four inertial
measurement units located at the right upper arm (RUA), right lower arm (RLA), left upper arm
(LUA), and left lower arm (LLA) as illustrated in Figure 7 (right). The OPPORTUNITY dataset also
included sensor data from the right wrist (RWR) and right hand (RH), but we did not include these
two sensor data as upper body sensor data due to large number of missing values. We compared the
HAR performance of upper and lower body sensors on the four basic activities, but we conjectured
that the lower body sensors would yield better performance since the activities we need to predict
were more influenced by the lower body movement. For both types of sensor data, we computed
the mean, standard deviation, maximum, and minimum values of each of the 15 sample recordings
and used these four measurements as the activity features instead of the raw 15-sample time series
data. As a result, a total of 156 and 216 features were defined for lower and upper body sensor data
respectively. The triaxial accelerometer records movement in the x, y, and z axes, so there were a total of nine
measurements for the three accelerometers that we selected for the lower body sensors. Also, we used 15
measurements (excluding the compass) for each of the inertial measurement units, so the two inertial
measurement units on the right and left shoe consisted a total of 30 measurements. Adding these together,
there were 39 measurements. Instead of using the 15 sample recordings for each measurement, we used
the four statistical measurements that we selected; consequently, 39 × 4 = 156. Similar calculations
were performed for the upper body sensors to yield 216 features. Table 1 summarizes the class label
constitution of the OPPORTUNITY dataset experiment. The same class label constitution applies to
both the lower and upper body sensor data. Notice that we have introduced two posture classes,
up and down, as abstract classes for the divide and conquer approach; these abstract classes indicate

https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
https://archive.ics.uci.edu/ml/datasets/opportunity+activity+recognition
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whether a person is in a raised position or in a lowered position. Using the activity class constitution
in Table 1, we first learned a binary first-stage classifier that recognized abstract activities and then
learned two binary classifiers that recognized individual activities.

Figure 7. Lower (left) and upper (right) body sensors selected for OPPORTUNITY dataset experiment.
For the lower body sensors, we chose three triaxial accelerometers (marked in blue) located at the right
hip (HIP), right knee (RKN^), and right knee (RKN_), and three inertial measurement units (marked in
red) located at the right (R-SHOE) and left shoe (L-SHOE) for the experiments. For the upper body
sensors, we chose six triaxial accelerometers located at the right upper arm (RUA^), right upper arm
(RUA_), left upper arm (LUA^), left upper arm (LUA_), left wrist (LWR), and left hand (LH), and four
inertial measurement units located at the right upper arm (RUA), right lower arm (RLA), left upper
arm (LUA), and left lower arm (LLA).

Table 1. Activity class constitution and number of samples in OPPORTUNITY dataset; the same class
label constitution applied to both the lower and upper body sensor data.

Class Up Down TotalDivision Stand Walk Sit Lie

Train 13,250 7403 6874 1411 28,938
Validate 5964 3216 3766 663 13,609

Test 5326 3885 3460 793 13,464

4.1.2. UCI HAR Dataset

The UCI HAR dataset [10] (https://archive.ics.uci.edu/ml/datasets/human+activity+recogniti
on+using+smartphones) contains sensor signal recordings of thirty human subjects performing
six activities, i.e., walking, walking upstairs (WU), walking downstairs (WD), sitting, standing, and laying,
while carrying a waist-mounted smartphone with embedded inertial sensors. Using the smartphone’s
embedded accelerometer and gyroscope, the triaxial linear acceleration and triaxial angular velocity
were collected at 50 Hz. The collected signals were preprocessed by applying noise filters and then
sampled in fixed-width sliding windows of 2.56 s and 50% overlap which resulted in 128 readings
per window. A 561-feature vector consisting of time and frequency domain variables, which compute
various measurements such as mean, standard deviation, minimum, maximum, etc. of the 128 readings
of each sensor’s x, y, and z axes, were provided. We used all 561 features in the dataset and used the
given train and test split to evaluate our approach. 20% of the train data was randomly selected as
validation data. Table 2 summarizes the class label constitution of the UCI HAR dataset.

