
sensors

Article

Positioning Locality Using Cognitive Directions
Based on Indoor Landmark Reference System

Yankun Wang 1,2, Hong Fan 1,2,*, Ruizhi Chen 1,2 ID , Huan Li 3,4, Luyao Wang 1,2, Kang Zhao 1,2

and Wu Du 1,2

1 State Key Lab for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University,
129 Luoyu Road, Wuhan 430079, China; yankun.wang@whu.edu.cn (Y.W.); ruizhi.chen@whu.edu.cn (R.C.);
wangluyao@whu.edu.cn (L.W.); kzhao@whu.edu.cn (K.Z.); d.y.wu.du@gmail.com (W.D.)

2 Collaborative Innovation Center of Geospatial Technology, Wuhan University, 129 Luoyu Road,
Wuhan 430079, China

3 State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
lihuan2016@tsinghua.edu.cn

4 Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
* Correspondence: hfan3@whu.edu.cn; Tel.: +86-186-2771-6767

Received: 17 March 2018; Accepted: 29 March 2018; Published: 31 March 2018
����������
�������

Abstract: Locality descriptions are generally communicated using reference objects and spatial relations
that reflect human spatial cognition. However, uncertainty is inevitable in locality descriptions.
Positioning locality with locality description, with a mapping mechanism between the qualitative
and quantitative data, is one of the important research issues in next-generation geographic
information sciences. Spatial relations play an important role in the uncertainty of positioning locality.
In indoor landmark reference systems, the nearest landmarks can be selected when describing
localities by using direction relations indoors. By using probability operation, we combine a set
of uncertainties, that is, near and direction relations to positioning locality. Some definitions are
proposed from cognitive and computational perspectives. We evaluate the performance of our
method through indoor cognitive experiments. Test results demonstrate that a positioning accuracy
of 3.55 m can be achieved with the semantically derived direction relationships in indoor landmark
reference systems.

Keywords: locality description; positioning locality indoors; uncertainty; spatial relations;
indoor landmark reference system

1. Introduction

Geographic information sciences (GIS) have been entering an era of information explosion.
The data-related geographic can be divided into many classes, according to their sources and format,
such as raster dataset, shape file, textual information, and voice [1]. Locality description, which is
a common form of voice, conveys considerable spatial information and can be derived from our
daily communication. The issue of dealing with the locality description information is a research hot
spot of next-generation GIS for many scholars [2–5].

Locality description reflects direct or indirect human interaction with environment directly [6].
As an external expression of cognition, the uncertainty that is associated with locality description is
inevitable [7]. Locality description generally contains spatial relationships (i.e., topological, distance,
and direction relations) and reference objects (ROs). Any feature with a name can be regarded as an
RO [8,9]. Topological relations, which convey rough information-related locality and can be refined
by distance or direction relations, are seldom used directly in locality description positioning [10].
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The distance and direction relations are usually combined to describe locality, which conveys many
clues to position locality [10].

Humans have a weak sense of direction indoors, and relative directions are used frequently in
locality description. For example, locality description indoors can be given as follows: “Object A is
in front of me, and object B is on my left”. The locality description is complex, either explicitly or
implicitly [11], especially in a landmark reference system [12] (i.e., a reference system where people
can describe his locality with one or several landmarks), in which the nearest landmark can be selected
easily to describe locality [12]. On the basis of this concept, the locality description (“Object A is in
front of me, and object B is on my left”) stated above in an indoor landmark reference system (ILRS)
implies that objects A and B are near the individual. Hence, the meaning of “Object A is in front of me,
and object B is on my left” in ILRS is the same as that of “Object A is in front of me, object B is on
my left, and they are all near to me”. This paper introduces a novel method of positioning localities
indoors by using locality description in ILRS.

Many related works in the literature provide meaningful references. The conceptual function
between the membership degree of “near” and the distance between objects is defined in [10], but no
related practical application is discussed. In computational geometry, the near relation can be
represented by Voronoi diagrams [13]. Gong [12,14] proposed a mixed-selection probability function
that was based on Euclidean distance and Voronoi stolen area to model near relations. However,
this function focused only on points and provided no further discussion about polygons. Nevertheless,
this function provided considerable inspiration for related studies. The human perception of direction,
whether absolute or relative, is closely related to angular information. As stated in [15], the membership
functions about “left of”, “right of”, “above”, and so on, are defined. They all relate to angular
information but differ in parameters. The function has been developed in accordance with different
applications [15,16].

The contributions of this work are as follows:

(1) On the basis of the complexity of locality description, we propose that people tend to select near
landmarks in ILRS when describing locality with the directions of locality description.

(2) We develop a novel membership function for polygon landmarks to model qualitative
distance relations, such as near relations.

(3) We propose the calculation of relative direction for polygon landmarks from the perspectives of
algorithm and cognition.

(4) We provide the method of positioning locality based on a joint probability function that consists
of qualitative distance and relative direction membership functions. Cognitive experiments
are conducted to evaluate the positioning accuracy. Test results demonstrate that a positioning
accuracy of 3.55 m can be achieved in a 45 m visual space.

The paper is organized as follows: Previous studies are reviewed in Section 2. The qualitative
distance and relative direction functions are given in Section 3. The method of positioning localities
is provided in Section 4. Examples are presented in Section 5, followed by a discussion in Section 6.
Conclusions are provided in Section 7.

2. Related Work

Related works on positioning locality with locality description in existing literature are briefly
presented in this section.

2.1. Locality Description

Locality description answers a “where” question. As a predominant method of human
spatial communication, locality description reflects human spatial cognition and contains a
considerable amount of vague positional information [8,17]. Guo [18] argued that locality description
contains reference objects (ROs), which refer to any named features in locality description, and
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their related spatial relations. The spatial relations in locality description play an important role in
positioning locality. Wieczorek [19] described a method to combine all the types of uncertainty into
a point radio to georeference locality description. When considering the shape of the ROs, Liu [10]
proposed a general probabilistic method for positioning locality, which can combine a set of uncertain
spatial relations (e.g., distances and directions). Zhou [20] described a conceptual model of fingerprints
from locality descriptions by landmarks to capture the concept of place in human perception.

