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Abstract: In this paper, we present a flexible combined system, namely the Vehicle mode-driving
Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or
the current driving activity of travelers. Our proposed system is designed to be lightweight in
computation and very fast in response to the changes of travelers’ vehicle modes or driving events.
The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as
cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only
on accelerometer data in order to minimize the energy consumption of smartphones. By contrast,
the driving activity detection module uses the data collected from the accelerometer, gyroscope, and
magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight,
turning left, and turning right. Furthermore, we propose a method to compute the optimized data
window size and the optimized overlapping ratio for each vehicle mode and each driving event
from the training datasets. The experimental results show that this strategy significantly increases
the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the
impact of different feature sets (time domain features, frequency domain features, Hjorth features) as
well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48,
K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system
achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of
98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier
and a feature set containing time domain features, frequency domain features, and Hjorth features.
Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the
overall accuracy of 97.33% that is considerably higher than that of the state-of the art.

Keywords: vehicle mode; driving event; smartphone sensor; motorbike assistance; optimized
window size; optimized overlapping ratio

1. Introduction

Today, driving assistance and road safety are critical issues in all countries around the world.
According to the global status report on road safety 2015 by the World Health Organization (WHO),
road accidents are in the worldwide top-ten causes of death, killing more than 1.2 million of people
per year. The road traffic fatality rates are especially high in the low-income and middle-income
countries [1]. In fact, there are numerous factors possibly causing road accidents. Nonetheless, assisting
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and providing safety awareness for drivers during their trips is an effective approach to prevent
such accidents.

Recently, researchers have paid a lot of attention to study various methods of providing assistance and
safety awareness to drivers. Indeed, such works primarily fall into the following categories: recognizing
vehicle mode (car, bus, train, bike, walking ...) [2–9], identifying driving styles (normal, aggressive, drunken,
fatigue, drowsy, inattentive ...) [10–16], detecting normal/abnormal driving events (moving, stopping,
turning left, turning right, weaving, sudden braking, fast u-turn...) [17–22], accident detection [23,24],
estimating energy consumption and pollution [25], monitoring road and traffic condition [26–30].

In fact, there are several approaches to access driver and vehicle information. In the first approach,
a set of sensors and additional hardware are pre-deployed in vehicles, for instance telematic boxes (e.g.,
black boxes provided by car insurance companies), on-board diagnosis (OBD-II) adapters plugged into
the vehicle’s controller area network (CAN) [24,31]. The information recorded by these devices can be
then retrieved or sent over the Internet. However, this strategy requires vehicles to install extra devices,
which incur more cost. Moreover, it is not feasible to implement these techniques in certain types of
vehicles like bikes, and motorbikes. To overcome these drawbacks, an alternative approach is to use
smartphones to collect data through a set of embedded sensors such as inertial sensors (accelerometers
and gyroscopes), global positioning systems (GPS), magnetometers, microphones, image sensors
(cameras), light sensors, proximity sensors, direction sensors (compass) ... The technological advances
and the rapid growth in smartphone usage make the latter approach become broadly used in
recent studies.

Furthermore, the global status reports on road safety 2015 by WHO also shows that approximately
a quarter of all road traffic deaths involve in motorcyclists. However, very few existing works provide
driving assistance and safety awareness for motorcyclists [4,20–22,32]. Nonetheless, there are certain
limitations in such works. The method proposed in [32] is constrained under certain conditions such
as fixing the position of smartphones, and using some predefined threshold to distinguish between
normal and abnormal driving patterns. However, such thresholds may be sensitive due to the variety
of sensor quality in different smartphone models or road conditions. The work proposed in [4] must
rely on the combination of GPS and accelerometer data to predict eight travelling modes. Nonetheless,
its prediction accuracy is quite low with the average precision of 76.38% and an average recall of
75.88%.

In this work, we tend to develop a real-time flexible combined system, namely Vehicle
mode-driving Activity Detection System (VADS), that is capable of detecting not only the vehicle
mode currently used by a traveler (i.e., walking, a bike, a motorbike, a car, or a bus) but also various
basic driving activities of travelers (i.e., stopping, going straight, turning left, turning right). In fact,
the strategy of combining these two separating modules in our system allows improving the accuracy
in recognizing driving events when the current vehicle mode of a traveler is known. The vehicle
mode detection module simply relies only on accelerometer data in order to minimize the energy
consumption of smartphones. However, the driving activity detection module accounts for turning left
and turning right activities, which involve in changing the direction of vehicles. Hence, it requires the
data from accelerometers, gyroscopes, and magnetometers. This work focuses on finding a solution
that is able to collect sensor data and provide real-time prediction results in a smartphone application.
Our system is thus designed to meet several main goals: it needs low computational resources and low
energy consumption, and it needs to able to respond fast to the changes of travelers’ vehicle modes
and driving activities.

It is well known that the data segmentation technique has been applied for activity recognition
in which sensor data is split into a number of overlapping data segments (alternatively called data
windows) of a predefined size. In fact, most of existing studies use the same window size and the
same overlapping ratio for predicting all vehicle modes and all driving activities. Such parameter
values are randomly chosen or taken from previous studies. Indeed, each vehicle mode as well as each
driving activity has its own cyclic characteristics. Hence, it is unrealistic to fix such parameter values
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for all vehicle modes or all driving activities. Up to now, there exist few works that consider inferring
the optimal data window size and the optimal overlapping ratio from training datasets [8,33,34].
The authors of [33,34] prove that the window size of 1–2 s results in the best accuracy and the best
processing speed in predicting various human activities. Then, the authors of [8] show that the
window size of 60 s leads to the highest overall recall rate in detecting vehicle modes from their dataset.
However, this long window size causes a slow responding speed as well as a long processing time due
to its long feature vectors. Thus, it is not suitable to apply this framework for real-time application.
In this work, we thus propose an alternative algorithm to compute the optimal window size and the
optimal overlapping ratio for each vehicle mode and each driving event from the training datasets.
The obtained optimal window sizes fall in the range 4–6 s that are reasonable for real-time prediction.
The inferred optimal parameters allow the vehicle mode detection module to improve its prediction
accuracy by 2.73%, 3.04%, 6.45%, 7.37%, and 5.72% when using Random Forest, J48, Naïve Bayes,
KNN, and SVM classifier, respectively, on a feature set combining time domain features, frequency
domain features, and Hjorth features as comparing with the strategy using the same window size
of 5 s and the same overlapping ratio of 50%. The similar improvements are observed in predicting
various driving activities of motorcyclists.

