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Abstract: This paper proposes an autonomous algorithm to determine the relative pose between
the chaser spacecraft and the uncooperative space target, which is essential in advanced space
applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron
Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor,
and does not require any prior pose information. The core of the method is to determine the relative
pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the
basis of its known model. The two-level index hash table is built for speeding up the search speed.
In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order
to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically,
the performance of the proposed method to provide the initial pose needed for the tracking algorithm
is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted
and the results demonstrated the effectiveness of the proposed method.

Keywords: uncooperative target; congruent tetrahedron align; two-level index hash table;
iterative closest point

1. Introduction

On-Orbit Servicing (OOS), including on-orbit assembly, on-orbit maintenance and on-orbit fueling
is an important developing technology for future space systems [1–3]. Furthermore, the accurate
and reliable relative pose determination between chaser and target is one of the key techniques to
accomplish the OOS mission successfully.

The relative pose determination research on cooperative targets [4–6], which are equipped with
a set of artificial active or passive markers on the target surfaces that can be easily detected and
recognized in the acquired datasets, has many achievements and some of them [7,8] have been
successfully applied in orbit. However, it is more challenging to estimate the relative pose of the
uncooperative targets without cooperative information, especially for the fast-moving targets, such
as the high-speed tumbling uncooperative target. Therefore, the pose estimate accuracy and the
computational cost have put forward higher requirements. According to the different electro-optical
(EO) sensors on the chaser, the study of the uncooperative target is generally divided into the relative
pose calculation based on passive systems (e.g., monocular and stereo system) and active systems (e.g.,
LIDAR). In addition, methods of multi-sensor information fusion are proposed [9,10], e.g., monocular
and LIDAR. The methods based on the passive system tend to achieve better accuracy, but they are
time-consuming and susceptible to illumination changes. However, the LIDAR system has stronger
robustness for illumination.
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This paper proposes a novel method of relative pose determination using the very sparse
unorganized point cloud acquired by the scanning LIDAR sensor. We propose a Congruent Tetrahedron
Align (CTA) method to calculate relative pose directly by searching congruent tetrahedron in scanning
point cloud and model point cloud which is acquired from the known 3D CAD model of target.
Moreover, this method does not need the time consumption process such as extracting feature [11] or
calculating the normal which is a line perpendicular to the local surface represented by a point and its
neighbors, and that does not need dense point cloud. The Iterative Closest Point (ICP) [12] algorithm
which has advantages of high precision and high speed, can be used for pose tracking since the initial
pose has been obtained.

The rest of this paper is organized as follows. In Section 2, the related works in recent years are
described in detail. In Section 3, the details of proposed pose estimation method are presented. Then,
we analyze the influencing factors of the proposed method in Section 4. Experiments and conclusions
are shown in Sections 5 and 6, respectively.

2. Related Work

The research on relative pose determination of uncooperative targets is a fundamental problem
for OOS application. Because of their lower hardware complexity, their lower cost and their lower
power consumption, passive systems have been widely considered in the research field of relative
position calculation of space non-cooperative targets [13–15].

Methods based on monocular cameras that rely on various Perspective-n-Point problem (PnP)
solvers [16–18] have been proposed to calculate the initial relative pose. Lepetit et al. [16] proposed
efficient PnP (EPnP) solvers with the main idea of expressing the reference points as a weighted sum
of four non-coplanar virtual control points. D’Amico [14] proposed the Newton-Raphson method to
solve the PnP iteratively. Due to its use of least squares, which is very suitable for handling Gaussian
noise, it has a high accuracy even in the presence of outliers or noise. In addition, the two-dimensional
Template Matching (2D TM) approaches [19] are usually advanced in high accuracy and good anti-noise
performance. Cai et al. [15] proposed a hollow annulus structure according to the Features from
Accelerated Segment (FAST) feature to match the template and object image by comparing the differences
of both grey and gradient. It is very important and challenging to obtain the correct correspondence
between the features extracted from the image and the target model before approaching the PnP solvers.
Besides the method based on point features, some others used the line features, which are typically
more stable than points. For the stereo system, SoftPOSIT [20] that combines the iterative soft-assign
algorithm [21,22] and the iterative POSIT algorithm [23] has achieved good accuracy. However, all the
above methods generally take more than one second. Hence, when there are other celestial bodies in
the field of view, it is not easy for the passive system to distinguish correctly, and the performance is
obviously affected by the spatial illumination. In contrast, the active system of LIDAR system has the
stronger robustness to the space illumination, and is easier to differentiate targets from the background.
Therefore, the methods based on LIDAR are receiving more and more extensive research.

3D TM algorithm [24,25] evolves from the 2D TM algorithm we introduced above. In the process
of 3D TM algorithm, a pose space database is generated from a set of views of the 3D target model.
Then, the best initial pose estimate is defined as the pose that produces the best correlation with the
measurement data. In order to get sufficient accuracy, this method needs to search the entire pose
space, which also leads to high computational cost and limits its real-time spatial application. Hence,
Opromolla et al., adopt an on-line 3D TM algorithm [26–28] to overcome this limitation. Specifically,
the relative position is computed by the centroiding approach, thus, the amount of templates is reduced,
and the database of templates can be cut down to 3-DOF. In order to further reduce the calculation
time, the Principal Component Analysis (PCA) method is used to estimate the main axis, and the
database is cut down to 1-DOF, which significantly reduces the searching time. However, the target is
required to have an elongated shape.