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones


Sensors 2018, 18, 1055 12 of 24

Table 2. Activity class constitution and number of samples in UCI HAR dataset.

Class Dynamic Static Total
Division Walking WU* WD* Sitting Standing Laying

Train 1226 1073 986 1286 1374 1407 7352
Test 496 471 420 491 532 537 2947

WU*: Walking Upstairs, WD*: Walking Downstairs.

Here, we also split the dataset into two abstract activities, i.e., dynamic and static. Using the class
constitution in Table 2, we hierarchically constructed one binary classifier for recognizing abstract
activities and two 3-class classifiers for recognizing individual activities.

4.2. 1D CNNs: Design, Method, & Network Parameters

A total of five 1D CNN models, three for OPPORTUNITY dataset and two for UCI HAR dataset
were constructed using open source machine learning software libraries (TensorFlow: https://www.te
nsorflow.org/, Keras: https://keras.io/) in the experiments.

4.2.1. OPPORTUNITY Models

For the OPPORTUNITY dataset experiment, we constructed one binary 1D CNN classifier for
the first stage HAR and two binary 1D CNN classifiers for the second-stage HAR. The two second
stage models were identical in design and network parameter configurations. We first constructed
the first-stage model by stacking five consecutive convolutional layers (Figure 8) followed by a
fully-connected, i.e., a dense layer with a 60% dropout rate and a softmax layer. A single window size
of 2 and stride size of 1 was set to perform convolutions in all convolutional layers. We introduced
early-stopping to prevent overfitting of the first-stage model.

Figure 8. First-stage 1D CNN for classifying abstract activities, i.e., Up and Down, for OPPORTUNITY dataset.

For the two identical second-stage models (Figure 9), one convolutional layer was followed by
a max-pooling layer, followed by a second convolutional layer. A window size of 3 and stride size
of 1 were applied to both convolution and max-pooling layers. Like the first stage model, a dense
layer was positioned at the end of the network followed by the softmax layer, and 33% dropout
rate was applied to the dense layer. The epoch and training batch size of the three models were set
identically as 5 and 32 respectively. For all three models, Rectified Linear Unit (ReLU) was chosen as
the activation function for all convolutional layers. The Mean Squared Error (MSE) was chosen as the
loss function and the Adaptive Moment Estimation (ADAM) optimizer [49] was used in optimization
for all models. The learning rate of the optimizer was set at 0.00006 and 0.00001 for the first- and
second-stage model respectively.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/
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Figure 9. Second-stage 1D CNN for classifying individual activities for OPPORTUNITY dataset.
Two identically designed 1D CNNs were constructed to distinguish Stand from Walk and Sit from Lie.

4.2.2. UCI HAR Models

For the UCI HAR dataset experiment, we first built a first-stage binary decision tree classifier
for recognizing dynamic and static activites, which achieved 100% activity recognition accuracy.
An open source machine learning software library, scikit-learn (http://scikit-learn.org), was used to
construct the decision tree classifier [50]. We then built two 3-class 1D CNN models for the second-stage
individual activity recognition (Figures 10 and 11).

Figure 10. Second-stage 1D CNN for classifying dynamic activity, i.e., Walk, WU, and WD, for UCI
HAR dataset.

Figure 11. Second-stage 1D CNN for classifying static acitivity, i.e., Sit, Stand, and Lay, for UCI HAR dataset.

Figures 10 and 11 show the two second-stage 3-class 1D CNNs built using UCI HAR dataset.
Both models used a sliding window size of 3 for convolution. While the dynamic activity model used

http://scikit-learn.org
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max-pooling after convolution, the static activity model used three consecutive convolutions and no
max-pooling. The max-pooling stride size was set equal to the window size of the convolution for
the dynamic model. Both the dynamic and static models included a dense layer with 50% dropout
rate and a softmax layer at the end of the network. We set the epoch size at 50 and 100 for the
dynamic and static activity models respectively and saved the best models based on the validation loss.
The MSE was chosen as the loss function, ADAM optimizer was used for optimization, the training
batch size was set at 32 samples for all models, and ReLU was chosen as the activation function in all
convolutional layers. The learning rate of the optimizer was set at 0.0004 and 0.0001 for the dynamic
and static model respectively.