The rest of the paper is organized as follows: the related work is summarized in Section 2.
In Section 3, the detailed framework of our proposed VADS is described. Then, Section 4 provides
the description of data processing and feature extraction processes carried out in this system. Next,
we present the experimental settings and the evaluation of the system’s performance in detecting
vehicle mode and driving activities in Sections 5 and 6, respectively. Section 7 describes the performance
comparison between our proposed framework and several recent works on a public dataset. Finally,
we provide the conclusion remarks in Section 8.

2. Related Work

In this section, we review a number of recent works providing smartphone-based solutions for
vehicle mode detection and driving event detection.

2.1. Vehicle Mode Detection

Table 1 provides the summary of existing works in the area of vehicle mode detection.
The predicted vehicle modes, ranging from 3 to 8 modes, consist of the non-motorized ones
(stationary, walk, run, bike) and the motorized ones (motorcycle, bus, car, train, tram, subway, ferry).
Most of these works requires data from GPS or the combination of accelerometer with other sensors
(gyroscope, magnetometer) [2,4–6,8]. Yet, these input requirements lead to higher power consumption
of smartphones. Though there exist few works relying only on accelerometer data, their obtained
prediction accuracy is low [3]. Numerous machine learning classification algorithms are applied,
for instance, Random Forest (RF), Decision Tree (DT), Naïve Bayes (NB), K Nearest Neighbor (KNN),
Support Vector Machine (SVM), Hidden Markov Models (HMM), Gradient boosting decision tree,
and XGBoost. Among them, Random Forest usually results in the highest prediction accuracy [2,8].
The similar trend is observed in our experiments. In addition, several works achieving high prediction
accuracy require a long window size. For example, the window size of 10 min and 60 s are used
in the works of [5] and [8], respectively. As aforementioned, those prediction frameworks are not
applicable for real-time prediction due to their long responding time and their high processing
resource requirement.
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Table 1. Summary of recent researches on vehicle mode detection.

Studies Modes Smartphone
Data Algorithm Features Window

Size
Prediction
Accuracy

Bedogni et al. [2] walk, car, train gyroscope,
accelerometer RF, SVM, NB time-domain 10 s Accuracy: 97.71%

Hemminki et al. [3]
stationary, bus,

train, metro, tram,
car

accelerometer HMM

time-domain,
frequency-domain,

peak-based,
segmented-based

1.2 s Precision: 84.9%
Recall: 85.3%

Widhalm et al. [4]
bus, car, bike, tram,
train, subway, walk,

motorcycle

gps,
accelerometer HMM time-domain,

frequency-domain ≤2 min Precision: 76.38%
Recall: 75.88%

Shafique and Hato [5] walk, bike, bus, car,
train, subway

gyroscope,
accelerometer RF time-domain 10 min Accuracy: 99.96%

Fang et al. [6]
high speed rail

(HSR), metro, bus,
car, train

accelerometer,
magnetometer,

gyroscope
KNN, DT, SVM time-domain 17.06 s Accuracy: 83.57%

Xiao et al. [7] walk, bike, bus, car,
train, subway gps

KNN, DT, SVM, RF,
Gradient boosting

decision tree,
XGboost

global/local - Accuracy: 90.77%

Guvensan et al. [8]
stationary, walk,

bus, car, tram,
metro, train, ferry

accelerometer,
magnetometer,

gyroscope

RF, KNN, J48, NB,
Healing time-domain 60 s Precision: 94.95%

Recall: 91.63%

2.2. Driving Event Detection

Table 2 presents the summary of recent studies in the area of driving event detection. It can
be seen that all of these works require data from not only accelerometer but also other sensors.
In fact, some driving events, such as left/right turns, involve changing the direction of vehicles.
Such information cannot be obtained from only accelerometer data. In addition, the works allowing
free position of smartphones usually need to convert input data from a phone’s coordinates into a
vehicle’s coordinates [35–37]. Such requirement ensures the input data taken from multiple three-axis
sensors are consistent. Along with numerous machine-learning algorithms (RF, SVM, Neural Network
(NN), Artificial Neural Network (ANN), Bayesian Network (BN)), other methods like Dynamic Time
Warping (DTW), fuzzy logic, and threshold detection are explored. Moreover, Random Forest is again
shown to have the best prediction accuracy as comparing with other machine learning algorithms in
detecting driving events [38]. Nonetheless, most of existing works target on only finding a driving
event detection framework for car or bus drivers. Indeed, it is infeasible to extend some existing
methods to identify driving events of motorcyclists, for instance, the methods using threshold detection
techniques [35,36]. Though the method of Yu et al. [37] obtains high prediction accuracy, i.e., 96.88%,
it requires too many features, i.e., 152 features. This factor certainly induces high computational time
and resource. Thus, our work aims to investigate an efficient framework that can either provide
real-time prediction with low computational resource or achieve high accuracy in detecting driving
events of motorcyclists.

Table 2. Summary of recent researches on driving event detection.

Studies Driving Events Smartphone Data Methods Features Coordinate
Reorientation

Prediction
Accuracy

Johnson and
Trivedi [11]

normal/abnormal driving
events (left/right turn,

u-turn, left/right swerving)

accelerometer,
gyroscope,

magnetometer, gps,
video

DTW
x,y,z-acceleration,
gyroscope, Euler

angle rotation

smartphones are
fixed TP: 91%

Castignani et al. [15]
hard acceleration, hard
braking, over speeding,

aggressive steering

accelerometer,
magnetometer,

gravity, gps
fuzzy logic

the time derivative
(jerk) of the
acceleration

magnitude, speed
variation, bearing

variation,
the average yaw

rate, the jerk
standard deviation

Yes TP > 90%
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Table 2. Cont.

Studies Driving Events Smartphone Data Methods Features Coordinate
Reorientation

Prediction
Accuracy

Ma et al. [35]
speeding, irregular driving
direction change, abnormal

speed control

accelerometer,
gyroscope, gps,

microphone

threshold
detection

computing speed
from gps and
y-acceleration,

detecting direction
change based on

z-gyroscope,
and turn signal
based on audio

signal

Yes

Precision:
93.95%
Recall:
90.54%

Li et al. [36]

abnormal speed changing,
steering, weaving,

operating smartphone
during driving

accelerometer,
gyroscope

threshold
detection yaw angle Yes TP > 90%

Yu et al. [37]

weaving, swerving,
sideslipping, fast u-turn,

turning with a wide radius,
sudden braking

accelerometer,
orientation sensor SVM, NN 152 time-domain

features Yes Accuracy:
96.88%

Júnior et al. [38]

aggressive braking,
aggressive acceleration,

aggressive left/right turn,
aggressive left/right lane
changing, non-aggressive

events

accelerometer,
magnetometer,

gyroscope, linear
acceleration

ANN,
SVM, RF,

BN

Time-domain: mean,
median, standard

deviation,
increase/decrease

tendency

smartphones are
fixed

AUC:
0.980–0.999

TP—True Positive, AUC—Area Under the Curve.

