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Abstract: A monolithic electrochemical micro seismic sensor capable of monitoring three-axial
vibrations was proposed in this paper. The proposed micro sensor mainly consisted of four sensing
units interconnected within flow channels and by interpreting the voltage outputs of the sensing units,
vibrations with arbitrary directions can be quantified. The proposed seismic sensors are fabricated
based on MEMS technologies and characterized, which produced sensitivities along x, y, and z axes as
2473.2 ± 184.5 V/(m/s), 2261.7 ± 119.6 V/(m/s), and 3480.7 ± 417.2 V/(m/s) at 30 Hz. In addition,
the vibrations in x-y, x-z, and y-z planes were applied to the developed seismic sensors, leading to
comparable monitoring results after decoupling calculations with the input velocities. Furthermore,
the results have shown its feasibilities for seismic data recording.

Keywords: monolithic electrochemical seismic sensor; three-dimensional vibrations monitoring;
decoupling mechanism

1. Introduction

Seismic sensors capable of sensing the seismic motions of the earth are considered as key
components in the field of seismology [1], such as geophysical exploration [2,3] and seismic
monitoring [4–6]. Especially in some applications, like structure damage detection [7–11], some
automated sensors with smart materials are used [12,13]. According to the differences in operation
principles, the conventional seismic sensors are mainly divided into variable capacitance seismic
sensors [14,15], fiber-optic sensors [16,17], micro-electromechanical system accelerometers [18,19], and
electrochemical seismic sensors [20,21]. Due to the use of liquid proof masses, electrochemical seismic
sensors are featured with high sensitivities and low noise levels in the low-frequency domain, which is
successfully used in self-contained broadband bottom seismographs.

However, in some field where the monitoring of three-dimensional motion actually is widely
required from the perspective of applications (e.g., earthquake early warning system [22], seismic
data recording system [23] and furthermore measuring shear stress in aerodynamics structures [24]),
the monitoring of three-dimensional motions based on electrochemical approach, which is usually
orthogonally mounted by three unidirectional seismic sensors, suffers from key limitations of bulky
structures and high cost [21].

To deal with this issue, a monolithic electrochemical seismic sensor was proposed, which consisted
of the acrylic glass housing, two membranes, an electrolyte solution, and four sensing units, enabling
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the monitoring of three-dimensional vibration signals. More specifically, the sensing units were located
at the centers of the flow channels inside the glass housing and were connected with each other by
electrolyte solutions (KI and I2), which were filled into the space between the glass housing and the
membranes. On top of the housing, four sensing units were separated by a separation plate.

2. Structure and Operating Principle

The proposed structure of monolithic seismic sensor, including the overall schematic, the
cross-section in x and y axial direction and the schematic of sensing units in the flow channel were
shown as Figure 1. The external vibration, which is usually represented as the velocity form, was
applied to the device resulting in the convection of the liquid with the support of the rubber membrane.
The sensing units in channels detected the change of active ions caused by the convection and then
output the electric information.

In order to improve the performance in sensitivities and reliabilities of the proposed devices, the
cross-flow separation plates shown in Figure 1a were included to limit the flow of electrolyte solutions.
The separation plates divided the liquid masses into four parts in four channels, which were connected
with each other through the bottom of the device. The liquid part in this modified structure was
simplified ias Figure 1b.

More specially, the sensing mechanism can be explained by a mechanical part and an
electrochemical part. The mechanical part, which consists of an acrylic glass block, rubber membranes
and a liquid inertial mass, transfers the external vibrations to the velocities of the liquid mass inside
the channel based on the restoring force generated by the membranes.

Figure 1. (a) Overall views and cross-section views of the proposed device with four flow channels
and sensing units inside them. (b) The simplified schematic of the liquid part in the proposed device.

Due to the effects of the external vibrations in membranes and the exist of the viscous forces in
the liquid, the convection of the electrolyte solution was generated. According to the Newton’s Second
Law of Motion, the characteristic of the mechanical part is expressed as follows.

m
d2V
dt2

1
Sc

+ RhSc
dV
dt

+ kV = −m
dvex

dt
, (1)
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where vex represents the amplitudes of the external vibration velocity; Sc represents the cross sectional
area of the channels; Rh represents the flow resistance coefficient and k represents the elastic coefficient
of the rubber membrane. The transfer function of mechanical part is solved as follow.

|H1(ω)| =
∣∣∣∣ vin

vex

∣∣∣∣ = ω2√(
ω2 −ω2

0
)2

+ R2
eω

2
, (2)

where ω0 =
√

k
m represents the resonant frequency of the device and Re = RhS2

c
m represents the

equivalent damping [25]. As presented in (2), with the same frequency and channel geometries, the
output velocity of the liquid and the input vibration velocity remain linear.