The locality description contains at least one RO and its related spatial relation. It may also
be complex, linking different references by spatial relationships, either explicitly as “I am near object
A, and it is in front of me”, or implicitly as “Object A is in front of me”, implying “Object A is near to
me, and it is in front of me” [11,17].

2.2. Landmarks

Landmarks play a crucial role in human spatial cognition, whether as a navigational aid or a
locality description [20,21]. As the first step of spatial knowledge acquisition, landmarks, which have
attracted the interest of many researchers, play a crucial role in the acquisition and the representation
of human spatial knowledge in daily life [21–23]. In spatial cognition, landmarks represent a cluster of
objects at a high level and serve as ROs (anchor) to locate the target object (TO) [22].

The characteristics of landmarks include prominence and prototypicality [23]. Conventional work
on landmark extraction is mainly based on questionnaires, which are cumbersome and labor
intensive [24]. On the basis of the characteristics of landmarks, many scholars have used the saliency
model to extract landmarks in different scenes [21,25]. Tezuka [25] extracted small-scale landmarks
from digital documents by using a web mining approach.

The selection of landmarks also depends on context [24]. As a navigational aid, landmarks
provide orientation cues and verify route progress. Caduff [21] argued that three factors, namely,
degree of differentiation, visual access, and complexity of spatial layout, contribute to the saliency
of landmarks. They can be regarded as points in a small scale or as polygons in a large scale. Lyu [26]
proposed indicators to develop a computational indoor landmark extraction method. Zhu [27]
provided a method to compute the saliency of the POIs (points of interest), i.e., shops, to extract
indoor landmarks. When compared with navigation, all kinds of landmarks can play a greater role in
the context of locality description [20]. Therefore, the concept of landmarks is based on all kinds of
indoor POIs (i.e., shops). The related definition is provided in Section 3.1.

2.3. Spatial Relations: Distance and Direction Relationship

Spatial relations can be divided into topological, distance, and direction relations. When compared
with distance and direction relations, topological relation conveys more fuzzy positioning information,
and other relations can reflect it to some extent. Distance and direction relations in locality description
are generally used together for positioning locality.

Distance relationship can be categorized as qualitative and quantitative. Quantitative distance
is the numeric distance value in practice, which is also called semi-qualitative, because of
its uncertainty. Different uncertainties cause different probability distributions, such as formal and
normal distribution [10]. Qualitative distance (e.g., near) is used more frequently than quantitative
distance in locality description [11]. As one of the most fundamental spatial cognitive distance,
the vague spatial relation “near” attracts many scholars’ attention [28,29]. Worboys [28] conducted a
cognitive experiment in a university campus to explore how humans think about the vague spatial
relation of nearness in the context of environmental space and found that the relation between
conceptual distance and Euclidean distance conforms to a general S-curve. When considering
context factors, Yao [29] presented ordered logit regression to predict the relationship between linguistic
(e.g., near) and metric distance measures. In contrast to the cognitive aspects above, Martin [13] argued
that the near relation can be modeled with a Voronoi diagram in computational geometry. Gong [12,14]
defined a mixed probability function, which is based on Euclidean distance and Voronoi stolen
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area to address the near relation for points. Inspired by this idea, we will extend this function to
polygon landmarks. Details are presented in Section 3.1.

Direction relationship can be divided into absolute and relative directions. Absolute direction
relationships are used more frequently outdoors, where humans have a good sense of direction.
The spatial space can be divided into four or eight cones, according to different contexts [30]
(Figure 1a,b). The greater distance between an object and the center line of its cone corresponds to a
lower probability that the object owning to its direction [10] (Figure 1c). In contrast to absolute direction,
relative direction relations are frequently used in situations where humans may have a poor sense of
direction, such as indoors. Krishnapuram [15] argued that human perception between two objects is
closely related to angular information (Figure 2), and the distance between the people and the object is
unimportant. On the basis of this idea, he defined the relative direction membership function, that is,
left of, right of, above, and between. Extending the “between” relation into a medical image, Bloch [31]
defined a fuzzy notion of visibility. Many relative relations have been developed since then [32–34].

Figure 1. (a) Eight-cone based model; (b) four-cone based model; and, (c) probability distribution in
the cone-based model (the probability of point a (0.9) is greater than that of b (0.5) in the direction).

Figure 2. Illustration of relative direction (the angle that turns from right front to left front is nearly 90◦).

3. Membership Functions Based on Fuzzy Set: Near and Relative Direction

The fuzzy spatial relations, that is, near and relative direction relations used in locality
description indoors, will be introduced in this section. Their membership functions are conducted
based on fuzzy set.

3.1. Membership Function for Near Relation

Definition 1. Landmark: POI (i.e., shop) which is polygon indoors.

Any features in space can be called POI. To focus on our method, the shop data are available and
should be regarded as polygon indoor.
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For accuracy, all of the ROs in locality description are landmarks, and the positioning locality is
called TO.

Definition 2. Neighbors of RO R: A set of spatial entities (points or polygons) share a common edge of
Voronoi diagram neighbor with each other. We denote neighbors of R with neigh(R). As shown in Figure 3,
neigh(R1) = {R2, R3, R4, R5, R6, R7, R8}.

Figure 3. Neighbors of R1.

The position of R can be described by its neighbors. If a site (TO) is inserted into the space, then it
can be described and positioned by one or several of its neighbors.

Definition 3. Neighboring area of RO R: The area of R that a site (TO) can be inserted into and be described
by or neighbors R. The neighboring area of R is denoted as NeighArea(R).