For more works on vehicle mode and driving event detection, we refer readers to the survey of
Prelipcean et al. [9] and Engelbrecht et al. [39].

3. The Proposed Framework of Vehicle Mode-Driving Activity Detection System

Our proposed system, VADS, consists of two main modules: The first one, Vehicle mode Detection
Module (VDM), focuses on detecting the vehicle mode currently used by a user (i.e., walking, a bike,
a motorbike, a car, or a bus) solely relying on accelerometer sensor data. The second one, Activity
Detection Module (ADM), concentrates on detecting a set of primitive driving activities based on the
data collected from accelerometer, gyroscope, and magnetometer sensors of smartphones when the
user ‘s vehicle mode is known (Figure 1). This set contains the following activities: {stopping (S), going
straight (G), turning left (L), turning right (R)}.

Figure 1. The Vehicle mode-driving Activities Detection System (VADS).

3.1. The Vehicle Mode Detection Module (VDM)

In the details, VDM is divided into two phases, including the training phase and the monitoring
phase (Figure 2). In the training phase, time series data are first collected from the accelerometer sensor
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and manually labeled with the corresponding vehicle type, i.e., walking, a bike, a bus, a car, or a
motorbike. Then, several preprocessing techniques such as noise filtering and windowing technique are
applied to calibrate the acceleration data. Next, representative information is extracted by exploring
various categories of popular features, for example time domain features, and frequency domain
features. A set of formulas for computing such features is presented in Section 4.2. The resulting
feature vectors are then used to train the vehicle detection model. Finally, a number of popular machine
learning classifying algorithms, such as Naïve Bayes, J48, Random Forest, SVM, and KNN are tested
on the training dataset to select the most suitable classifier for the monitoring phase.

Figure 2. The framework of the Vehicle Detection Module (VDM).

In the Monitoring phase, the real-time accelerometer data is captured, preprocessed, and then
extracted into a set of relevant features as describing in the training phase. Finally, the type of vehicle
currently used by a traveler is identified based on the best vehicle detection model built in the above
training phase and the computed feature vectors.

3.2. The Activity Detection Module (ADM)

As described above, ADM focuses on recognizing a set of basic driving activities for each vehicle
mode, i.e., {Stopping, Going straight, turning Left, turning Right}. The structure of ADM is quite
similar to VDM with two phases—the training phase and the monitoring phase (Figure 3).

Indeed, turning left and turning right activities involve the directional changes of vehicles. Thus,
in order to adequately capture necessary information, ADM collects input data from the accelerometer,
gyroscope, and magnetometer. In addition, there are several changes in the Preprocessing and Feature
extraction processes in the framework of ADM. In the preprocessing process, the raw accelerometer
data is reoriented from a smartphone’s coordinates into the vehicle’s coordinates in order to accurately
receive the information about the directional changes of vehicles. In the feature extraction process,
a number of additional features representing the angle changing information of vehicle are introduced.
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Figure 3. The framework of the Activity Detection Module (ADM).

4. Materials and Methods

4.1. Data Preprocessing

4.1.1. Data Filtering

Filtering is performed to mitigate noisy data values before the feature extraction process that
is important to enable better recognition. There are different types of filters that can be applied to
noisy sensor data. In general, a low-pass filter is usually used to remove some high frequency noise
interfering with the inertial sensor data. The transfer function of a first order low-pass filter in discrete
domain can be represented by

H(z) = 1 + αz−1, (1)

where α is a factor that determines the cutoff frequency of the filter and z−1 represents for the unit
delay between data samples [40]. Higher order filters can be used to build a low-pass filter or high-pass
filter or band-pass filter with better filtering characteristics. However, the computational complexity
increases with the order of filter. Therefore, in order to minimize this problem, a second-order filter
with following transfer function is often used [40], as follows:

H(z) =
Y(z)
X(z)

=
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 , (2)

where ai and bi are the filter coefficients that determine type of the filter. In this article, we use a
band-pass filter based on the second-order filter to select a given frequency band which is significant
to increase the importance of some features like Hjorth parameters. In particular, the coefficients
[b0, b1, b2] are [1, 0, ±1] and [a1, a2] are [−1.56, 0.6].

4.1.2. Reorientation

As briefly aforementioned, the orientation of smartphones might change during a trip, and this
change becomes a challenge in activity recognition. Thus, to solve this problem and obtain consistent
accelerometer data for the later activity recognition process, two approaches can be used.

The first approach is to use the orientation-independent features that are often based on the
magnitude of the acceleration calculated as follows:

amag =
√

a2
x + a2

y + a2
z , (3)
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where ax, ay, az are the acceleration components along axes. This solution is simple and cost-effective
due to using the acceleration alone in recognition, which means that the solution can be applied for
inexpensive smartphones where only an accelerometer is installed.

The second approach is required to transform the collected accelerometer data, representing the
acceleration measurement in m/s2 along X, Y, Z axes (Figure 4a), from a smartphone’s coordinate
system to a vehicle’s coordinate system, representing by X’, Y’, Z’ axes (Figure 4b), through angular
rotations around three axes, as below.

Figure 4. (a) The orientation of a smartphone given by (X, Y, Z) coordinate system. (b) The orientation
of a vehicle given by (X’, Y’, Z’) coordinate system.

The vehicle’s coordinates can be obtained from the accelerometer data collected on the
smartphone’s coordinates by the following formula [41]: aX′

aY′

aZ′

 = R

 aX
aY
aZ

 (4)

where R = Rx × Ry × Rz and Rx, Ry, Rz are the rotation matrices representing the rotation of the
sensor data around the corresponding axes. The corresponding rotation matrices are given by

Rx =

 1 0 0
0 cos β − sin β

0 sin β cos β

 (5)

Ry =

 cos α 0 − sin α

0 1 0
sin α 0 cos α

 (6)

Rz =

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1

 (7)

where β, α, and φ are respectively the rotation angles around three axes X’, Y’, and Z’, which can be
calculated and updated by retrieving the gravity and magnetic data. In smartphones, the gravity
sensor is a virtual sensor that is derived from the accelerometer with the help of gyroscope and
magnetometer [41]. Although the reorientation allows the accelerometer signal to be collected at any
orientation of the smartphone, the cost of this solution is higher than that of the first solution due to
requiring smartphones with fully equipped inertial sensors.