The electrochemical part, including an electrolyte solution and sensing units, ensured that the
motions of the liquid mass in channels can be transferred into the electrical outputs completely.
The sensing unit composed of an insulation silicon substrate layer and a pair of planar platinum
electrodes fabricated on the both surfaces of the substrate was fixed transversely in the center of
channels, as shown in Figure 1a. The layouts of the anodes and the cathodes of the sensing units
in channel B and C were opposite to that in channel A and D. The voltage drops between the
anodes and the cathodes in the sensing units were set to 0.3 V. With the application of an electric
potential, electrochemical reactions 3I− − 2e− → I3

− and I3
− + 2e− → 3I− [24] occur on the anodes

and cathodes, respectively.
The electrode currents were generated by the ionic flux on the electrodes. According to the

Faraday’s Law, cathode output currents were presented as follow.

Io = nF
∫

Jnds, (3)

where n = 1 represents the number of the exchanged electronics in the reaction; F = 96,500 represents the
Faraday constant; n represents the unit normal vectors on the cathode; s represents the surface area of
the cathode. Besides, the Nernst-Plank equation, Fick Laws, Navier-Stocks equation, and Butler-Volmer
equation describe the transfer in the electrochemical part [25]. With the linear simplification of the
boundary conditions, the transfer function of the electrochemical part can be expressed as:

|H2(ω)| =
∣∣∣∣ Io

vin

∣∣∣∣ = C√
1 + ( ω

ωD
)2

, (4)

where C is the transfer constant, which depends on the device; ωD represents the diffusion frequency,
which is related to the diffusion coefficient of the liquid. Based on an operational amplifier and a
decoupling circuit, the cathode currents can be changed to voltages, where the amplitudes of voltages
are proportional to the input vibration velocities.

Without environmental vibrations, as shown in Figure 1b, a stable concentration gradient of I3
−,

the active ions in the electrochemical reactions due to their far lower concentrations than I− [25], forms
between anodes and cathodes, resulting in an equilibrium stage where the cathode currents through
every unit remain equal. Due to the exists of differential calculations in the decoupling circuit, the
output voltage is zero.

In response to an external vibration along different axis, the mechanisms are different. For example,
in case of a seismic vibration in the x axis, the output voltage of the direction vibration (ux) is represented
as follow.

ux = (uA + uB)− (uC + uD) = uA − uC + uB − uD (5)

where ux represents the final output voltage in response to the vibration along the axis and uA, uB, uC,
and uD represent the outputs of sensing units in the channel A, B, C, and D.
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The operating mechanism under the condition of x-axis vibration is presented in Figure 2. Due to
the limit of the separation plate and the membranes, the electrolyte solution flows as shown in Figure 2,
resulting in an opposite change of liquid flow in channel A and channel B. but due to the opposite
cathode-anode layout, the active ions both moved from the cathode to the anode in each channel in A
and B, producing comparable current outputs.

Thus, uA and uB should be added together to double the output. The same phenomenon takes
place in channels C and D. Owing to the opposite cathode-anode layout between the sensing units in
channel A and C, B and D, the amplitudes of formula (uA + uB) are opposite to that of (uc + uD) and,
thus, the final output voltage is formed by the difference of (uA + uB) and (uc + uD).

Figure 2. Sensing mechanism illustrations and schematics of fluid flowing mechanism in response
to acceleration along x-axis. Blue arrows represent the direction of liquid flow due to the convection
caused by the external vibration while white arrows represent the direction of the membrane vibration.
iA, iB, iC, and iD represent the cathode currents in sensing unit A, B, C, D, respectively.

Equation (5) also ensures that ux is not affected by the vibrations in other axes. For example,
in response to the y-vibration, the outputs in uA and uC caused by the corresponding motion of
the solution were positive while the outputs in uB and uD were negative in the same half period.
Through the equation (uA − uC) and (uB − uD), the same outputs would be offset. In the same way,
for cases of z vibrations along the axis, the outputs of sensing units in channels A and D, B and C are
comparable, canceling the output of ux.

The output voltage in response to the y direction vibration (uy) is represented as:

uy = (uA + uC)− (uB + uD) = uA − uB + uC − uD (6)

where uy represents the final output voltage in response to the vibration along the y axis.
The operating principle can be explained in Figure 3. Similarly with x-axis vibration, an opposite

change of active ion concentrations in channel A and channel C was generated. uA and uC, uB and uD

should be added together to double the output and the final output can be expressed as the difference of
(uA +uC) and (uB +uD) as represented in Equation (6). In the same way with Equation (5), the comparable
output caused by x-vibration and z-vibration can be cancelled through the decoupling, Uy was zero.