4.3. Test Data Sharpening

As explained in Section 3.4, the selection of σ and α values for test data sharpening was performed
using the validation data. As the range and intervals of σ and α values affected the final (σ, α) value
combination, we tested with various value ranges and intervals using the validation data. Two things
must be noted: firstly, because the validation accuracy of both dynamic and static activity models
for UCI HAR dataset were close to 100%, it was difficult to select (σ, α) values since the validation
accuracy using the various parameter combinations resulted in either no improvement or deterioration.
To remedy this situation, we exploited dynamic and static test data in the UCI HAR dataset by splitting
the respective test data in half, and used the first-half of the test data as the validation data to select
the (σ, α) values for the second-half of the test data and vice versa. Figure 6 in Section 3.4 is the actual
result of the parameter selection using the static activity data in the UCI HAR dataset; the left table in
Figure 6 corresponds to the result using the first-half of static test data and the right table corresponds
to the result of the second-half of static test data.

Secondly, for the OPPORTUNITY dataset, for both the lower and upper body sensor data, we only
performed test data sharpening on the ‘up’ activity recognition process, i.e., the classification of
stand and walk, since the ‘down’ activity (i.e., sit and lie) recognition process already achieved 100%
recognition accuracy using the raw, unsharpened test data. Table 3 displays the final (σ, α) combinations
used in the experiments. For applying Gaussian filtering for test data sharpening, we used an open
source multi-dimensional image processing software package. (https://docs.scipy.org/doc/scipy-0.1
9.1/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter)

Table 3. Test data sharpening parameter values used in evaluation experiments.

Dataset OPPORTUNITY UCI HAR
Model Up (lower body) Up (upper body) Dynamic1 Dynamic2 Static1 Static2

σ 3 3 8 7 5 8
α 13 12 2.40 1.95 0.06 0.07

4.4. Baseline Methods & Evaluation Metric

We first compare our method’s HAR performance with the following state of the art approaches:
using the lower body OPPORTUNITY dataset, we compare our approach to deep convolutional
LSTM networks proposed by Ordóñez and Roggen [28]; using the UCI HAR dataset, we compare our
approach to four other approaches, i.e., one using SVM [10] (UCI HAR dataset owner), one using a
two-dimensional activity image-based DCNN (DCNN+) [12], one using a fast Fourier transform-based
DCNN (FFT+Convnet) [14], and one using a Three-Stage Continuous HMM (TSCHMM) [13]. We refer
to our 1D CNN model with test data sharpening as CNN+Sharpen in the results section. In the case of
OPPORTUNITY dataset, we additionally present the result of upper body sensor data, the effect of test
data sharpening on end-to-end (i.e., 4-class) 1D CNN model using lower body data, and the result of test
data sharpening on other machine learning techniques such as logistic regression and random forest.
We also compare the performance between lower and upper body sensor data, and between raw time

https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
https://docs.scipy.org/doc/scipy-0.19.1/reference/generated/scipy.ndimage.gaussian_filter.html#scipy.ndimage.gaussian_filter
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series data and statistical feature data using the lower body data. Finally, we compare our test data
sharpening approach with the initial approach that does not use test data sharpening. We use activity
recognition accuracy and F1 score as evaluation measures. The confusion matrices of our results are
provided for those cases where the results are compared to the existing approaches.

4.5. Performance Comparison

4.5.1. OPPORTUNITY Dataset Result

Table 4 compares the activity recognition F1 score (defined in [28]) of our approach using lower
body OPPORTUNITY dataset with Ordóñez and Roggen [28]’s approach. We see that our approach of
94.2% written in bold outperforms Ordóñez and Roggen [28]’s. Table 5 shows the confusion matrix
of our approach; note that test data sharpening was not employed in the ‘down’ activity (i.e., sit and
lie) recognition since the default 1D CNN model correctly classified all test data. The overall accuracy
was 94.27%.