Our work focuses on the investigation of both solutions and shows the importance of reorientation
in activity classification module. Indeed, as these approaches do not use GPS signal, they thus
minimizes the battery consumption needed.
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4.1.3. Sliding Window

As described above, after applying noise filtering and/or reorienting processes, the resulting
acceleration data is split into a number of smaller data segments of a predefined size. Each data
segment is alternatively called a data window. Two consecutive data windows overlap each other by a
certain amount of signal values (Figure 5). Indeed, an overlapping ratio is commonly used to present
such an overlapping segment.

Figure 5. Each data window consists of N signal values. Two consecutive data windows overlap each
other by an overlapping ratio of 50%.

Most of the existing studies follow the static sliding window approach, which uses a fixed window
size for different vehicle mode detection as well as different activity recognition. However, each vehicle
mode has its own cyclic variation of data patterns. In fact, the duration of sliding windows influences
on the prediction accuracy. If the sliding window size is too small, some periodic characteristics can
be lost; the system performance of classifiers is thus degraded. By contrast, if the window size is too
large, the noise interference from other vehicle modes can be increased. Therefore, it is necessary to
investigate the effect of sliding window size and overlapping ratio on the classification process.

Given a vehicle mode, a classifier, a feature set, an overlapping ratio of data windows, and a
threshold (denoted ∆t), the procedure of inferring the optimized sliding window size from the training
dataset is demonstrated in Algorithm 1. The area under the ROC curve (AUC) generated by measuring
the sensitivity versus specificity is used as the metric for the optimization process. The Algorithm
1 works as the followings: first, it initializes the window size to 1 s—the minimum window size used
in many existing studies. Then, the window size is iteratively increased by a number of seconds
(denoted v), if it results in a prediction accuracy improvement being higher or equal to the threshold
∆t in terms of the AUC measure. Otherwise, the incremental loop stops. The finally obtained window
size value is the optimal one.

Note that the threshold ∆t indicates the minimum prediction accuracy improvement considered
as a significant change, and v is the incremental value of the window size in each iterative loop. Thus,
they do not depend on the characteristics of vehicle modes and driving activities. In our experiments,
∆t and v are respectively set to 0.001 and 1. The function ComputeAUC(w) is responsible for calculating
the accuracy of predicting a given vehicle mode/driving activity in term of the AUC measure for the
window size w, a given classifier, a given feature set, a given window overlapping ratio.



Sensors 2018, 18, 1036 10 of 25

Algorithm 1: ComputeOptimalWindowSize(∆t,v)

In this work, the above algorithm is run with the different overlapping ratios of 75%, 50%, and 25%.
The combination of the window size and the overlapping ratio resulting in the highest AUC is chosen
as the optimized parameters.

4.2. Features Extraction

Feature selection affects significantly to the performance of activity recognition classifier.
The features including time-domain metrics and frequency-domain metrics are extracted in our
work to perform the classification algorithm efficiently.

In the time domain, the popular features are based on statistic metrics such as mean, variance,
and standard deviation. Besides, some other features in time domain like difference between the
minimum and maximum values, zero-crossings, cross-correlation, peak to average ratio (PAR), signal
magnitude area (SMA), signal vector magnitude (SVM), and differential signal vector magnitude
(DSVM) are additionally computed.

The PAR metric is calculated by

PAR =
max(a)

µ
(8)

where a is the applied component and µ is the mean of corresponding component in each window.
The correlation between two data streams can be calculated as follows:

R =

N
∑

k=1

(
ak

i − µi

)(
ak

j − µj

)
√

N
∑

k=1

(
ak

i − µi
)2 N

∑
i=1

(
ak

j − µj

)2
(9)

where i, j = x, y, z and i 6= j, N is the number of data values in each window. The SMA, SVM, and DSVM
are computed as the summation of time integrals of accelerometer components respectively according
to the following formulas:

SMA =
1

2T

N

∑
k=2

(∣∣∣ak−1
i

∣∣∣+ ∣∣∣ak
i

∣∣∣)× (tk − tk−1) (10)

SVM =
1
N

N

∑
k=1

√
a2

k (11)
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DSVM =
1

2T

N

∑
k=2

(∣∣a′k−1
∣∣+ ∣∣a′k∣∣)× (tk − tk−1) (12)

where a′k = ak+1 − ak, t is the time instance, and T is the duration of a data window.
In the frequency domain, the time series data of each component is converted by using the Fast

Fourier Transform (FFT) algorithm. Then, the features consisting of energy and entropy metrics are
computed. The spectral energy in certain frequencies is an additional feature computed as follows:

EFFT =
n2

∑
k=n1
|X(k)|2 (13)

where X is the FFT of the accelerometer data and n1 and n2 are the indices of FFT coefficients in certain
frequencies. In our work, the spectral energy at 1 to 3 Hz is extracted to characterize the vehicle mode.
The entropy metric is computed by

H = −
N

∑
k=1

pk log2(pk) with pk =
|X[k]|

N
∑

k=1
|X[k]|

(14)

This feature is significant in differentiation between the statuses with similar energy.
Hjorth parameters consisting of activity (A), mobility (M), and complexity (C) were introduced by

Hjorth in 1970 to analyze time series data [42]. Because these parameters can provide useful information
in both the time and frequency domains, they were mostly used in analyzing the biomedical signals
such as ECG, EEG. Therefore, these parameters are proposed as additional features in our work.
The activity that provides the power information is computed by following formula:

A =

N−1
∑

k=1
d2

0k

N − 1
(15)

where d0k = ak+1 − ak. The mobility which provides an estimate of the mean frequency is given as

M =

√
m1

A
(16)

where m1 =
N−2
∑

k=1
d2

1k

/
(N − 2) and d1k = d0,k+1 − d0,k. The complexity which provides an estimate of

the bandwidth is given as

C =

√
m2

m1
(17)

where m2 =
N−3
∑

k=1
d2

2k

/
(N − 3) and d2k = d1,k+1 − d1,k. Applying these formulas on the acceleration

time series, we obtain the corresponding features.
For each data window, a set of features from the raw or transformed accelerometer data is

calculated. Beside three components of accelerometer along x, y, z axes, an addition component is
computed as

arms = amag − g, (18)

where amag is computed by (3) and g is the gravity calculated by averaging the magnitude of the
accelerometer data over several time windows. This component is equivalent to the rms value of linear
accelerometer data. Table 3 lists all features and the applied components used in this study.
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Table 3. Feature lists used in the proposed VADS.

