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Abstract: Locality descriptions are generally communicated using reference objects and spatial 
relations that reflect human spatial cognition. However, uncertainty is inevitable in locality 
descriptions. Positioning locality with locality description, with a mapping mechanism between 
the qualitative and quantitative data, is one of the important research issues in next-generation 
geographic information sciences. Spatial relations play an important role in the uncertainty of 
positioning locality. In indoor landmark reference systems, the nearest landmarks can be selected 
when describing localities by using direction relations indoors. By using probability operation, we 
combine a set of uncertainties, that is, near and direction relations to positioning locality. Some 
definitions are proposed from cognitive and computational perspectives. We evaluate the 
performance of our method through indoor cognitive experiments. Test results demonstrate that a 
positioning accuracy of 3.55 m can be achieved with the semantically derived direction 
relationships in indoor landmark reference systems. 

Keywords: locality description; positioning locality indoors; uncertainty; spatial relations; indoor 
landmark reference system 

 

1. Introduction 

Geographic information sciences (GIS) have been entering an era of information explosion. The 
data-related geographic can be divided into many classes, according to their sources and format, 
such as raster dataset, shape file, textual information, and voice [1]. Locality description, which is a 
common form of voice, conveys considerable spatial information and can be derived from our daily 
communication. The issue of dealing with the locality description information is a research hot spot 
of next-generation GIS for many scholars [2–5]. 

Locality description reflects direct or indirect human interaction with environment directly [6]. 
As an external expression of cognition, the uncertainty that is associated with locality description is 
inevitable [7]. Locality description generally contains spatial relationships (i.e., topological, 
distance, and direction relations) and reference objects (ROs). Any feature with a name can be 
regarded as an RO [8,9]. Topological relations, which convey rough information-related locality and 
can be refined by distance or direction relations, are seldom used directly in locality description 
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positioning [10]. The distance and direction relations are usually combined to describe locality, 
which conveys many clues to position locality [10]. 

Humans have a weak sense of direction indoors, and relative directions are used frequently in 
locality description. For example, locality description indoors can be given as follows: “Object A is 
in front of me, and object B is on my left”. The locality description is complex, either explicitly or 
implicitly [11], especially in a landmark reference system [12] (i.e., a reference system where people 
can describe his locality with one or several landmarks), in which the nearest landmark can be 
selected easily to describe locality [12]. On the basis of this concept, the locality description (“Object 
A is in front of me, and object B is on my left”) stated above in an indoor landmark reference system 
(ILRS) implies that objects A and B are near the individual. Hence, the meaning of “Object A is in 
front of me, and object B is on my left” in ILRS is the same as that of “Object A is in front of me, 
object B is on my left, and they are all near to me”. This paper introduces a novel method of 
positioning localities indoors by using locality description in ILRS.  

Many related works in the literature provide meaningful references. The conceptual function 
between the membership degree of “near” and the distance between objects is defined in [10], but 
no related practical application is discussed. In computational geometry, the near relation can be 
represented by Voronoi diagrams [13]. Gong [12,14] proposed a mixed-selection probability 
function that was based on Euclidean distance and Voronoi stolen area to model near relations. 
However, this function focused only on points and provided no further discussion about polygons. 
Nevertheless, this function provided considerable inspiration for related studies. The human 
perception of direction, whether absolute or relative, is closely related to angular information. As 
stated in [15], the membership functions about “left of”, “right of”, “above”, and so on, are defined. 
They all relate to angular information but differ in parameters. The function has been developed in 
accordance with different applications [15,16].  

The contributions of this work are as follows: 

(1) On the basis of the complexity of locality description, we propose that people tend to select 
near landmarks in ILRS when describing locality with the directions of locality description.  

(2) We develop a novel membership function for polygon landmarks to model qualitative distance 
relations, such as near relations. 

(3) We propose the calculation of relative direction for polygon landmarks from the perspectives 
of algorithm and cognition. 

(4) We provide the method of positioning locality based on a joint probability function that 
consists of qualitative distance and relative direction membership functions. Cognitive 
experiments are conducted to evaluate the positioning accuracy. Test results demonstrate that 
a positioning accuracy of 3.55 m can be achieved in a 45 m visual space. 

The paper is organized as follows: Previous studies are reviewed in Section 2. The qualitative 
distance and relative direction functions are given in Section 3. The method of positioning localities 
is provided in Section 4. Examples are presented in Section 5, followed by a discussion in Section 6. 
Conclusions are provided in Section 7. 