The center of the circumcircle of Delaunay triangulation is the vertex of its related Voronoi.
The dual graph of Voronoi diagram corresponds to the Delaunay triangulation. For point set {p1, p2,
p3, p4, p5, p6, p7}, of which neighbors(p1) = {p2, p3, p4, p5, p6, p7}, the Delaunay triangulations for
p1 and its neighbors are formed. The neighboring area of p1 is the union of the circumcircle of its
Delaunay triangulation, whose boundary consists of circle arcs (Figure 4a). The neighboring area extends
to polygon RO R1, of which neighbors (R1) = { R2, R3, R4, R5} and NeighArea(R1) are shown as Figure 4b.

Figure 4. Neighboring area of (a) point p1 and (b) polygon R1.
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The process of obtaining neighboring area of RO R1 is as follows (Figure 5): For ROs in space,
R1 is neighbor to R2, R3, R4, R5, R6, R7, and R8. The vertices of the Voronoi polygon of R1 are v1, v2,
v3, v4, v5, v6, and v7. The vertex v1 is the common vertex of R8, R7, and R1. The nearest points of
R7, R8, and R1 to v1 are a1, a2, and a3, respectively. The circumcircle of triangulation with vertices
a1, a2, and a3 is drawn, and the arcs a2a3 between R8 and R7 are obtained. Other arcs between ROs
are obtained, and the arcs are connected with segments of ROs (e.g., segment of R7 a3a4) to form a
closed cycle.

Figure 5. Illustration of the process of obtaining NergArea(R1).

Definition 4. Stolen area: When a site (TO) is inserted into the existing Voronoi diagram of ROs, the stolen
area is the area that is part of the Voronoi region of the original RO but now belongs to the Voronoi region of
TO (Figure 6).

Figure 6. Illustration of stolen area (the area delineated by a red line is the area stolen from R7, R8,
and R9; the dashed area is the area stolen from R8).
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On the basis of Euclidean distance and the stolen area [12,14], the membership function for near
relation is defined as Pnear(i, Ri):

pnear(t, Ri) =

Ai
mind(t,Ri)

2

∑
Rk⊂neigh(t)

Ak
mind(t,Rk)

2

(1)

The equation is based on fuzzy set, which maps the near relation to the interval [0, 1] and it
reflects the degree of near relation. In Equation (1), t represents TO, t∈NeighArea(Ri), and min d(t, R)
is the squared minimum distance between t and Ri. Ak represents the area stolen from Rk by t.

3.2. Relative Direction Membership Function

When an individual turns around between two ROs, such as from front to right, the cone that
is searched relates to angular information. On the basis of this concept, we define the eight-cone
(front, left, right, back, front–left, front–right, back–left, and back–right) relative direction membership
function preldir(Θ):

preldir(Θ) =


1

π
8 +
∣∣∣π4 ×path(Θ)−Θ

∣∣∣
π
8 −a

0

∣∣∣π4 × path(Θ) −Θ
∣∣∣ ≤ a

a ≤
∣∣∣π4 × path(Θ) −Θ

∣∣∣ ≤ π
8∣∣∣π4 × path(Θ) −Θ

∣∣∣ ≥ π
8

(2)

If the space is divided into 4 cones, i.e., front, left, right, back, the Equation (2) can be revised
as Equation (3).

preldir(Θ) =


1

π
4 +
∣∣∣π2 ×path(Θ)−Θ

∣∣∣
π
4 −a

0

∣∣∣π2 × path(Θ) −Θ
∣∣∣ ≤ a

a ≤
∣∣∣π2 × path(Θ) −Θ

∣∣∣ ≤ π
4∣∣∣π2 × path(Θ) −Θ

∣∣∣ ≥ π
4

(3)

The illustration of relative direction membership functions are provided in Figure 7. The parameter Θ
is the angle turning from one direction to other direction. To get an optimistic result, the value for a
can be adjusted according to reality.

Figure 7. Illustration of relative direction membership function. (a) Equation (2); and, (b) Equation (3).

The parameter path(Θ) in Equations (2) and (3) is the minimum path between the center lines of
corresponding cones. As shown in Figure 8a,b, the visual field is divided into eight sectors (front, back,
left, right, right–front, right–back, left–front, and left–back) for Equation (2) and four sectors (front,
right, back, and left) for Equation (3). The dashed lines are the center lines of the corresponding cones.
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Each center line is assigned a number clockwise (e.g., front is assigned 1). In Figure 8a, from front (1)
to right (3), path(Θ) = 2.

Figure 8. Illustration of path(Θ). (a) eight sectors and the path(Θ) is marked with a red dashed line; and,
(b) four sectors.

4. Method

In this section, the locality positioning method is introduced and described in detail, as follows
(Algorithm 1):

Algorithm 1: Algorithm for positioning with direction and near relations

Obtain the domain where the positioning localities may be located. (Section 4.1)
Calculate the probability of relative direction in the domain, i.e., Preldir. (Section 4.2)
Calculate the probability of qualitative distance (“near”) in the domain, i.e., Pqdis. (Section 4.3)
Calculate the locality using a joint probability function which consist of qualitative distance and relative
direction function. (Section 4.3)
End for

Locality description generally contains three ROs at most, but positioning localities when the
locality description contains only one RO is impossible. Hence, we divide the situation of positioning
locality into two scenes: Scene 1, locality description with two ROs, and Scene 2, locality description
with three ROs. Some differences are noted in the method for the two scenes, and the details are
introduced in the following sections.

4.1. Domain of Positioning Localities

Definition 5. Domain of TO t: Domain where TO t may locate. We denote it with Domain(t).

A site (TO t) can be described by its neighbors. As stated in Section 3.1, the neighboring area
of R is that a site (TO t) can be a neighbor and can be described by R. If a TO t is described with Ri

(i = 1, 2, 3), then Domain(t) = ∪NeighArea(Ri). No difference is noted for Scenes 1 and 2.