The operating mechanism under the condition of z-axis vibration is shown in Figure 4. When a
z-axial vibration is applied, the electrolyte solution moves along the direction as arrows described,
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leading to identical movements in channels of A, B, C, and D. Thus, due to the opposite cathode-anode
layout in sensing units in channels B and C, the output voltage of the z-direction vibration (uz) is
represented as:

uz = uA − uB − uC + uD = uA − uB + uD − uC (7)

Figure 3. Sensing mechanism illustrations and schematics of fluid flowing mechanism in response
to acceleration along y-axis. Blue arrows represent the direction of liquid flow due to the convection
caused by the external vibration while white arrows represent the direction of the membrane vibration.
iA, iB, iC, and iD represent the cathode currents in sensing unit A, B, C, D, respectively.

Figure 4. Sensing mechanism illustrations and schematics of fluid flowing mechanism in response
to acceleration along z-axis. Blue arrows represent the direction of liquid flow due to the convection
caused by the external vibration while white arrows represent the direction of the membrane vibration.
iA, iB, iC, and iD represent the cathode currents in sensing unit A, B, C, D, respectively.
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Again, in response to the seismic vibrations from other axes including both x and y directions,
there is no output and uz is always zero. Thus, Equation (7) ensures that uz is not affected by the
vibrations in the other axes.

3. Fabrication

Figure 5a showed the fabrication progress of the electrodes in sensing units with
Micro-electromechanical Systems (MEMS) technology. Firstly, the insulating spacers based on 130 µm
thick silicon wafer were formed by the 600 nm thick silicon oxide layer on both sides of the wafer
substrate. Then the AZ1500 photoresist was spin-coated on one side of the wafer. Through the
lithography progress, the arrays of holes were patterned by UV lithography after the soft bake of the
photoresist. A 120 nm platinum electrode was sputtered on one side of the wafer. After the lift-off
progress, the area of holes was exposed. The electrode on the other side of the wafer was conducted in
the same way and two totally same electrodes were formed. Next, DRIE (deep reaction ion etching)
was used to form the channels in the wafer with AZ4620 photoresist pre-coated on the front side of the
wafer to protect the electrodes from being etched in DRIE progress.

Then the electrode chips were compressed mechanically by the unit glass housing and two
O-shaped rubber rings in between with bolts. The O-rings were easily deformable so that the channels
described in Figure 5a can be sealed completely instead of the use of any kinds of adhesive.

The pictures of electrode chips with flow holes after MEMS progress and the sensing unit were
shown as Figure 5b,c.

The sensing units were immobilized in an acrylic glass housing (see Figure 5d) with the alignment
of the holes in the sensing units and the glass housing, forming flow channels. The membranes
covered the top and bottom surfaces of the housing to form a sealed cavity by mechanical compressing.
The electrolyte solution was then injected into the cavity through a liquid valve in the housing.
The assembled device was shown in Figure 5e.

Figure 5. (a) The fabrication progress of the electrodes in sensing units, including thermal oxidation, Pt
sputtering, lift-off and deep reaction ion etching. (b) The electrode fabricated by MEMS technology
with a lot of flow holes. (c) The sensing unit composed by electrodes and flow channels. (d) The acrylic
glass housing with separation plate and flow channels. (e) The assembled device.

4. Results

The performances of the three-dimensional devices were measured by a vertical platform for
the characterization of x- and y-axial vibrations and a horizontal platform to characterize z-axial
responses. More specifically, a 4808-type vibration exciter manufactured by B & K in 22820 Savi Ranch
Parkway, Yorba Linda, CA, USA [25] was included in the vertical test and a low-frequency acceleration
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calibration system fabricated by Dongling Technologies in Suzhou city, Zhejiang province, China was
used in the horizontal characterization.

To identify both sensitivities and cross-talks of the proposed monolithic seismic sensor in response
to three-dimensional vibrations, experiments with single inputs at the x, y, or z axes were conducted
(see Figure 6).