2. Related Work 

Related works on positioning locality with locality description in existing literature are briefly 
presented in this section. 

2.1. Locality Description 

Locality description answers a “where” question. As a predominant method of human spatial 
communication, locality description reflects human spatial cognition and contains a considerable 
amount of vague positional information [8,17]. Guo [18] argued that locality description contains 
reference objects (ROs), which refer to any named features in locality description, and their related 
spatial relations. The spatial relations in locality description play an important role in positioning 
locality. Wieczorek [19] described a method to combine all the types of uncertainty into a point 
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radio to georeference locality description. When considering the shape of the ROs, Liu [10] 
proposed a general probabilistic method for positioning locality, which can combine a set of 
uncertain spatial relations (e.g., distances and directions). Zhou [20] described a conceptual model 
of fingerprints from locality descriptions by landmarks to capture the concept of place in human 
perception. 

The locality description contains at least one RO and its related spatial relation. It may also be 
complex, linking different references by spatial relationships, either explicitly as “I am near object 
A, and it is in front of me”, or implicitly as “Object A is in front of me”, implying “Object A is near 
to me, and it is in front of me” [11,17]. 

2.2. Landmarks 

Landmarks play a crucial role in human spatial cognition, whether as a navigational aid or a 
locality description [20,21]. As the first step of spatial knowledge acquisition, landmarks, which 
have attracted the interest of many researchers, play a crucial role in the acquisition and the 
representation of human spatial knowledge in daily life [21–23]. In spatial cognition, landmarks 
represent a cluster of objects at a high level and serve as ROs (anchor) to locate the target object (TO) 
[22]. 

The characteristics of landmarks include prominence and prototypicality [23]. Conventional 
work on landmark extraction is mainly based on questionnaires, which are cumbersome and labor 
intensive [24]. On the basis of the characteristics of landmarks, many scholars have used the 
saliency model to extract landmarks in different scenes [21,25]. Tezuka [25] extracted small-scale 
landmarks from digital documents by using a web mining approach.  

The selection of landmarks also depends on context [24]. As a navigational aid, landmarks 
provide orientation cues and verify route progress. Caduff [21] argued that three factors, namely, 
degree of differentiation, visual access, and complexity of spatial layout, contribute to the saliency 
of landmarks. They can be regarded as points in a small scale or as polygons in a large scale. Lyu 
[26] proposed indicators to develop a computational indoor landmark extraction method. Zhu [27] 
provided a method to compute the saliency of the POIs (points of interest), i.e., shops, to extract 
indoor landmarks. When compared with navigation, all kinds of landmarks can play a greater role 
in the context of locality description [20]. Therefore, the concept of landmarks is based on all kinds 
of indoor POIs (i.e., shops). The related definition is provided in Section 3.1. 

2.3. Spatial Relations: Distance and Direction Relationship 

Spatial relations can be divided into topological, distance, and direction relations. When 
compared with distance and direction relations, topological relation conveys more fuzzy 
positioning information, and other relations can reflect it to some extent. Distance and direction 
relations in locality description are generally used together for positioning locality. 

Distance relationship can be categorized as qualitative and quantitative. Quantitative distance 
is the numeric distance value in practice, which is also called semi-qualitative, because of its 
uncertainty. Different uncertainties cause different probability distributions, such as formal and 
normal distribution [10]. Qualitative distance (e.g., near) is used more frequently than quantitative 
distance in locality description [11]. As one of the most fundamental spatial cognitive distance, the 
vague spatial relation “near” attracts many scholars’ attention [28,29]. Worboys [28] conducted a 
cognitive experiment in a university campus to explore how humans think about the vague spatial 
relation of nearness in the context of environmental space and found that the relation between 
conceptual distance and Euclidean distance conforms to a general S-curve. When considering 
context factors, Yao [29] presented ordered logit regression to predict the relationship between 
linguistic (e.g., near) and metric distance measures. In contrast to the cognitive aspects above, 
Martin [13] argued that the near relation can be modeled with a Voronoi diagram in computational 
geometry. Gong [12,14] defined a mixed probability function, which is based on Euclidean distance 
and Voronoi stolen area to address the near relation for points. Inspired by this idea, we will extend 
this function to polygon landmarks. Details are presented in Section 3.1. 
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Direction relationship can be divided into absolute and relative directions. Absolute direction 
relationships are used more frequently outdoors, where humans have a good sense of direction. 
The spatial space can be divided into four or eight cones, according to different contexts [30] (Figure 
1a,b). The greater distance between an object and the center line of its cone corresponds to a lower 
probability that the object owning to its direction [10] (Figure 1c). In contrast to absolute direction, 
relative direction relations are frequently used in situations where humans may have a poor sense 
of direction, such as indoors. Krishnapuram [15] argued that human perception between two 
objects is closely related to angular information (Figure 2), and the distance between the people and 
the object is unimportant. On the basis of this idea, he defined the relative direction membership 
function, that is, left of, right of, above, and between. Extending the “between” relation into a 
medical image, Bloch [31] defined a fuzzy notion of visibility. Many relative relations have been 
developed since then [32–34]. 