Type Features Definition Applied Components

Statistic µ Mean ax, ay, az, arms, φ, θ

Time domain

σ2 Variance ax, ay, az, φ, θ
σ Standard deviation ax, ay, az

Diff = max(x) −min(x) Difference ax, ay, az
R Cross correlation (ax, ay), (ax, az), (az, ay)

ZC Zero crossings ax, ay, az
PAR Peak to average ratio ax, ay, az
SMA Signal magnitude area ax, ay, az, arms
SVM Signal vector magnitude arms

DSVM Differential signal vector
magnitude arms

I Integration φ, θ

Hjorth parameters
A Activity ax, ay, az, arms, φ, θ
M Mobility ax, ay, az, arms, φ, θ
C Complexity ax, ay, az, arms, φ, θ

Frequency domain EFFT Energy ax, ay, az, arms
En Entropy ax, ay, az

In the VDM, for each data window, we compute sets of features in every domain that consists
of a set of 20 features (T1), a set of four features (F1), and a set of only three Hjorth features of rms
component (H1). T1 consists of mean, variance and standard deviation along three axes (nine features),
difference and zero-crossings along three axes (six features), cross-correlation coefficient along three
axes (three features), signal vector magnitude and mean of the rms component. F1 contains energy
features along three axes and an rms component. Then we also create combined sets of features from
different domains: a combined set of 24 features (TF1), a combined set of 23 features (TH1), and a set
of 27 features (TFH1).

In the ADM, the activity is more complex that requires the ability to detect the change of
orientation in modes of turning left and turning right. We propose to additionally use physical
components that are the orientation angles calculated from tri-axis accelerometer data for extracting
new features. The rotation angles according to the change in orientation for the kth signal in a data
window can be approximately estimated as the following [43]:

φ[k] = tan−1

 ak
y√(

ak
x
)2

+
(
ak

z
)2

 (19)

θ[k] = tan−1

(
−ak

x
ak

z

)
(20)

Then, newly added features can be computed from these components by applying the metrics
such as mean, variance and integration. Thus, the features like PAR, SMA, and DSVM are also added
to obtain a set T2 of 34 features in the time domain. Furthermore, the entropy features are also added
to obtain a new set F2 of 07 features and TF2 of 41 features consisting of 24 features of TF1 and 17 new
features. Set H2 additionally includes 18 features of Hjorth parameters. We also build combined sets
of 59 features for activity recognition. All sets of features are summarized in Table 4.
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Table 4. Sets of features.

Domains Set of Features Number of Features Applied Module

Time (T) T1 20 VDM
Frequency (F) F1 04 VDM

Hjorth (H) H1 03 VDM
T + F TF1 24 VDM
T + H TH1 23 VDM

T + F + H TFH1 27 VDM
Time T2 34 ADM

Frequency F2 07 ADM
Hjorth H2 18 ADM
T + F TF2 41 ADM
T + H TH2 52 ADM

T + F + H TFH2 59 ADM

5. Vehicle Mode Recognition

5.1. Data Collection

An android-based program was developed to collect data from the tri-axis accelerometer sensor.
We collected five datasets on 10 volunteer subjects in the age of 22–40 years old with different vehicle
modes. Each dataset contains the samples for only one of five vehicle modes. The subjects freely
put their smartphone at any place while travelling, for example in their shirt pocket, trouser pocket,
handbag, holding in hand or in their vehicle’s hold. In the meantime, they were asked to tag the
corresponding vehicle mode as walking, a bicycle, a motorbike, a car, or a bus. Table 5 shows the data
sets collected for each vehicle mode. The sensor signal was recorded such that we obtained 50 samples
per second. The raw accelerometer data were then transformed from the phone’s coordinates to the
vehicle’s coordinates according to the method described in Section 4.1.2. Both the raw and transformed
accelerometer data are recorded in two separate files for comparison.

Different types of smartphones are used to demonstrate the validity and reliability of our
framework in activity recognition. In order to assess the generalization capability of our framework,
the datasets were collected in different conditions similar to those that occur in reality. In each vehicle
mode, the samples were collected during the trip in urban area when the subjects used different
vehicles at various speeds in both bad and good road conditions.

Table 5. Datasets for VDM.

Vehicle Mode Number of Subjects Total Recording Time Positions of Smartphone

Car 3 400 min In hand, in pockets, in box
Bike 2 300 min In hand, in pockets

Motorbike 3 500 min In hand, in pockets, in bag
Bus 4 500 min In hand, in pockets, in bag

Walking 4 200 min In hand, in pockets

5.2. Experiment Designs

First, we investigate the effect of feature sets and classification algorithms in vehicle mode
detection. The raw accelerometer data are split into a number of windows of 5 s with 50% overlapping.
For each window, a vector of features, previously mentioned in Section 4.2, were extracted. We use
six feature sets—T1, F1, H1, TF1, TH1, TFH1—as described in Table 4 for comparison to evaluate the
performance of our VDM.

Once the datasets were prepared, we used the WEKA tool to predict the vehicle mode. In each
case, the default setting was used. Because there are different classification algorithms which is best
suited for specific recognition problems, we investigated five classifiers—i.e., Random Forest (RF),
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Naïve Bayes (NB), Decision tree J48, K Nearest Neighbor (KNN), Vector Support Machine (SVM)—to
select the best algorithm for VDM. For evaluating the accuracy (performance) of each classification
algorithm, we used 10-fold cross validation and the accuracy and the area under the curve (AUC) as
the accuracy metrics of our model. The accuracy of classification is the proportion of correctly classified
examples of a specific class out of all its examples [44], whereas AUC is generated by measuring the
sensitivity versus specificity [45].

Accuracy =
TP + TN

TP + FP + TN + FN
(21)

where TP, TN, FP, and FN respectively represent the number of true positive, true negative, false
positive, and false negative samples.