4.2. Probability of Relative Direction in Domain

This section first provides a definition for the calculation of relative direction. Next, the method
of calculating the probability of relative direction in domain is proposed for two different scenes.
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Definition 6. Visible Segment: The segment boundary of a landmark is observed from a locality that is
consistent with spatial cognition (Figure 9).

Figure 9. Definition of visible segment Visible_Seg(M) (red line). The red and blue solid lines form
the boundary of reference object (RO) M from a locality t. The blue solid line is the invisible segment,
and the red solid line is the visible segment. The lines of sight are simulated by dashed lines,
of which the blue dashed line is the auxiliary line (a) whole part; (b) interrupted by adjacent RO N;
and, (c) interrupted by disjoint RO N.

The visible segment should meet not only the characteristic of visibility, but also the Pareto
principle that states that roughly 80% of effects originate from 20% of the cause, whether from an
algorithmic or spatial cognitive perspective. As shown in Figure 10, if the space is conducted into
eight cones, namely, front, back, left, right, right–front, right–back, left–front, and left–back, then the
angle of each cone is 45◦. The occupation angle of the portion of the visible segment in the cone should
be approximately 9◦.

Figure 10. Illustration of Pareto principle for visible segment; the red line of the visible segment meets
the Pareto principle.

We assume polygon (RO or Domain(t)) has a set of points, namely, A = {a1, a2, . . . , an}.
For a ∈ Visible_Seg(A), b ∈ Visible_Seg(B), and t ∈ Domain(t), we let dir(A, t, B) denote the angle
between point t to RO A and point t to RO B. The process of calculating relative direction probability,
Preldir(t), for two scenes is as follows:

Scene 1: Two ROs A and B

Preldir(t) =
Pdir(A,t,B)

∑
i∈Domain(t)

Pdir(A,i,B)
(4)
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Pdir(A, t, B) is the membership degree that maps the dir(A, t, B) by using the relative direction
membership function Equation (2).

Scene 2: Three ROs A, B, and C

Preldir(t) =
Pdir(A,t,B)Pdir(A,t,C)Pdir(B,t,C)

∑
i∈Domain(t)

Pdir(A,i,B)Pdir(A,i,C)Pdir(B,i,C)
(5)

Pdir(A, t, B), Pdir(A, t, C), and Pdir(B, t, C) are the membership degrees that map dir(A, t, B),
dir(A, t, C), and dir(B, t, C) via the relative direction membership function Equation (2).

4.3. Probability of Qualitative Distance in Domain

If TO t, t ∈Domain(t) is described with R, then the qualitative distance probability of t, and Pnear(t, R)
can be computed according to Equation (1). The process of calculating qualitative distance probability,
Pqdis(t), for two scenes is as follows:

Scene 1: Two ROs A and B

Pqdis(t) =
Pnear(t,A)Pnear(t,B)

∑
i∈Domain(t)

Pnear(i,A)Pnear(i,B)
(6)

Scene 2: Three ROs A, B, and C

Pqdis(t) =
Pnear(t,A)Pnear(t,B)Pnear(t,C)

∑
i∈Domain(t)

Pnear(i,A)Pnear(i,B)Pnear(i,C)
(7)

4.4. Positioning Localities

The positioning localities can be calculated by a joint probability, which consists of qualitative
distance probability and relative direction probability. Let P(t) represent the probability of
positioning localities, t ∈ Domain(t). The positioning locality is the maximum probability point
or the center point of the maximum probability in the domain. The equations for the two scenes are
the same, that is, Equation (8).

P(t) =
Preldir(t)Pqdis(t)

∑
i∈Domain(t)

Preldir(i)Pqdis(i)
(8)

However, two positioning localities appear for Scene 1, where an angle between two directions
that is not equal to 180◦ is unacceptable. A principle for obtaining a unique positioning locality
is defined.

Principle: We assume that the scene of locality description is as follows: “My front–right is N, and my
front–left is M”. As shown in Figure 11, eight directions from front to front–left clockwise are assigned
corresponding numbers from 1 to 8. The path(a) is the path between two direction lines. The two
positioning localities on the two sides of the line connecting the ROs are t1 and t2. Lines 8 and 2 connect
M and N to the positioning locality (i.e., t1 and t2), respectively. The unique positioning locality should
meet the requirement that the direction from front–right (2) to front–left (8) is clockwise, and path(a) = 6,
that is, t1.
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Figure 11. Illustration of the principle (the thick black lines correspond to the Domain(t); solid blue
lines represent the direction lines; and, the direction of rotation is marked with a solid red line).

5. Case Study

A cognitive experiment is conducted in a shopping market indoors with a sufficient number of
participants. The participants include males and females with different backgrounds. Their ages range
from 20 to 55, and they have normal spatial cognition.

Locality description is complex, and human tends to use different spatial relations to description
locality in different context. To simulate the realty and focus on the method, a description of context is
given and is told to the participants. Meanwhile, before locality description, the participants are told
to look around.

Description of the context: When you lose track of your friends or family, your family calls you “Where are
you?” Imaging that there is a phone can translate your locality description into localities. Then, your friends or
family can find you easily. You can describe your locality with distance (e.g., near) or directions.

Example 1. A representative test ground that meets the positioning method should be selected. Under the
described context, the random participants in the shopping market are told to look around and to describe their
localities with distance or directions. We record the participants’ locality description and localities.

As shown in Figure 12, the localities of participants are marked as points. We analyse the
distribution of locality description and divide them into three groups (Figure 12): Group A, locality
description only with near; Group B, locality description with one direction; Group C, locality
description with more than one direction. Group C, meeting the positioning method, tends to locate in
a place that is spacious and has more landmarks. From the above analysis, the locations of groups A, B,
and C tend to consist of human spatial cognition and expression.