North
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Figure 1. (a) Eight-cone based model; (b) four-cone based model; and, (c) probability distribution in 
the cone-based model (the probability of point a (0.9) is greater than that of b (0.5) in the direction). 

a b

≈90°

Left front Right front

 

Figure 2. Illustration of relative direction (the angle that turns from right front to left front is nearly 
90°). 

3. Membership Functions Based on Fuzzy Set: Near and Relative Direction 

The fuzzy spatial relations, that is, near and relative direction relations used in locality 
description indoors, will be introduced in this section. Their membership functions are conducted 
based on fuzzy set. 

3.1. Membership Function for Near Relation 

Definition 1. Landmark: POI (i.e., shop) which is polygon indoors. 

Any features in space can be called POI. To focus on our method, the shop data are available 
and should be regarded as polygon indoor. 
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For accuracy, all of the ROs in locality description are landmarks, and the positioning locality 
is called TO. 

Definition 2. Neighbors of RO R: A set of spatial entities (points or polygons) share a common edge of 
Voronoi diagram neighbor with each other. We denote neighbors of R with neigh(R). As shown in Figure 3, 
neigh(R1) = {R2, R3, R4, R5, R6, R7, R8}. 

 
Figure 3. Neighbors of R1. 

The position of R can be described by its neighbors. If a site (TO) is inserted into the space, then 
it can be described and positioned by one or several of its neighbors. 

Definition 3. Neighboring area of RO R: The area of R that a site (TO) can be inserted into and be described 
by or neighbors R. The neighboring area of R is denoted as NeighArea(R). 

The center of the circumcircle of Delaunay triangulation is the vertex of its related Voronoi. The 
dual graph of Voronoi diagram corresponds to the Delaunay triangulation. For point set {p1, p2, p3, 
p4, p5, p6, p7}, of which neighbors(p1) = {p2, p3, p4, p5, p6, p7}, the Delaunay triangulations for p1 and 
its neighbors are formed. The neighboring area of p1 is the union of the circumcircle of its Delaunay 
triangulation, whose boundary consists of circle arcs (Figure 4a). The neighboring area extends to 
polygon RO R1, of which neighbors (R1) = { R2, R3, R4, R5} and NeighArea(R1) are shown as Figure 4b. 
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Figure 4. Neighboring area of (a) point p1 and (b) polygon R1.  
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The process of obtaining neighboring area of RO R1 is as follows (Figure 5): For ROs in space, 
R1 is neighbor to R2, R3, R4, R5, R6, R7, and R8. The vertices of the Voronoi polygon of R1 are v1, v2, v3, 
v4, v5, v6, and v7. The vertex v1 is the common vertex of R8, R7, and R1. The nearest points of R7, R8, 
and R1 to v1 are a1, a2, and a3, respectively. The circumcircle of triangulation with vertices a1, a2, and 
a3 is drawn, and the arcs a2a3 between R8 and R7 are obtained. Other arcs between ROs are obtained, 
and the arcs are connected with segments of ROs (e.g., segment of R7 a3a4) to form a closed cycle. 

R1

R4

R5

R6
R7

R3R2

R8

v1

v2

v3

v4

v5v6

v7

a2

a3

a1

a4
a5

a6

 
Figure 5. Illustration of the process of obtaining NergArea(R1). 

Definition 4. Stolen area: When a site (TO) is inserted into the existing Voronoi diagram of ROs, the 
stolen area is the area that is part of the Voronoi region of the original RO but now belongs to the Voronoi 
region of TO (Figure 6). 