5.3. Results and Discussion

5.3.1. Effect of Feature Sets on Vehicle Mode Detection

Figure 6 shows the recognition performance of VMD module on classifiers using different feature
sets. In general, the random forest algorithm is the best classifier with most of feature sets in terms
of accuracy and AUC. For the feature set H1 with three Hjorth parameters only, the J48 is the best
classifier and the followings are NB, RF KNN, and SVM. The specific accuracy values of classifiers on
different feature sets are shown in Table 6. The results show that the features in time domain contribute
most to the performance. Because there are only three features in the set H1, the recognition accuracy
of all classifiers is relatively low. While the accuracy of classifiers RF and J48 using the feature set of
time domain T1 can attain higher than 90%. In general, the addition of other features to the set can
improve the performance of VDM in most of classifiers.

In particular, the performance of VMD attained an accuracy of 94.76% for the RF algorithm using
the set T1. A small improvement in accuracy and AUC can be obtained by using the feature sets
TF1 and TFH1 combined with Hjorth parameters. The same trends can be observed for the J48 NB and
the SVM algorithms in terms of accuracy. However, the performance of VDM in terms of AUC attains
the best result using the set TF1, although the difference is very small.

However, the KNN algorithm achieves the best result on the feature set TF1 in terms of both
accuracy and AUC. The addition of Hjorth parameters to the feature set TFH1 does not improve
the performance. Indeed, it degrades the performance of detection. This result is attributed to the
correlation of Hjorth parameters to other features in time and frequency domains, which causes the
misleading detections.

Figure 6. The performance of VDM on different classifiers, and different feature sets with the window
size of 5 s at 50% overlapping based on the metric: (a) Accuracy; (b) AUC.



Sensors 2018, 18, 1036 15 of 25

Table 6. The performance of VDM in terms of accuracy on different classifiers and different feature sets
with the window size of 5 s at 50% overlapping.

RF J48 NB KNN SVM

H1 39.41% 41.43% 40.07% 38.03% 37.13%
F1 85.04% 81.36% 54.66% 84.09% 26.54%
T1 94.76% 93.08% 82.09% 84.33% 69.64%

TF1 95.47% 93.65% 82.56% 85.01% 78.97%
TH1 94.64% 91.10% 60.64% 78.39% 27.73%
TFH1 95.60% 93.82% 82.67% 82.38% 81.25%

5.3.2. Parameter Optimization in Vehicle Mode Detection

Next, we investigate the effect of the sliding window size and overlapping ratio on the
performance. The RF classifier using the feature set TFH1 is used in this investigation due to its
best performance obtained in previous investigation. Figure 7 shows the performance of VDM as
a function of the window size at three overlapping ratios of 75%, 50%, and 25%. In terms of both
accuracy and AUC metrics, the increase in window size improves the performance of detection and
the overall/average accuracy of recognition trends to be saturated at the window size of larger than
6 s. When the longer window size is, the more information of vehicle mode is captured for recognition.

Generally, the overlapping ratio of 75% outperforms all other overlapping ratios at all sliding
window sizes. At windows of longer 6 s, the average accuracy of higher 97.7% is obtained for 75%
overlap. While the highest accuracy for 50% and 25% overlaps are 96.29% and 95.42% respectively.
A good result of 75% overlap can be attributed by reduction of sensitivity on transitions between
moving status in each vehicle mode.

By analyzing the performance difference in terms of AUC between two consecutive window
sizes, the relevant window size for each vehicle mode can be determined. Figure 8 shows the change
of performance between two consecutive window sizes in each vehicle mode at different overlaps.
In all vehicle modes, the change is relatively small (less than 0.001) at the windows longer than 4 s.
Therefore we used a range of 6 s that is sufficient to observe about two windows of each vehicle mode
for selecting optimum parameters in each class. Table 7 shows the optimum parameters of sliding
window for each class of vehicle mode based on the best AUC metric. The window of 6 s with 75%
overlap is selected for all vehicles except in car mode. Intuitively, the optimum window is shorter
when the average speed of vehicle is higher. However, the optimum windows of motorbike, bicycle,
and bus modes are similar due to the similarity in movement patterns of these vehicle modes in urban
roads without dedicated lanes. By contrast, the car often travels in dedicated lanes that result in a
movement at faster speed.

Figure 7. Effect of window size on the vehicle mode detection system performance with different
amount of overlapping based on the metric: (a) Accuracy; (b) AUC.
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Figure 8. Variation of AUC difference between two consecutive window sizes at different overlapping
ratios for different vehicle detection: (a) Car; (b) Motorbike; (c) Bus; (d) Walking (Non-vehicle).

After determining optimized parameters, the performance of VDM is reevaluated with selected
parameters as shown in Table 7. The optimized set of parameters improves the average recognition
accuracy up to 98.33% for RF classifier. The summary results for predicting vehicle mode presented as
the confusion matrix are shown in Table 8 to indicate the accuracy in each detection class. Specially,
the accuracy for detecting car mode can go up to ~100%. Though the accuracy for detecting bike mode
is lowest, it remains high with about 96.87% cases being correct. The accuracy for detecting motorbike,
bus and walking modes are respectively 97.95%, 96.97%, and 97.08%. The reason for lower accuracy in
detecting bike, motorbike and bus modes can be explained as follows: when the motorbike subject
had to slow down in crowded or bad roads, the accelerometer patterns between driving and walking
are very similar, hence a number of driving status were misclassified as walking. A smaller number of
bike and motorbike modes were also misclassified as walking mode when the motorbike subject used
the automatic-gear motorbike at a constant slow speed. As mentioned above, the similarity of moving
patterns in different vehicle modes is very challenging for detection in real-life conditions. We note
that only raw accelerometer data is used in this investigation. However, high performance of vehicle
detection is obtained.

Table 7. Optimized parameters of VDM.

Car Bike Motorbike Walking Bus

Window size (seconds) 5 6 6 6 6
Overlapping ratio 75% 75% 75% 75% 75%

AUC 0.9998646 0.9989851 0.9990746 0.9994278 0.9984576
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Table 8. Confusion matrix with the optimized parameters.

a b c d e Class

5334 0 0 0 0 a = Car
1 1979 24 15 24 b = Bike
2 17 2924 10 32 c = Motorbike
2 11 9 1700 29 d = Walking
0 13 22 24 1890 e = Bus

We also used these parameters for other classifiers to demonstrate the effectiveness of our selection.
Figure 9 shows the performance of VDM on different classifiers. The results show a considerable
improvement on performance of recognition for all classifiers. In terms of accuracy, the performance
of VDM can increase by 2.73%, 3.04%, 6.45%, 7.37%, and 5.72% for RF, J48, NB, KNN, and SVM
respectively. In terms of AUC metric, the highest increase in performance is nearly 0.04 for KNN, while
it is about 0.01 for J48. The higher recognition performance of the system means the smaller increase
in performance.