Table 4. F1 score comparison with state of the art approach on lower body OPPORTUNITY dataset.
The number in bold indicates the highest F1 score.

Dataset Ordóñez and Roggen [28] (%) Ours (%)
Baseline CNN DeepConvLSTM CNN+Sharpen

OPPORTUNITY 91.2 93.0 94.2

Table 5. Confusion matrix of our CNN+Sharpen approach using lower body OPPORTUNITY dataset.
The bold numbers in diagonal indicate correctly classified instances; the bottom right bold number
indicates the overall accuracy.

Predicted Class Recall (%)Stand Walk Sit∗ Lie∗

Actual Class

Stand 5,210 116 0 0 97.82
Walk 655 3,230 0 0 83.14
Sit∗ 0 0 3,460 0 100.00
Lie∗ 0 0 0 793 100.00

Precision (%) 88.83 96.53 100.00 100.00 94.27

* Test data enhancement was NOT applied to these classes.

Figure 12 compares the ‘up’ activity (i.e., stand and walk) recognition using different (σ, α) values
on the lower body validation (left) and test data (right). The plot where α = 0 indicates the activity
recognition accuracy with no test data sharpening. We see that for both the validation and test data, all
(σ, α) combinations given in the two graphs outperform the pre-test data sharpening model (α = 0).
Moreover, the relative position of the different line graphs having different σ values exhibit similar
relative positions in the two graphs.

Figure 13 compares the ‘up’ activity (i.e., stand and walk) recognition using different (σ, α)
values on the upper body validation (left) and test data (right). The test data sharpening parameter
values were determined as (σ = 3, α = 12) using the validation data, and the final accuracy of
test data was determined as 83.66%; this accuracy is an improvement from the initial 80.38% with
no test data sharpening. The 2-class accuracy of upper body sensor data (Figure 13), however,
is much lower than the lower body sensor data of 91.63% (Figure 12). Figure 14 displays three
unsuccessful test data sharpening cases. Test data sharpening is not effective for 4-class 1D CNN
models (Figure 14a) and other machine learning techniques such as logistic regression (Figure 14b)
and random forest (Figure 14c).
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Figure 12. Stand vs. walk recognition accuracy using different (σ, α) combinations on lower body
OPPORTUNITY dataset (left: validation data, right: test data).

Figure 13. Stand vs. walk recognition accuracy using different (σ, α) combinations on upper body
OPPORTUNITY dataset (left: validation data, right: test data).

(a) End-to-end (4-class) 1D CNN model accuracy.

(b) 2-class (up position) logistic regression accuracy. (c) 2-class (up position) random forest accuracy.

Figure 14. Unsuccessful test data sharpening cases using lower body data (left: validation, right: test).
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We performed additional experiments that compared various models constructed using upper
and lower body sensor data. Figure 15 compares the two sensor types’ performances on 4-class and
2-class HAR problems. Overall, lower body sensor data (red bars) returned better results that upper
body sensor data (blue bars). We also compared the performance of various models built using raw
time series data and statistical feature data. Figure 16 compares raw time series data with statistical
feature data using three machine learning classifiers, logistic regression, random forest, and 1D CNN.
Overall, statistical feature data (red bars) returned better results than raw time series data (blue bars).

Figure 15. Comparison of upper body (blue) and lower body (red) sensor data performance without
test data sharpening. Three machine learning techniques, logistic regression, random forest, and
1D CNN, are compared on 4-class and various 2-class problems.

Figure 16. Comparison of raw time series (blue) and statistical feature (red) data performance without
test data sharpening. Three machine learning classifiers, logistic regression, random forest, and 1D
CNN, are compared on 4-class and various 2-class problems.