 
Figure 6. Illustration of stolen area (the area delineated by a red line is the area stolen from R7, R8, 
and R9; the dashed area is the area stolen from R8). 
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On the basis of Euclidean distance and the stolen area [12,14], the membership function for 
near relation is defined as Pnear(i, Ri): 

k

i
2

i
near i

k
2

kR neigh(t)

A
min d(t, R )

p (t,R )
A

min d(t, R )




 (1) 

The equation is based on fuzzy set, which maps the near relation to the interval [0, 1] and it 
reflects the degree of near relation. In Equation (1), t represents TO, t∈NeighArea(Ri), and min d(t, 
R) is the squared minimum distance between t and Ri. Ak represents the area stolen from Rk by t. 

3.2. Relative Direction Membership Function 

When an individual turns around between two ROs, such as from front to right, the cone that 
is searched relates to angular information. On the basis of this concept, we define the eight-cone 
(front, left, right, back, front–left, front–right, back–left, and back–right) relative direction 
membership function preldir(Θ): 
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If the space is divided into 4 cones, i.e., front, left, right, back, the Equation (2) can be revised as 
Equation (3). 
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The illustration of relative direction membership functions are provided in Figure 7. The 
parameter Θ is the angle turning from one direction to other direction. To get an optimistic result, 
the value for a can be adjusted according to reality. 
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Figure 7. Illustration of relative direction membership function. (a) Equation (2); and, (b) Equation 
(3). 

The parameter path(Θ) in Equations (2) and (3) is the minimum path between the center lines of 
corresponding cones. As shown in Figure 8a,b, the visual field is divided into eight sectors (front, 
back, left, right, right–front, right–back, left–front, and left–back) for Equation (2) and four sectors 
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(front, right, back, and left) for Equation (3). The dashed lines are the center lines of the 
corresponding cones. Each center line is assigned a number clockwise (e.g., front is assigned 1). In 
Figure 8a, from front (1) to right (3), path(Θ) = 2. 

front(1)

back(5)

right(3)

right-front(2)

front(1)

right(2)

back(3)

left(4)

 
(a) (b) 

Figure 8. Illustration of path(Θ). (a) eight sectors and the path(Θ) is marked with a red dashed line; and, 
(b) four sectors. 

4. Method 

In this section, the locality positioning method is introduced and described in detail, as follows 
(Algorithm 1): 

Algorithm 1 
Obtain the domain where the positioning localities may be located. (Section 4.1) 
Calculate the probability of relative direction in the domain, i.e., Preldir. (Section 4.2) 
Calculate the probability of qualitative distance (“near”) in the domain, i.e., Pqdis. (Section 4.3) 
Calculate the locality using a joint probability function which consist of qualitative distance 
and relative direction function. (Section 4.3) 
End for  

Locality description generally contains three ROs at most, but positioning localities when the 
locality description contains only one RO is impossible. Hence, we divide the situation of 
positioning locality into two scenes: Scene 1, locality description with two ROs, and Scene 2, locality 
description with three ROs. Some differences are noted in the method for the two scenes, and the 
details are introduced in the following sections. 

4.1. Domain of Positioning Localities 

Definition 5. Domain of TO t: Domain where TO t may locate. We denote it with Domain(t).  

A site (TO t) can be described by its neighbors. As stated in Section 3.1, the neighboring area of 
R is that a site (TO t) can be a neighbor and can be described by R. If a TO t is described with Ri (i = 
1, 2, 3), then Domain(t) = ∪NeighArea(Ri). No difference is noted for Scenes 1 and 2. 

4.2. Probability of Relative Direction in Domain 

This section first provides a definition for the calculation of relative direction. Next, the 
method of calculating the probability of relative direction in domain is proposed for two different 
scenes. 
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Definition 6. Visible Segment: The segment boundary of a landmark is observed from a locality that 
is consistent with spatial cognition (Figure 9). 

t

RO(N)RO(M)

t

RO(M)

t

RO(M) RO(N)

 
Figure 9. Definition of visible segment Visible_Seg(M) (red line). The red and blue solid lines form 
the boundary of reference object (RO) M from a locality t. The blue solid line is the invisible segment, 
and the red solid line is the visible segment. The lines of sight are simulated by dashed lines, of 
which the blue dashed line is the auxiliary line (a) whole part; (b) interrupted by adjacent RO N; 
and, (c) interrupted by disjoint RO N. 