Figure 6a presented the output voltages of three axes in response to x-axis vibrations.
The sensitivity at the x axis at 30 Hz was characterized as 2473.23 ± 184.55 V/(m/s). Meanwhile, in
response to x-direction vibrations, the voltage outputs at y and z directions were much lower compared
to the values of the x-direction voltages. The ratios of output and the crosstalk ux/uy and ux/uz

were 7.65 and 8.66 at 30 Hz. The unwanted output voltages at the y and z directions were due to the
mismatched electrodes in micro-fabrication, which cannot be avoided entirely. However, this issue can
be to an extent addressed by accurately controlling the fabrication and packaging steps to decrease
potential geometrical differences among sensing units.

Figure 6b showed the voltage outputs of three axes in response to a vibration along the y axis.
The sensitivity at the y axis at 30 Hz was quantified as 2261.71± 119.68 V/(m/s), which was comparable
to the sensitivity of the x axis when x-directional vibrations were applied due to the axisymmetric
structure in the x-y plane. The ratios of output and the crosstalk uy/ux and uy/uz were quantified as
8.34 and 7.27 at 30 Hz.

As shown in Figure 6c, the sensitivity of the z-axis in response to z vibration inputs was quantified
as 3480.71 ± 417.20 V/(m/s) at 30 Hz, which was higher than the corresponding sensitivities in the
x and y axes. It was speculated that due to the effect of the membranes, the motion of the liquid
under the membranes, which was considered as the part with the largest velocity caused by the
external horizontal vibration, cannot convert the horizontal velocity into the channel-direction velocity
completely. Thus, external vibrations at the z direction without the energy loss in velocity conversion
can lead to higher voltage outputs in comparison to x and y directional vibrations. The ratios of output
and the crosstalk uz/ux and uz/uy were quantified as 8.84 and 11.57 at 30 Hz.

Figure 6. Independent output voltages along x, y, and z axes in response to the input vibration at
30 Hz along x (a), y (b), and z axes (c), where huge differences between the input axial outputs and the
others proved that when the vibration along an axis input, the crosstalk caused by the other axis can
be ignored.

Furthermore, the outputs of the devices in response to applied inputs at the angles of 45◦ within
the x-y, x-z, and y-z planes were collected. Note that the inputs were applied by the vibration exciter
and a home-developed framework, as shown in Figure 7. The angle was strictly confirmed with
angular measuring tools.

In response to an input within the x-y plane, the corresponding monitoring velocities calculated
with the vector synthesis by the ratios of the axial outputs and the corresponding sensitivities in x and
y axes, shown in Figure 6, were quantified as the function of input velocities (see Figure 8a).
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As shown in Figure 8a, the slopes of the curves in response to the 45-degree angle inputs were
quantified as 0.97, which were comparable with the slopes of the input curves, validating the feasibility
of the monolithic device. In response to inputs within the y-z plane, the slopes of the monitoring curves
in response to the 45-degree angle inputs were quantified as 0.90, as shown in Figure 8b. Similarly, in
response to the 45-degree angle x-z plane input, the slopes of the monitoring curves in response to
the 45-degree angle inputs were quantified as 0.87 (see Figure 8c). The comparable curves proved the
proposed devices were capable of monitoring the vibrations in any directions.

In summary, no matter which direction the vibrations were input along, the voltage outputs by
the monolithic device were close to the theoretical result, which proved the feasibility in measuring
three-dimensional vibration through the decoupling from the mix input.

Figure 7. The schematic of the home-developed framework.

Figure 8. The comparisons of the monitoring velocity based on the decoupling mechanism and the
actual input velocity in response to the vibration at the direction of 45-degree angle with the x axis in
x-y plane (a), at a 45 degree angle with the y axis in y-z plane (b), and at a 45-degree angle with the x
axis in x-z plane (c), respectively. The closed value between the monitoring results and the actual input
proved the feasibility of the monolithic structure and the decoupling mechanism.

5. Conclusions

In conclusion, a MEMS based monolithic electrochemical seismic sensor, which can monitor
three-dimensional vibrations, was demonstrated in this paper. Experimental results showed the
prominent differences of output voltages between input axis and the other axes. The ratios of the
outputs and the crosstalk of the other axes are about 10, which illustrated the great independence
and the negligible crosstalk. In addition, at 30 Hz, the sensitivity at the x axis was characterized as
2473.23 ± 184.55 V/(m/s). y axis sensitivity was quantified as 2261.71 ± 119.68 V/(m/s), and z axis
sensitivity can reach 3480.71 ± 417.20 V/(m/s).

The vibration information along three axes can be decoupled accurately from the mixed input
in x-y, x-z, and y-z plane. The average ratios of the monitoring velocities and the input at three axes
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were calculated as 0.97, 0.90, 0.87, respectively and the feasibility of the decoupling calculation can be
proved from it.
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