On the basis of Example 1 and the focus on our method, we conduct our cognitive experiment in a
spacious area (i.e., red line enclosed region in Figure 12) and divide the collected data into two scenes,
according to the RO number. For the calculation, the range of parameter a in Equation (2) is [2,5]
multiplied by path(Θ). Without additional contextual information, we cannot tell which cone-based
model the direction relationship “left” stands for. But, “front-right” stands for eight cone-based model.
So that, we use four cone-based model when lacking contextual information. The angle value that
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meets the Pareto principle in the visible segment should be roughly 10◦ and 20◦ for the eight and four
cone-based models, respectively. All of the parameters can be adjusted according to different realities.

Figure 12. Distribution of localities of participants.

Example 2. As shown in Figure 13, the locality description for Scene 1 is ”Front is PlayBoy, left is LaoFX”.
Figure 13b shows a local map for the locality description. A darker color corresponds to an increased probability
that it is the positioning locality.

Figure 13. Cont.
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Figure 13. Positioning with two ROs. The locality description is “Front is PlayBoy, left is LaoFX”
(a) global and (b) local.

A group cognitive experiment is conducted to estimate the positioning accuracy for Scene 1,
and related data are presented in Table 1. The sample data distribute randomly and uniformly
in the space (Figure 14). The numbers in Figure 14 correspond to the numbers in the Table 1.
The positioning error, which is the distance from the maximum probability point or the center point of
the maximum probability to the locality of the participant, is shown in Figure 15.

Table 1. Locality description with two ROs.

Num
RO1 RO2

Name Direction Name Direction

1 PlayBoy front LaoFX left
2 LaoFX front-left PlayBoy front-right
3 PlayBoy front LaoFX left
4 LaoFX front PlayBoy right
5 LaoFX front PlayBoy right
6 ZuoKY front-left LaoFX front-right
7 ZuoKY front-left LaoFX front-right
8 PlayBoy front LaoFX left
9 LaoFX front ZuoKY left

10 ZuoKY front-left LaoFX front-right
11 LaoFX front-left PlayBoy front-right
12 LaoFX front-right ZuoKY front-left
13 PlayBoy front-right LaoFX front-left
14 LaoFX front-left PlayBoy front
15 ZuoKY front-left LaoFX front-right
16 LaoFX left TISSOT front
17 PlayBoy front-left TISSOT front
18 LaoFX left TISSOT front
19 LaoFX left TISSOT front
20 PlayBoy front-right LaoFX front-left
21 PlayBoy front TISSOT left
22 TISSOT front PlayBoy front-left
23 PlayBoy front-left TISSOT front
24 LaoFX front-left PlayBoy front-right
25 PlayBoy front-left TISSOT front
26 LaoFX front-left PlayBoy front-right
27 ZuoKY front LaoFX front-right
28 LaoFX front-right ZuoKY front
29 ZuoKY front LaoFX front-right
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Table 1. Cont.

30 ZuoKY front LaoFX front-right
31 LaoFX front-right ZuoKY front
32 ZuoKY left LaoFX front
33 TISSOT left ZuoKY front
34 ZuoKY front TISSOT left
35 ZuoKY front TISSOT left
36 ZuoKY left TISSOT front
37 TISSOT front ZuoKY left
38 TISSOT front-right LaoFX front-left
39 LaoFX left TISSOT front
40 CHJ front ZuoKY front-left
41 ZuoKY front-left CHJ front
42 CHJ front-right ZuoKY front-left
43 ZuoKY front-left CHJ front-right

Figure 14. Positioning errors with two ROs.

Figure 15. Positioning errors with two ROs.

As shown in Figure 15, the maximum and minimum positioning errors are 8.39 and 0.26 m,
respectively, and the mean positioning error is 3.55 m.

Example 3. As shown in Figure 16, the locality description for Scene 2 is ”Front is LaoFX, front–left is ZuoKY,
and front–right is PlayBoy”. Figure 16b shows a local map for the locality description.
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Figure 16. Positioning with three ROs. The locality description is “Front is LaoFX, front–left is ZuoKY,
and front–right is PlayBoy” (a) global and (b) local.

A group cognitive experiment is conducted to estimate the positioning accuracy for Scene 1,
and related data are presented in Table 2. The sample data distribute randomly and uniformly in the
space (Figure 17). The numbers in Figure 17 correspond to the numbers in the Table 2. The positioning error,
which is the distance from the maximum probability point or the center point of the maximum
probability to the locality of the participant, is shown in Figure 18.

Table 2. Locality description with three ROs.

Num
RO1 RO2 RO3

Name Direction Name Direction Name Direction

1 LaoFX front-left TISSOT front ZuoKY left
2 ZuoKY front LaoFX front-left TISSOT left
3 PlayBoy front LaoFX front-left ZuoKY left
4 LaoFX front PlayBoy front-right ZuoKY front-left
5 PlayBoy front LaoFX front-left ZuoKY left
6 ZuoKY front LaoFX front-right CHJ front-left
7 CHJ front-left LaoFX front-right ZuoKY front
8 LaoFX front-right ZuoKY front CHJ front-left
9 PlayBoy front-left TISSOT front Watch front-right
10 TISSOT front PlayBoy front-left Watch front-right
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Table 2. Cont.