The visible segment should meet not only the characteristic of visibility, but also the Pareto 
principle that states that roughly 80% of effects originate from 20% of the cause, whether from an 
algorithmic or spatial cognitive perspective. As shown in Figure 10, if the space is conducted into 
eight cones, namely, front, back, left, right, right–front, right–back, left–front, and left–back, then the 
angle of each cone is 45°. The occupation angle of the portion of the visible segment in the cone 
should be approximately 9°. 

45

α≈9

M

 
Figure 10. Illustration of Pareto principle for visible segment; the red line of the visible segment 
meets the Pareto principle. 

We assume polygon (RO or Domain(t)) has a set of points, namely, A = {a1, a2,…, an}. For a ∊ 
Visible_Seg(A), b ∊ Visible_Seg(B), and t ∊ Domain(t), we let dir(A, t, B) denote the angle between 
point t to RO A and point t to RO B. The process of calculating relative direction probability, Preldir(t), 
for two scenes is as follows: 

Scene 1: Two ROs A and B 
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dir(A,t,B)
reldir t

dir(A,i,B)
i Domain(t)

P
P

P



（ ）  (4) 

Pdir(A, t, B) is the membership degree that maps the dir(A, t, B) by using the relative direction 
membership function Equation (2). 

Scene 2: Three ROs A, B, and C 

dir(A,t,B) dir(A,t,C) dir(B,t,C)
reldir t

dir(A,i,B) dir(A,i,C) dir(B,i,C)
i Domain(t)

P P P
P

P P P



（ ）  (5) 

Pdir(A, t, B), Pdir(A, t, C), and Pdir(B, t, C) are the membership degrees that map dir(A, t, B), dir(A, 
t, C), and dir(B, t, C) via the relative direction membership function Equation (2). 

4.3. Probability of Qualitative Distance in Domain 

If TO t, t ∊ Domain(t) is described with R, then the qualitative distance probability of t, and 
Pnear(t, R) can be computed according to Equation (1). The process of calculating qualitative distance 
probability, Pqdis(t), for two scenes is as follows: 

Scene 1: Two ROs A and B 

near( t ,A) near(t,B)
qdis t

near(i,A) near(i,B)
i Domain(t )

P P
P

P P



（ ）  (6) 

Scene 2: Three ROs A, B, and C 

near(t ,A) near( t,B) near( t,C)
qdis t

near(i,A) near(i,B) near(i,C)
i Domain (t )

P P P
P

P P P



（ ）  (7) 

4.4. Positioning Localities 

The positioning localities can be calculated by a joint probability, which consists of qualitative 
distance probability and relative direction probability. Let P(t) represent the probability of 
positioning localities, t ∊ Domain(t). The positioning locality is the maximum probability point or 
the center point of the maximum probability in the domain. The equations for the two scenes are the 
same, that is, Equation (8). 

reldir( t ) qdis(t )
t

reldir(i) qdis(i)
i Domain(t )

P P
P

P P



（）  (8) 

However, two positioning localities appear for Scene 1, where an angle between two directions 
that is not equal to 180° is unacceptable. A principle for obtaining a unique positioning locality is 
defined. 

Principle: We assume that the scene of locality description is as follows: “My front–right is N, and my 
front–left is M”. As shown in Figure 11, eight directions from front to front–left clockwise are 
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assigned corresponding numbers from 1 to 8. The path(a) is the path between two direction lines. 
The two positioning localities on the two sides of the line connecting the ROs are t1 and t2. Lines 8 
and 2 connect M and N to the positioning locality (i.e., t1 and t2), respectively. The unique 
positioning locality should meet the requirement that the direction from front–right (2) to front–left 
(8) is clockwise, and path(a) = 6, that is, t1. 

t2

t1

front(1)

back(5)

right(3)

front-right(2)

a

a

front-right(2)front-left(8)

front-left(8)
front-right(2)

 
Figure 11. Illustration of the principle (the thick black lines correspond to the Domain(t); solid blue 
lines represent the direction lines; and, the direction of rotation is marked with a solid red line). 

5. Case Study 

A cognitive experiment is conducted in a shopping market indoors with a sufficient number of 
participants. The participants include males and females with different backgrounds. Their ages 
range from 20 to 55, and they have normal spatial cognition.  

Locality description is complex, and human tends to use different spatial relations to 
description locality in different context. To simulate the realty and focus on the method, a 
description of context is given and is told to the participants. Meanwhile, before locality description, 
the participants are told to look around. 

Description of the context: When you lose track of your friends or family, your family calls you “Where 
are you?” Imaging that there is a phone can translate your locality description into localities. Then, your 
friends or family can find you easily. You can describe your locality with distance (e.g., near) or directions.  