Figure 9. Performance of VDM with the optimized parameters: (a) Accuracy; (b) AUC.

6. Activity Mode Recognition

6.1. Data Collection and Experiments

In activity mode recognition, we have collected the data on motorbike as an example of our
proposal. The motorbike mode is a challenging mode in cities, especially in developing countries due
to its freedom style of moving. By using the same android-based collection program, we collected
four datasets from three volunteer subjects in the age of 22–40 years old with different activity modes
(Table 9). In our study, we consider four basic activities of travelling mode: Stop (ST), Going Straight
(GS), Turning Left (TL), and Turning Right (TR). Each collected dataset contains the samples for only
one of four activity modes in motorbike moving scheme. Because the activity modes such as TL and TR
often take place at lower speeds, duration of a data example for these activities does not exceed about
5 to 6 s that is different from ST and GS modes. Although the subjects’ smartphones can be located in
different positions, they are only hold in the subjects’ hands to handle the sensor data recording in ST,
TL and TR modes.

First, we investigate the effect of feature sets and classification algorithms in activity mode
detection. Because the activity detection is more complicated than the vehicle mode detection,
we additionally use more feature sets beside the sets used in VDM. In this investigation, the raw
accelerometer data are split into a number of data windows of 5 s with 50% overlapping ratio. Then,
the effect of sliding window is investigated to select relevant parameters for ADM. The data is also
processed in the same way as the data in VDM.
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Table 9. Datasets for ADM.

Activity Mode Number of Subjects Total Recording Time Positions of Smartphone

Stopping (ST) 3 10 min In hand
Going Straight (GS) 2 20 min In hand, in pockets
Turning Left (TL) 3 30 min In hand
Turning Right (TR) 3 10 min In hand

6.2. Results and Discussion

6.2.1. Effect of Feature Sets and Classification Algorithms on Activity Mode Detection

Firstly, we compare the performance of ADM using different feature sets in different domains.
Figure 10 shows the performance of ADM using different feature sets with the window size of 5 s
at 50% overlapping. Table 10 summarizes all obtained results from different classifiers with various
feature sets. In general, RF algorithm outperforms all the other classifiers over all feature sets.

Figure 10. The activity mode detection system performance of classifiers using different feature sets
with the window size of 5 s at 50% overlapping based on the metric: (a) Accuracy; (b) AUC.

For RF classifier, the addition of new features improves the performance of ADM in all domains.
In set H2 with addition of Hjorth parameters in three axis components and angular components,
the performance is considerably improved by 25.93% compared to using the set H1. The accuracy of
ADM using only Hjorth features can go up to 82.39% that demonstrates the importance of orientation
components to extract features in predicting TL and TR modes. Similarly, ADM based on sets T2,
TF2 and TFH2 performs better than sets T1, TF1, and TFH1, respectively. Although the accuracy of
ADM based on TFH2 is higher than that of ADM based on TFH1, the accuracy with additional Hjorth
features is slightly less that shows a correlation between Hjorth features and other features in feature
sets. However, the best performance of ADM with 50% overlap is obtained by the set TFH2 in terms of
AUC or by the set TF2 in terms of accuracy.

The tendency of accuracy for J48 classifier is similar to RF classifier, but the result shows a
decrease in AUC when new features are added. The best performance for J48 classifier is obtained by
the set TF1 in terms of both AUC and accuracy. For the NB, KNN, and SVM algorithms, the addition
of new features influences more obviously to the decrease in performance of ADM. On the other
words, the NB, KNN, and SVM algorithms are much more sensitive to the correlation of features.
This influence is resulted from the features extracted in the same components in the same domain
(for example, the rotation angle features are computed from the same three-axis accelerometers
components). Therefore, ADM using the set TF1 provides the best performance for NB, KNN, and SVM
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classifiers. However, their accuracy does not exceed 80%. Because RF algorithm selects a random
subset of features in each branch, it can reduce sensitivity of classifier to correlated features.

Table 10. The performance of ADM using different feature sets with the window size of 5 s at
50% overlapping.

Random Forest J48 Naïve Bayes KNN SVM

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

H1 56.46% 0.6986 58.33% 0.6854 58.33% 0.6635 56.04% 0.6243 57.07% 0.6126
H2 82.39% 0.9531 65.57% 0.8881 65.57% 0.8326 66.89% 0.8153 65.41% 0.7273
F1 81.60% 0.9490 77.84% 0.8720 62.80% 0.8330 81.13% 0.8520 50.79% 0.625
F2 82.85% 0.9530 79.16% 0.8690 54.29% 0.7970 75.99% 0.8120 51.12% 0.6551
T1 87.93% 0.9706 71.99% 0.9182 71.99% 0.8756 75.69% 0.8860 72.28% 0.7643
T2 88.79% 0.9730 69.90% 0.9213 69.90% 0.8546 73.91% 0.8596 70.86% 0.7506

TH1 87.80% 0.974 83.84% 0.8730 46.77% 0.8360 76.32% 0.8210 71.64% 0.7550
TH2 88.39% 0.975 82.06% 0.8620 38.19% 0.8440 78.56% 0.8400 76.45% 0.8090
TF1 88.39% 0.9727 74.52% 0.9303 74.52% 0.8869 77.34% 0.8914 73.60% 0.7683
TF2 88.85% 0.9752 70.60% 0.9134 70.60% 0.8462 74.08% 0.8481 70.99% 0.7384

TFH1 87.80% 0.9733 74.25% 0.9278 74.25% 0.8874 74.87% 0.8738 71.62% 0.7577
TFH2 88.32% 0.9768 70.36% 0.9104 70.36% 0.8479 72.39% 0.8406 69.64% 0.7384

Orientation of smartphone can be significant in detection of movement direction. Hence,
we investigate the performance of ADM using raw data and transformed data with the same
parameters. Figure 11 and Table 11 show the performance results of ADM using the feature set TFH2.
The results show an improved performance of ADM using transformed accelerometer data in all
classifiers. For RF classifier, the accuracy of recognition goes up to higher than 90%. The NB and KNN
classifiers show a high increase by ~15.7% and ~14% respectively in performance using transformed
data. With these results, we can demonstrate the importance of reorientation in recognizing complex
activities such TL and TR modes.

Table 11. The result between Raw data and Orientated data using TFH2 feature set with the window
size of 5 s at 50% overlapping.