4.5.2. UCI HAR Dataset Result

Table 6 compares activity recognition accuracy of our approach against other state of the art
approaches using UCI HAR dataset. We see that our approach of 97.62% accuracy written in bold
outperforms all other approaches. Table 7 shows a confusion matrix of our approach. We see
that dynamic activity recognition model performs better than the static activity recognition model.
The differentiation of sit and stand classes was the most difficult as evidenced by the relatively high
number of the misclassified instances (14 and 37). Figures 17 and 18 compare the dynamic and
static activity recognition accuracy using various (σ, α) values. The final accuracy obtained from
each graph was: 98.84% (Figure 17 left), 98.56% (Figure 17 right), 96.79% (Figure 18 left), and 96.54%
(Figure 18 right).
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Table 6. Comparison with the state of the art approaches using UCI HAR dataset. The number in bold
indicates the highest accuracy.

Approaches Accuracy (%)
SVM [10] 96.37

DCNN+ [12] 97.59
FFT+Convnet [14] 95.75

TSCHMM [13] 96.74
CNN+Sharpen (Ours) 97.62

Figure 17. Dynamic activity recognition accuracy using various (σ, α) combinations on UCI HAR
dataset (left: dynamic test data1, right: dynamic test data2).

Figure 18. Static activity recognition accuracy using various (σ, α) combinations on UCI HAR dataset
(left: static test data1, right: static test data2).
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Table 7. Confusion matrix of our CNN+Sharpen approach on UCI HAR dataset. The bold numbers
in diagonal indicate correctly classified instances; the bottom right bold number indicates the overall
accuracy.

Predicted Class Recall (%)Walk WU WD Sit Stand Lay
A

ct
ua

lC
la

ss

Walk 491 2 3 0 0 0 98.99
WU 3 464 4 0 0 0 98.51
WD 1 5 414 0 0 0 98.57
Sit 0 0 0 454 37 0 92.46

Stand 0 0 0 14 518 0 97.37
Lay 0 0 0 1 0 536 99.81

Precision (%) 99.19 98.51 98.34 96.80 93.33 100.00 97.62

4.5.3. With & Without Test Data Sharpening

Table 8 compares the activity recognition performance within our approaches where test data
sharpening was not performed (1D CNN only) and was performed (1D CNN+Sharpen). We see that
test data sharpening works favorably in all three cases albeit with different rates of improvement.
The increase in accuracy was more observed in models containing more active movements (i.e., Static
< Up < Dynamic).

Table 8. Comparison of activity recognition accuracy without (1D CNN only) and with test data
sharpening (1D CNN+Sharpen). The bold numbers indicate the highest accuracy for each model.

Dataset (Model) Class 1D CNN Only (%) 1D CNN + Sharpen (%)

OPPORTUNITY (Up) 2 91.28 91.63
UCI HAR (Dynamic) 3 97.98 98.70

UCI HAR (Static) 3 96.60 96.67

5. Discussion

5.1. Parameter Adjustment

The activity recognition accuracy of our approach ultimately depends on the two parameters for
test data sharpening; Gaussian filter’s σ parameter, which adjusts the level of test data smoothing,
and the scaling factor α used for controlling the level of fine detail, which is added to the original
test data. Not enough smoothing of test data (e.g., low values such as σ = 1, 2) can lead to failure
in extracting enough fine details in the subsequent step, and consequently, the activity recognition
accuracy may worsen after test data sharpening.

Figure 19 illustrates this worsening effect on the UCI HAR dataset; the dynamic (left) and static
(right) activity recognition accuracy decreases when test data sharpening is applied with σ = 1, 2.
Note that ‘d1_sigma=1’ in Figure 19a, for example, indicates the activity recognition accuracy of the
first half of the dynamic test data using σ = 1. The plots at α = 0 indicate the baseline accuracy
with no test data sharpening. We see that using low σ values for test data sharpening causes gradual
deterioration of accuracy as the α value, i.e., the scaling factor, increases.
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(a) Dynamic activity accuracy (b) Static activity accuracy

Figure 19. Dynamic (a) and static (b) activity recognition result using σ = 1, 2 on UCI HAR dataset.