Example 1. A representative test ground that meets the positioning method should be selected. 
Under the described context, the random participants in the shopping market are told to look 
around and to describe their localities with distance or directions. We record the participants’ 
locality description and localities. 

As shown in Figure 12, the localities of participants are marked as points. We analyse the 
distribution of locality description and divide them into three groups (Figure 12): Group A, locality 
description only with near; Group B, locality description with one direction; Group C, locality 
description with more than one direction. Group C, meeting the positioning method, tends to locate 
in a place that is spacious and has more landmarks. From the above analysis, the locations of 
groups A, B, and C tend to consist of human spatial cognition and expression. 

On the basis of Example 1 and the focus on our method, we conduct our cognitive experiment 
in a spacious area (i.e., red line enclosed region in Figure 12) and divide the collected data into two 
scenes, according to the RO number. For the calculation, the range of parameter a in Equation (2) is 
[2,5] multiplied by path(Θ). Without additional contextual information, we cannot tell which 
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cone-based model the direction relationship “left” stands for. But, “front-right” stands for eight 
cone-based model. So that, we use four cone-based model when lacking contextual information. 
The angle value that meets the Pareto principle in the visible segment should be roughly 10° and 20° 
for the eight and four cone-based models, respectively. All of the parameters can be adjusted 
according to different realities. 

 
Figure 12. Distribution of localities of participants. 

Example 2. As shown in Figure 13, the locality description for Scene 1 is ”Front is PlayBoy, left is LaoFX”. 
Figure 13b shows a local map for the locality description. A darker color corresponds to an increased 
probability that it is the positioning locality. 

 
(a) 
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(b) 

Figure 13. Positioning with two ROs. The locality description is “Front is PlayBoy, left is LaoFX” (a) 
global and (b) local. 

A group cognitive experiment is conducted to estimate the positioning accuracy for Scene 1, 
and related data are presented in Table 1. The sample data distribute randomly and uniformly in 
the space (Figure 14). The numbers in Figure 14 correspond to the numbers in the Table 1. The 
positioning error, which is the distance from the maximum probability point or the center point of 
the maximum probability to the locality of the participant, is shown in Figure 15. 

Table 1. Locality description with two ROs. 

Num 
RO1 RO2 

Name Direction Name Direction 
1 PlayBoy front LaoFX left 
2 LaoFX front-left PlayBoy front-right 
3 PlayBoy front LaoFX left 
4 LaoFX front PlayBoy right 
5 LaoFX front PlayBoy right 
6 ZuoKY front-left LaoFX front-right 
7 ZuoKY front-left LaoFX front-right 
8 PlayBoy front LaoFX left 
9 LaoFX front ZuoKY left 
10 ZuoKY front-left LaoFX front-right 
11 LaoFX front-left PlayBoy front-right 
12 LaoFX front-right ZuoKY front-left 
13 PlayBoy front-right LaoFX front-left 
14 LaoFX front-left PlayBoy front 
15 ZuoKY front-left LaoFX front-right 
16 LaoFX left TISSOT front 
17 PlayBoy front-left TISSOT front 
18 LaoFX left TISSOT front 
19 LaoFX left TISSOT front 
20 PlayBoy front-right LaoFX front-left 
21 PlayBoy front TISSOT left 
22 TISSOT front PlayBoy front-left 
23 PlayBoy front-left TISSOT front 
24 LaoFX front-left PlayBoy front-right 
25 PlayBoy front-left TISSOT front 
26 LaoFX front-left PlayBoy front-right 
27 ZuoKY front LaoFX front-right 
28 LaoFX front-right ZuoKY front 



Sensors 2018, 18, 1049  14 of 20 

 

29 ZuoKY front LaoFX front-right 
30 ZuoKY front LaoFX front-right 
31 LaoFX front-right ZuoKY front 
32 ZuoKY left LaoFX front 
33 TISSOT left ZuoKY front 
34 ZuoKY front TISSOT left 
35 ZuoKY front TISSOT left 
36 ZuoKY left TISSOT front 
37 TISSOT front ZuoKY left 
38 TISSOT front-right LaoFX front-left 
39 LaoFX left TISSOT front 
40 CHJ front ZuoKY front-left 
41 ZuoKY front-left CHJ front 
42 CHJ front-right ZuoKY front-left 
43 ZuoKY front-left CHJ front-right 

 
Figure 14. Positioning errors with two ROs. 