11 PlayBoy front-left Watch front-right TISSOT front
12 TISSOT front PlayBoy front-left Watch front-right
13 Watch front-right TISSOT front PlayBoy front-left
14 PlayBoy front-left TISSOT front Watch front-right
15 Watch front-right TISSOT front PlayBoy front-left
16 Watch front-right TISSOT front PlayBoy front-left
17 TISSOT front ZuoKY left LaoFX front-left
18 LaoFX front-left TISSOT front ZuoKY left
19 LaoFX front-left ZuoKY left TISSOT front
20 TISSOT front LaoFX front-left ZuoKY left
21 LaoFX front-left TISSOT front ZuoKY left
22 ZuoKY front LaoFX front-right CHJ front-left
23 LaoFX front-right ZuoKY front CHJ front-left
24 ZuoKY front LaoFX front-right CHJ front-left
25 ZuoKY front CHJ front-left LaoFX front-right
26 LaoFX front-left TISSOT front ZuoKY left
27 LaoFX front-left TISSOT front ZuoKY left
28 ZuoKY front CHJ front-left LaoFX front-right
29 ZuoKY front LaoFX front-right CHJ front-left
30 LaoFX front PlayBoy front-right ZuoKY front-left
31 PlayBoy front TISSOT right ZuoKY left
32 LaoFX front ZuoKY front-left PlayBoy front-right
33 PlayBoy front-right ZuoKY front-left LaoFX front
34 LaoFX left TISSOT front-right PlayBoy front-left
35 LaoFX left TISSOT front-right PlayBoy front-left
36 Watch front-right TISSOT front PlayBoy front-left
37 LaoFX front-left TISSOT front-right PlayBoy front
38 LaoFX front PlayBoy front-right ZuoKY front-left
39 PlayBoy front-right ZuoKY front-left LaoFX front

Figure 17. Positioning errors with three ROs.

As shown in Figure 18, the maximum and minimum positioning errors are 7.16 and 0.49 m,
respectively, and the mean positioning error is 3.54 m.
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Figure 18. Positioning errors with three ROs.

Locality description reflects human spatial cognition, which has both commonness and personality.
More people in the adjacent place describe locality with the same ROs and even the same directions
(Table 1, numbers 27–31). The existing individuals in the adjacent place describe locality with different
ROs (Table 1, numbers 17 and 18), and even different directions (Table 1, numbers 11 and 14).
This difference can be explained by the habits or standing orientations when describing locality.
Another characteristic of spatial cognition is uncertainty, which reflects personality to the same extent.
Under the naïve cognition of the complex environment, the positioning accuracy does not exceed
3.55 m and is more acceptable than a 3–5 m positioning accuracy using common smartphones with
complex and costly indoor positioning techniques.

Context is an important factor in positioning locality with locality description. If more contexts
(e.g., spatial and semantic) are available, then positioning accuracy improves. (1) Semantic context:
aside from the locality description with two or three ROs with directions, other ROs that can provide
additional position clues, such as “near marble columns” may appear in locality description. All of
these clues can refer to our model or other related models. (2) Spatial context: the infrastructures in the
domain may affect the probability distribution.

6. Discussion

In this section, we will have a deeper discussion with respect to (1) positioning errors and (2)
near relation.

6.1. Positioning Errors

For fuzzy spatial cognition, positioning errors with locality description are inevitable.
Positioning errors can be divided into two aspects according to position clues, namely, direction and
near relation. (1) Locality description of adjacent localities occurs at different angles. In Table 1,
numbers 11 and 14, the angles of locality description are 90◦ and 45◦, respectively. This result could
be explained by the standing orientations or the attractive part of ROs. We calculate the direction by
using the visible segment of ROs from the general; (2) Near, a relative conception, reflects distance only.
In ILRS, more people select near ROs, but some people select relatively far ROs to describe locality,
resulting in many positioning errors. As shown in Table 1, numbers 16 and 19, LaoFX, which is not
near when compared with other ROs, such as PlayBoy or Watch, is selected. The above two aspects are
expressions of spatial fuzzy and naïve cognition.
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6.2. Analysis of Near Relation

As a supplement of quantitative distance, qualitative distance is used frequently in
locality description. When compared with positioning locality indoors with quantitative distance,
the positioning accuracy with qualitative distance (3.5 m) [35] is more acceptable, in contrast to intuitive
cognition where the distance with number has greater accuracy.

The qualitative distance relation model stated in the paper, that is, near, is proposed based
on then Voronoi diagram for polygons, which is an important tool for modeling spatial problems.
The generation of a Voronoi diagram for polygons can be raster- or vector-based [36,37].
The vector-based algorithm is not efficient and cannot be integrated in the GIS software [37].
Our proposed algorithm is raster-based, which is simple, but it has a slow process. Increased attention
should be given to the development of an efficient algorithm for generating a Voronoi diagram for
polygons or other features.

In addition, the weights of all the landmarks indoors are the same, as follows: (1) The factors
(i.e., size, height) that affect the distance cognition of landmarks indoors are almost the same;
(2) Locality description has no substitute for the weight of landmarks. If the weights of all the
landmarks are different, then the near distance relation based on ordinary Voronoi diagram is infeasible.
Whether the multiplicatively weighted Voronoi diagrams can answer this question is unknown, and
this issue will be included in our future work.

7. Conclusions

Implicitly is an inherent characteristic of locality description, especially in ILRS. Based on this,
we propose that near landmarks are selected easily when describing locality with the directions of
locality description. To achieve positioning of localities with directions description in ILRS, we propose
a joint probability function that consists of qualitative distance (i.e., near relation) and relative
direction membership function. The qualitative distance membership function that considers both
minimum Euclidean distance and the stolen area is based on fuzzy set. For consistency with cognition,
some definitions are provided during the calculation of relative direction, which can also reduce the
number of points to be explored from an algorithmic point of view. Some cognitive experiments are
conducted and demonstrate that a positioning accuracy of 3.55 m can be achieved within a 45 m visual
space in ILRS.

The membership function for near relation proposed in our paper is raster-based, which has
low efficiency. In our future work, vector-based or parallel algorithm will be developed, which is
helpful for enhance the algorithm efficiency. Furthermore, the function is based on simple geometric
calculation and does not consider contextual information, such as personal reputation, background,
and hobbies, which are important to distance cognition. If enough data are available, then the near
relation can be modeled based on ordered logit regression (OLR) or SVM.

Our method is based on spatial cognition, so that reasonable direction cognition is necessary.
Despite the fact that the relative direction calculation based on visible segment in our work
performances well in positioning locality, it does not work well in all cases. For instance, if the length
of visible segment of one RO is much longer that the other RO, which is rare indoor, whether our
method is feasible should be further discussed.