As previously mentioned, the success of our approach depends on the selection of the ideal
(σ, α) values for test data sharpening, and this depends strongly on how much the validation data
is representative of test data. As such, one strategy of finding a better (σ, α) combination is by
procuring sufficient amount of validation data. Recall that we did this for OPPORTUNITY dataset and
allocated much more validation data compared to other approaches. Another strategy for selecting
better parameter values is choosing effective value ranges and intervals for σ and α parameters.
Defining smaller value intervals is better than defining large intervals for both σ and α, and the
value ranges of the two parameters should include the peak accuracy to exhaustively cover the
promising parameter value candidates. Most importantly, exploiting the divide and conquer approach,
whenever possible, will much aid in better selecting the effective (σ, α) values since adjusting the value
that works for many activity classes is more difficult than adjusting the value for few classes.

Although deep learning models prefer large data, in this paper we returned to the basics and
carefully analyzed the quality of data. Recall that in the case of OPPORTUNITY dataset, only a small
number of sensors (i.e., the lower body sensors) were selected in our experiments, and the train data
for learning activity models were also selectively used (i.e., only ADL data and no drill data were used).
Even though more features generally add more information to the model, and more data provide more
cases for learning a better HAR model, we chose only those features and data that we thought were
relevant and of safe quality, and this strategy paid off.

The main advantage of our approach is that the candidate (σ, α) combinations, which can increase
the activity recognition accuracy, are many. We were able to confirm this in Figure 12; the recognition
accuracy plateaus were formed above the baseline (no sharpening) model across many σ and α values.
On the other hand, the shortcoming of our approach is that if the HAR performance of the validation
data is saturated, i.e., close to 100%, then the selection of useful (σ, α) becomes difficult. This occurred
during the experiments with UCI HAR dataset, and we troubleshooted the situation by splitting the
test data in half. Another limitation is that finding the correct (σ, α) becomes difficult if the validation
data is not representative of test data. To tackle this problem, we plan to investigate the effect of
selectively sharpening the partial features of test data as opposed to sharpening of the entire features
of test data that we did in this study.

5.2. Model Complexity

The proposed two-stage HAR requires a minimum of three activity recognition models,
which generally causes the overall model complexity to increase. For example, in the case of the
three models built on the lower body OPPORTUNITY dataset (Figures 8 and 9) for classifying the
four activity classes, a total of 1,126,846 CNN parameters were trained. That is, 525,042 parameters
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for training abstract activity model and 300,902 and 300,902 parameters for training UP and DOWN
activity model respectively. In contrast, an end-to-end single 1D CNN model that classifies the same
four activities using the lower body OPPORTUNITY dataset required 528,004 CNN parameters to be
trained (Figure 15 End to End (4-class), 1D CNN, red bar). The proposed two-stage model’s complexity
was more than double the end-to-end model. The recognition accuracy of the two-stage model was
94.27% while the accuracy of the end-to-end model was 93.27%. In general, the complexity of the
two-stage model is at a disadvantage to the end-to-end model, but by replacing part of the two-stage
model with other simpler models, for example, in the case of Figure 15, replacing the DOWN activity
1D CNN model with a logistic regression classifier (Figure 15 Down Position, Logistic Regression
outputs 100% accuracy), we can reduce the complexity of the overall two-stage model. Such a strategy
can be actively employed to reduce the model complexity of the two-stage models.

6. Conclusions

We presented a divide and conquer approach for 1D CNN-based HAR using test data sharpening
for improving HAR performance. We formulated a two-stage HAR process by identifying abstract
activities using a confusion matrix. A simple test data sharpening method using Gaussian filter
generated a broad range of possible activity recognition accuracy improvements. Our divide and
conquer 1D CNN approach was meaningful in both building a better HAR model and selecting useful
(σ, α) value for effective test data sharpening. Our method is simple and effective, and is easy to
implement once abstract activities suitable for the first-stage can be identified. In the future, we plan to
investigate feature-wise sharpening of test data and its effect on asymmetric validation and test data.
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