 
Figure 15. Positioning errors with two ROs. 

As shown in Figure 15, the maximum and minimum positioning errors are 8.39 and 0.26 m, 
respectively, and the mean positioning error is 3.55 m. 

Example 3. As shown in Figure 16, the locality description for Scene 2 is ”Front is LaoFX, front–left is 
ZuoKY, and front–right is PlayBoy”. Figure 16b shows a local map for the locality description. 
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(a) 

 
(b) 

Figure 16. Positioning with three ROs. The locality description is “Front is LaoFX, front–left is 
ZuoKY, and front–right is PlayBoy” (a) global and (b) local. 

A group cognitive experiment is conducted to estimate the positioning accuracy for Scene 1, 
and related data are presented in Table 2. The sample data distribute randomly and uniformly in 
the space (Figure 17). The numbers in Figure 17 correspond to the numbers in the Table 2. The 
positioning error, which is the distance from the maximum probability point or the center point of 
the maximum probability to the locality of the participant, is shown in Figure 18. 

Table 2. Locality description with three ROs. 

Num 
RO1 RO2 RO3 

Name Direction Name Direction Name Direction 
1 LaoFX front-left TISSOT front ZuoKY left 
2 ZuoKY front LaoFX front-left TISSOT left 
3 PlayBoy front LaoFX front-left ZuoKY left 
4 LaoFX front PlayBoy front-right ZuoKY front-left 
5 PlayBoy front LaoFX front-left ZuoKY left 
6 ZuoKY front LaoFX front-right CHJ front-left 
7 CHJ front-left LaoFX front-right ZuoKY front 
8 LaoFX front-right ZuoKY front CHJ front-left 
9 PlayBoy front-left TISSOT front Watch front-right 
10 TISSOT front PlayBoy front-left Watch front-right 
11 PlayBoy front-left Watch front-right TISSOT front 
12 TISSOT front PlayBoy front-left Watch front-right 
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13 Watch front-right TISSOT front PlayBoy front-left 
14 PlayBoy front-left TISSOT front Watch front-right 
15 Watch front-right TISSOT front PlayBoy front-left 
16 Watch front-right TISSOT front PlayBoy front-left 
17 TISSOT front ZuoKY left LaoFX front-left 
18 LaoFX front-left TISSOT front ZuoKY left 
19 LaoFX front-left ZuoKY left TISSOT front 
20 TISSOT front LaoFX front-left ZuoKY left 
21 LaoFX front-left TISSOT front ZuoKY left 
22 ZuoKY front LaoFX front-right CHJ front-left 
23 LaoFX front-right ZuoKY front CHJ front-left 
24 ZuoKY front LaoFX front-right CHJ front-left 
25 ZuoKY front CHJ front-left LaoFX front-right 
26 LaoFX front-left TISSOT front ZuoKY left 
27 LaoFX front-left TISSOT front ZuoKY left 
28 ZuoKY front CHJ front-left LaoFX front-right 
29 ZuoKY front LaoFX front-right CHJ front-left 
30 LaoFX front PlayBoy front-right ZuoKY front-left 
31 PlayBoy front TISSOT right ZuoKY left 
32 LaoFX front ZuoKY front-left PlayBoy front-right 
33 PlayBoy front-right ZuoKY front-left LaoFX front 
34 LaoFX left TISSOT front-right PlayBoy front-left 
35 LaoFX left TISSOT front-right PlayBoy front-left 
36 Watch front-right TISSOT front PlayBoy front-left 
37 LaoFX front-left TISSOT front-right PlayBoy front 
38 LaoFX front PlayBoy front-right ZuoKY front-left 
39 PlayBoy front-right ZuoKY front-left LaoFX front 

 
Figure 17. Positioning errors with three ROs. 

As shown in Figure 18, the maximum and minimum positioning errors are 7.16 and 0.49 m, 
respectively, and the mean positioning error is 3.54 m. 
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Figure 18. Positioning errors with three ROs. 

Locality description reflects human spatial cognition, which has both commonness and 
personality. More people in the adjacent place describe locality with the same ROs and even the 
same directions (Table 1, numbers 27–31). The existing individuals in the adjacent place describe 
locality with different ROs (Table 1, numbers 17 and 18), and even different directions (Table 1, 
numbers 11 and 14). This difference can be explained by the habits or standing orientations when 
describing locality. Another characteristic of spatial cognition is uncertainty, which reflects 
personality to the same extent. Under the naïve cognition of the complex environment, the 
positioning accuracy does not exceed 3.55 m and is more acceptable than a 3–5 m positioning 
accuracy using common smartphones with complex and costly indoor positioning techniques. 