Acknowledgments: Thanks also to Ting Zhang and Ze Cheng for helping to collect the data for the cognition
experiments. This research is supported by the National Natural Science Foundation of China (Grant No.
41471323, 91746206, 41661086), the National Key Research and Development Program of China (Grant No.
2017YFB0503500, 2017YFB0503601), and the Specialized Research Fund of State Key Laboratory of Information
Engineering in Surveying, Mapping and Remote Sensing of China.

Author Contributions: This paper is a collaborative work by all authors. Yankun Wang proposed the idea,
performed the experiments, analyzed the data and wrote the manuscript. Hong Fan provided importantguiding
suggestions, supported the paper and gave support for the cognitive experiment. Ruizhi Chen helped to
propose the idea, give suggestions and revise the rough draft. Huan Li gave profound guiding suggestions.



Sensors 2018, 18, 1049 19 of 20

Luyao Wang, Kang Zhao helped to do some of the experiments. Wu Du helped to collect the data and do some of
the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bentley, R.A.; O’Brien, M.J.; Brock, W.A. Mapping collective behavior in the big-data era. Behav. Brain Sci.
2014, 37, 63–76. [CrossRef] [PubMed]

2. Jiang, B.; Yao, X. Location-based services and GIS in perspective. Comput. Environ. Urban Syst. 2006,
30, 712–725. [CrossRef]

3. Nesi, P.; Pantaleo, G.; Tenti, M. Geographical localization of web domains and organization addresses
recognition by employing natural language processing, Pattern Matching and clustering. Eng. Appl.
Artif. Intell. 2016, 51, 202–211. [CrossRef]

4. Melo, F.; Martins, B. Automated geocoding of textual documents: A survey of current approaches. Trans. GIS
2017, 21, 3–38. [CrossRef]

5. Zhang, W.; Gelernter, J. Geocoding location expressions in Twitter messages: A preference learning method.
J. Spat. Inf. Sci. 2014, 9, 37–70.

6. Kim, J.; Vasardani, M.; Winter, S. Similarity matching for integrating spatial information extracted from place
descriptions. Int. J. Geogr. Inf. Sci. 2017, 31, 56–80. [CrossRef]

7. Liu, F.; Vasardani, M.; Baldwin, T. Automatic identification of locative expressions from social media text: A
comparative analysis. In Proceedings of the 4th International Workshop on Location and the Web, Shanghai,
China, 3–7 November 2014; ACM: New York, NY, USA, 2014; pp. 1–30.

8. Khan, A.; Vasardani, M.; Winter, S. Extracting spatial information from place descriptions. In Proceedings of
the First ACM SIGSPATIAL International Workshop on Computational Models of Place, Orlando, FL, USA,
5–8 November 2013; ACM: New York, NY, USA, 2013; pp. 62–69.

9. Yao, X.; Thill, J.C. Spatial queries with qualitative locations in spatial information systems. Comput. Environ.
Urban Syst. 2006, 30, 485–502. [CrossRef]

10. Liu, Y.; Guo, Q.H.; Wieczorek, J.; Goodchild, M.F. Positioning localities based on spatial assertions. Int. J.
Geogr. Inf. Sci. 2009, 23, 1471–1501. [CrossRef]

11. Richter, D.; Winter, S.; Richter, K.F.; Stirling, L. Granularity of locations referred to by place descriptions.
Comput. Environ. Urban Syst. 2013, 41, 88–99. [CrossRef]

12. Gong, Y.X.; Li, G.C.; Liu, Y.; Yang, J. Positioning localities from spatial assertions based on Voronoi
neighboring. Sci. China Technol. Sci. 2010, 53, 143–149. [CrossRef]

13. Brennan, J.; Martin, E. Foundations for a formalism of nearness. In Proceedings of the Australian Joint
Conference on Artificial Intelligence, Canberra, Australia, 2–6 December 2002; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 71–82.

14. Gong, Y.; Wu, L.; Lin, Y.; Liu, Y. Probability issues in locality descriptions based on Voronoi neighbor
relationship. J. Vis. Lang. Comput. 2012, 23, 213–222. [CrossRef]

15. Krishnapuram, R.; Keller, J.M.; Ma, Y. Quantitative analysis of properties and spatial relations of fuzzy image
regions. IEEE Trans. Fuzzy Syst. 1993, 1, 222–233. [CrossRef]

16. Bloch, I.; Ralescu, A. Directional relative position between objects in image processing: A comparison
between fuzzy approaches. Pattern Recognit. 2003, 36, 1563–1582. [CrossRef]

17. Richter, D.; Winter, S.; Richter, K.F.; Stirling, L. How people describe their place: Identifying predominant
types of place descriptions. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Crowdsourced and Volunteered Geographic Information, Redondo Beach, CA, USA, 7–9 November 2012;
ACM: New York, NY, USA, 2012; pp. 30–37.