Random Forest J48 Naïve Bayes KNN SVM

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

Raw data 0.97676483 88.32% 0.910449 85.55% 0.847943 70.36% 0.840576 72.39% 0.738373 69.64%
Orientation data 0.9854096 90.97% 0.959214 89.94% 0.944504 86.05% 0.937778 86.40% 0.813128 74.87%

Figure 11. The activity mode detection system performance of different classifiers using raw and
transformed data with the window size of 5 s at 50% overlapping on TFH2 feature set based on the
metric: (a) Accuracy; (b) AUC.
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6.2.2. Parameter Optimization in Activity Mode Detection

As shown in vehicle mode detection, the parameter optimization is very important to improve
the recognition performance. Using the same way similar to VDM, the effect of sliding window with
different overlaps on the performance is investigated to select relevant parameters for ADM using
the feature set TFH2. The recognition performance with the widow size in the range from 1 to 10 s is
shown in Figures 12–15 for each corresponding activity mode. Similar to the case of VDM, there is
little change of the performance result in each activity mode when the window size is longer than 6 s.
On the other words, the performance difference in terms of AUC between two consecutive window
sizes is negligible at windows longer than 6 s as shown in Figure 16. Hence, the optimum parameters
are selected by investigating the performance in terms of AUC in the range of window size from 1 to
6 s. The selected parameters for individual activity mode are shown in Table 12 The obtained results
show the optimum overlap ratio for ST and GS modes is 75% that is different from that of 50% for TL
and TR modes. The window size of 4 s is optimum for ST mode, while longer window size is required
for other activity modes.

Figure 12. The performance result (AUC) of detecting the activity Stopping with respect to window
size and overlapping ratio.

Figure 13. The performance result (AUC) of detecting the activity Going with respect to window size
and overlapping ratio.
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Figure 14. The performance result (AUC) of detecting the activity Turning left with respect to window
size and overlapping ratio.

Figure 15. The performance result (AUC) of detecting the activity Turning right with respect to window
size and overlapping ratio.

Figure 16. Variation of AUC difference between two consecutive window sizes at different overlapping
ratios for activity mode detection: (a) Stop; (b) Going straight; (c) turning Left; (d) turning Right.
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Table 12. The optimized parameters of ADM.

S G L R

Window size (seconds) 4 6 5 6
Overlapping 75% 75% 50% 50%

AUC 0.99942150231399 0.992827782904118 0.996841188906852 0.987251082251082

Based on the selected parameters, the performance of ADM is reevaluated. These parameters
are applied for not only RF classifier but also other classifiers. The obtained results are shown in
Figure 17. Figure 17 shows an obvious improvement of the performance in all classifiers using the
feature sets TF2 and TFH2. For RF classifier, the highest accuracy of 98.95% is obtained that is increased
by 7.98%. For other classifiers except SVM, the accuracy can reach higher 95%. These results also
demonstrate the importance of optimizing parameters in activity mode recognition. It is interesting
that the performance of ADM using the set TFH2 with optimum parameters is much higher than that
using the set TH2 which is quite different in case of non-optimized recognition.

Figure 17. Performance of activity mode detection system with the optimized parameters using
different classifiers based on the metric: (a) Accuracy; (b) AUC.

7. Performance Comparison with the Recent Works

In this section, we provide a comparison between our proposed framework and several existing
works on a dataset recently collected by HTC company [46]. Up to date, this is the only publicly
available dataset which consists of various transportation modes (still, walk, run, bike, bus, car,
metro, train, tram, HSR). Yet, there exist only a few works validating their proposed methods on this
dataset [6,8,46]. Nonetheless, the authors of [47] concentrate on differentiating between non-motorized
modes (still, walk, run, and bike) and being on a vehicle. The two remaining frameworks detect
either non-motorized modes (still, walk) or motorized modes (bus, car, metro, train, tram, and HSR)
relying on data collected from accelerometer, magnetometer, and gyroscope. In fact, it has been
proved that among these three sensors, accelerometer consumes the lowest amount of power [46].
Thereafter, our method, based on only accelerometer data, certainly requires less power than those
of [6,8]. As previously mentioned, their frameworks require a long window size, i.e., 17.06 s and 60 s,
that leads to a longer responding time and a higher computational resource as comparing with our
framework. Moreover, the approach proposed in [8] must rely on a very large feature set containing
348 features. It is thus infeasible to be implemented in real-time prediction application. Note that
our vehicle mode detection module requires only 27 features. In addition, Table 13 shows that on the
dataset of HTC company, our method achieves the overall prediction accuracy of 97.33% which is
significantly higher than the best method of two recent works. In the meantime, our model requires
less computational time as comparing with the one proposed in [6].
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Table 13. The prediction accuracy of the proposed method and the previous studies on the dataset of
HTC company [46]. The notion “-” indicates that data is not provided.

Overall Prediction Accuracy Computational Cost (µs) Model Size (KB)

Fang et al. [6] (using KNN) 83.57% 9550 106,300
Guvensan et al. [8] (using RF) 91.63% - -

Our proposed method (using RF) 97.33% 4.9 187

8. Conclusions

In this work, we propose a flexible combined system that is composed of two modules: one to
detect the vehicle mode of users, one to detect the instant driving events regardless the orientation
and the position of smartphones. Our system achieves the average accuracy of 98.33% in detecting the
vehicle modes, and the average accuracy of 98.95% in recognizing the driving events of motorcyclists
when using the Random Forest classifier, and a feature set consisting of time domain features, frequency
features and Hjorth features. Moreover, the experimental results indicate that the optimal parameters
(window size and overlapping ratio) lead to a considerable increment of the system performance
as comparing to the approach using the same window size of 5 s and the overlapping ratio of 50%.
In detail, the vehicle mode detection module improves its prediction accuracy by 2.73%, 3.04%, 6.45%,
7.37%, and 5.72% when respectively using Random Forest, J48, Naïve Bayes, KNN, and SVM classifiers.
Similarly, the activity detection module gains the prediction accuracy by 7.98%, 9.06%, 8.60%, 9.33%,
and 8.48% for respectively Random Forest, J48, Naïve Bayes, KNN, and SVM classifiers. Note that the
optimal window sizes inferred by Algorithm 1 range from 4 to 6 s, which are feasible for real-time
application. Furthermore, Naïve Bayes, KNN, and SVM classifiers are shown to be quite sensitive to
the correlation of features as the driving event prediction accuracy decreases when more features are
added. By contrast, Random Forest and J48 classifiers do not suffer from such effects.
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