Context is an important factor in positioning locality with locality description. If more contexts 
(e.g., spatial and semantic) are available, then positioning accuracy improves. (1) Semantic context: 
aside from the locality description with two or three ROs with directions, other ROs that can 
provide additional position clues, such as “near marble columns” may appear in locality 
description. All of these clues can refer to our model or other related models. (2) Spatial context: the 
infrastructures in the domain may affect the probability distribution. 

6. Discussion 

In this section, we will have a deeper discussion with respect to (1) positioning errors and (2) 
near relation. 

6.1. Positioning Errors 

For fuzzy spatial cognition, positioning errors with locality description are inevitable. 
Positioning errors can be divided into two aspects according to position clues, namely, direction 
and near relation. (1) Locality description of adjacent localities occurs at different angles. In Table 1, 
numbers 11 and 14, the angles of locality description are 90° and 45°, respectively. This result could 
be explained by the standing orientations or the attractive part of ROs. We calculate the direction by 
using the visible segment of ROs from the general; (2) Near, a relative conception, reflects distance 
only. In ILRS, more people select near ROs, but some people select relatively far ROs to describe 
locality, resulting in many positioning errors. As shown in Table 1, numbers 16 and 19, LaoFX, 
which is not near when compared with other ROs, such as PlayBoy or Watch, is selected. The above 
two aspects are expressions of spatial fuzzy and naïve cognition. 

6.2. Analysis of Near Relation 

As a supplement of quantitative distance, qualitative distance is used frequently in locality 
description. When compared with positioning locality indoors with quantitative distance, the 
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positioning accuracy with qualitative distance (3.5 m) [35] is more acceptable, in contrast to 
intuitive cognition where the distance with number has greater accuracy. 

The qualitative distance relation model stated in the paper, that is, near, is proposed based on 
then Voronoi diagram for polygons, which is an important tool for modeling spatial problems. The 
generation of a Voronoi diagram for polygons can be raster- or vector-based [36,37]. The 
vector-based algorithm is not efficient and cannot be integrated in the GIS software [37]. Our 
proposed algorithm is raster-based, which is simple, but it has a slow process. Increased attention 
should be given to the development of an efficient algorithm for generating a Voronoi diagram for 
polygons or other features. 

In addition, the weights of all the landmarks indoors are the same, as follows: (1) The factors 
(i.e., size, height) that affect the distance cognition of landmarks indoors are almost the same; (2) 
Locality description has no substitute for the weight of landmarks. If the weights of all the 
landmarks are different, then the near distance relation based on ordinary Voronoi diagram is 
infeasible. Whether the multiplicatively weighted Voronoi diagrams can answer this question is 
unknown, and this issue will be included in our future work. 

7. Conclusions 

Implicitly is an inherent characteristic of locality description, especially in ILRS. Based on this, 
we propose that near landmarks are selected easily when describing locality with the directions of 
locality description. To achieve positioning of localities with directions description in ILRS, we 
propose a joint probability function that consists of qualitative distance (i.e., near relation) and 
relative direction membership function. The qualitative distance membership function that 
considers both minimum Euclidean distance and the stolen area is based on fuzzy set. For 
consistency with cognition, some definitions are provided during the calculation of relative 
direction, which can also reduce the number of points to be explored from an algorithmic point of 
view. Some cognitive experiments are conducted and demonstrate that a positioning accuracy of 
3.55 m can be achieved within a 45 m visual space in ILRS. 

The membership function for near relation proposed in our paper is raster-based, which has 
low efficiency. In our future work, vector-based or parallel algorithm will be developed, which is 
helpful for enhance the algorithm efficiency. Furthermore, the function is based on simple 
geometric calculation and does not consider contextual information, such as personal reputation, 
background, and hobbies, which are important to distance cognition. If enough data are available, 
then the near relation can be modeled based on ordered logit regression (OLR) or SVM. 

Our method is based on spatial cognition, so that reasonable direction cognition is necessary. 
Despite the fact that the relative direction calculation based on visible segment in our work 
performances well in positioning locality, it does not work well in all cases. For instance, if the 
length of visible segment of one RO is much longer that the other RO, which is rare indoor, whether 
our method is feasible should be further discussed. 
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