18. Guo, Q.; Liu, Y.; Wieczorek, J. Georeferencing locality descriptions and computing associated uncertainty
using a probabilistic approach. Int. J. Geogr. Inf. Sci. 2008, 22, 1067–1090. [CrossRef]

19. Wieczorek, J.; Guo, Q.; Hijmans, R. The point-radius method for georeferencing locality descriptions and
calculating associated uncertainty. Int. J. Geogr. Inf. Sci. 2004, 18, 745–767. [CrossRef]

20. Zhou, S.; Winter, S.; Vasardani, M.; Shunping, Z. Place descriptions by landmarks. J. Spat. Sci. 2017, 62, 47–67.
[CrossRef]

http://dx.doi.org/10.1017/S0140525X13000289
http://www.ncbi.nlm.nih.gov/pubmed/24572217
http://dx.doi.org/10.1016/j.compenvurbsys.2006.02.003
http://dx.doi.org/10.1016/j.engappai.2016.01.011
http://dx.doi.org/10.1111/tgis.12212
http://dx.doi.org/10.1080/13658816.2016.1188930
http://dx.doi.org/10.1016/j.compenvurbsys.2004.08.001
http://dx.doi.org/10.1080/13658810802247114
http://dx.doi.org/10.1016/j.compenvurbsys.2013.03.005
http://dx.doi.org/10.1007/s11431-010-3203-5
http://dx.doi.org/10.1016/j.jvlc.2012.04.002
http://dx.doi.org/10.1109/91.236554
http://dx.doi.org/10.1016/S0031-3203(02)00263-7
http://dx.doi.org/10.1080/13658810701851420
http://dx.doi.org/10.1080/13658810412331280211
http://dx.doi.org/10.1080/14498596.2016.1196623


Sensors 2018, 18, 1049 20 of 20

21. Caduff, D.; Timpf, S. On the assessment of landmark salience for human navigation. Cognit. Proc. 2008,
9, 249–267. [CrossRef] [PubMed]

22. Wang, X.; Liu, Y.; Gao, Z.; Lun, W. Landmark-based qualitative reference system. In Proceedings of the
International Conference on Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005;
IEEE: Piscataway, NJ, USA, 2005; pp. 932–935.

23. Sorrows, M.; Hirtle, S. The nature of landmarks for real and electronic spaces. In Proceedings of
the International Conference on Spatial Information Theory, Stade, Germany, 25–29 August 1999;
Springer: Berlin/Heidelberg, Germany, 1999; pp. 37–50.

24. Winter, S.; Tomko, M.; Elias, B.; Sester, M. Landmark hierarchies in context. Environ. Plan. B 2008, 35, 381–398.
[CrossRef]

25. Tezuka, T.; Tanaka, K. Landmark extraction: A web mining approach. In Proceedings of the
International Conference on Spatial Information Theory, Ellicottville, NY, USA, 14–18 September 2005;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 379–396.

26. Lyu, H.; Yu, Z.; Meng, L. A Computational Method for Indoor Landmark Extraction. In Progress in
Location-Based Services 2014; Springer: Cham, Switzerland, 2015; pp. 45–59.

27. Haihong, Z.; Ya, W.; Kai, M.; Lin, L.; Guozhong, L.; Yuqi, L. A Quantitative POI Salience Model for Indoor
Landmark Extraction. Geomat. Inf. Sci. Wuhan Univ. 2015, 5, 1–7.

28. Worboys, M.F. Nearness relations in environmental space. Int. J. Geogr. Inf. Sci. 2001, 15, 633–651. [CrossRef]
29. Yao, X.; Thill, J.C. How Far Is Too Far? A Statistical Approach to Context-contingent Proximity Modeling.

Trans. GIS 2005, 9, 157–178. [CrossRef]
30. Liu, Y.; Wang, X.; Jin, X.; Wu, L. On internal cardinal direction relations. In Proceedings of the International

Conference on Spatial Information Theory, Ellicottville, NY, USA, 19–23 September 2005; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 283–299.

31. Bloch, I.; Colliot, O.; Cesar, R.M. On the ternary spatial relation “between”. IEEE Trans. Syst. Man Cybern.
Part B 2006, 36, 312–327. [CrossRef]

32. Clementini, E. Directional relations and frames of reference. GeoInformatica 2013, 17, 235–255. [CrossRef]
33. Vanegas, M.C.; Bloch, I.; Inglada, J. A fuzzy definition of the spatial relation “surround”-Application

to complex shapes. In Proceedings of the 7th Conference of the European Society for Fuzzy Logic and
Technology, Amsterdam, Holland, 22 July 2011; pp. 844–851.

34. Takemura, C.M.; Cesar, R.M.; Bloch, I. Modeling and measuring the spatial relation “along”: Regions,
contours and fuzzy sets. Pattern Recognit. 2012, 45, 757–766. [CrossRef]

35. Wang, Y.; Fan, H.; Chen, R. Indoors Locality Positioning Using Cognitive Distances and Directions. Sensors
2017, 17, 2828. [CrossRef] [PubMed]

36. Dong, P. Generating and updating multiplicatively weighted Voronoi diagrams for point, line and polygon
features in GIS. Comput. Geosci. 2008, 34, 411–421. [CrossRef]

37. Gong, Y.; Li, G.; Tian, Y.; Lin, Y.; Liu, Y. A vector-based algorithm to generate and update multiplicatively
weighted Voronoi diagrams for points, polylines, and polygons. Comput. Geosci. 2012, 42, 118–125. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10339-007-0199-2
http://www.ncbi.nlm.nih.gov/pubmed/17999102
http://dx.doi.org/10.1068/b33106
http://dx.doi.org/10.1080/13658810110061162
http://dx.doi.org/10.1111/j.1467-9671.2005.00211.x
http://dx.doi.org/10.1109/TSMCB.2005.857095
http://dx.doi.org/10.1007/s10707-011-0147-2
http://dx.doi.org/10.1016/j.patcog.2011.06.016
http://dx.doi.org/10.3390/s17122828
http://www.ncbi.nlm.nih.gov/pubmed/29215557
http://dx.doi.org/10.1016/j.cageo.2007.04.005
http://dx.doi.org/10.1016/j.cageo.2011.09.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Locality Description 
	Landmarks 
	Spatial Relations: Distance and Direction Relationship 

	Membership Functions Based on Fuzzy Set: Near and Relative Direction 
	Membership Function for Near Relation 
	Relative Direction Membership Function 

	Method 
	Domain of Positioning Localities 
	Probability of Relative Direction in Domain 
	Probability of Qualitative Distance in Domain 
	Positioning Localities 

	Case Study 
	Discussion 
	Positioning Errors 
	Analysis of Near Relation 

	Conclusions 
	References