Sensors 2018, 18, 1009 3 of 17

Besides that, there are some feature-based methods. John O. Woods and John A. Christian
proposed an Oriented, Unique, and Repeatable Clustered Viewpoint Feature Histograms (OUR-CVFH)
algorithm [11,29], which has the same runtime complexity as ICP (in many cases it runs more quickly),
provides free object recognition, and is robust to many types of occlusion. Specifically, a database
consists of a set of 303-bin OUR-CVFH histograms describing that each segmented object is built
off-line. The OUR-CVFH works when the LIDAR data are obtained with multiplicative EKF to provide
a propagated pose estimate before refining the estimate using ICP. This feature-based method generally
requires evenly distributed high resolution 3D data to calculate the normal of points.

In addition to the 3D TM methods and feature-based methods described above, the original
point-based approaches have also been proposed for space applications. Liu et al. proposed a novel
global point cloud registration algorithm based on the translation domain estimation method [30].
The translation domain is estimated by calculating the relative displacements of the axis-aligned
bounding box (AABB) in the three main directions of the model point cloud and the scanning point
cloud. Then, the GO-ICP algorithm [31], combined BnB (Branch-and-Bound) strategy [32] and ICP
algorithm is used to search the optimal estimate. The Polygonal Aspect Hashing (PAH) algorithm [33]
proposed by Ruel et al., provides 6-DOF relative pose information in real time based on the idea of
puzzles, which aligns the model surface to one or more polygons extracted from scanning point cloud
data.

The paper presents another point based method called CTA for the acquisition of the initial pose
improved from PAH. The CTA algorithm finds the congruent tetrahedrons, which are from model
point cloud and scan point cloud respectively. Some other algorithms for CTA are combined in the
process. Specifically, 3D hull algorithm is used to construct a 3D convex from scanning point cloud
data for selecting a tetrahedron, and a two-level index hash table is used to speed up the congruent
tetrahedron searching speed.

3. Proposed Relative Pose Determination Method

The logical scheme of the process to determine relative pose of uncooperative target is shown in
Figure 1. The process is divided into two main steps, named initial pose acquisition and pose tracking,
respectively. The proposed CTA algorithm is applied in the initial pose acquisition process when the
first scan point cloud is obtained from the scanning LIDAR. The model point cloud can be obtained
from the 3D CAD model, which is known. Pose tracking is performed by means of ICP algorithm,
which requires a good initial pose estimate. The details of the proposed method are described in the
following parts of this section.

Initial Pose Acquisition

(Congruent Tetrahedron Align )

Pose Tracking

(ICP)

Output

(R,t) 

Input 1

(First Scan Points 

+ Model Points)

Input 2

(Subsequent Scan Points + Model Points) 

Figure 1. Logical scheme of the proposed method for relative pose determination.

Relative pose determination is the problem of calculating the 3D rotation Rtc and translation ttc

between chaser and target (Figure 2). Furthermore, four reference frames are of interest: the chaser
body-fixed frame OcXcYcZc, the sensor frame OsXsYsZs, the target model frame OmXmYmZm, and the
target body-fixed frame OtXtYtZt.
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Figure 2. The definition of reference frames [30].

Tij denotes the transformation (including rotation and translation) from frame j to frame i.
Generally, Tcs can be measured offline, depending on the assembly relation of chaser and sensor.
Tmt can be obtained from the definition of model frame. Tct, the rotation and translation from target
to chaser, can be calculated by Equation (1), where due to the achievable knowledge of Tcs and Tmt,
we only need to calculate Tsm.

Tct = TcsTsmTmt (1)

3.1. CTA Algorithm

Essentially, the relative pose determination, or registration, consists of finding the overlap between
the model point cloud and the scan point cloud, and then calculating the relative transformation.
Instead of extracting features, our method finds the congruent tetrahedron directly from the scanning
point cloud and model point cloud, and then estimates the relative pose by aligning the congruent
tetrahedron. The procedure of the algorithm is illustrated in Figure 3. The model point cloud is
sampled from the known 3D CAD model of target. Let L(mi, mj) be the length of point pairs in the
model point cloud. In order to search the corresponding point quickly and accurately, a two-level index
hash table which has a low-time complexity of looking up is designed for storing the point pair length
as well as the location topology information. When the scanning point cloud is obtained, a 3D convex
hull will be constructed to simplify it. Then a tetrahedron Ts with the largest volume is found in the
vertices of the convex hull. According to the congruence theorem for tetrahedra, the corresponding
tetrahedron of Ts is found in the model point cloud, and then the transformation between them will
be calculated.
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Figure 3. Flow of CTA Algorithm.

3.1.1. Congruent Tetrahedron Searching Based on Two-Level Index Hash Table

One of the necessary and sufficient conditions for two tetrahedrons to be congruent is as follows:
If six sides of a tetrahedron are equal to the corresponding six sides of another tetrahedron, then
the tetrahedrons are regarded as being congruent. Therefore, we find the congruent tetrahedrons,
which are respectively from model point cloud and scanning point cloud according to the equal
corresponding six sides. In order to find the corresponding sides conveniently and rapidly, we use the
two-level index hash table to store the information, which includes not only the point pair length of
model point cloud but also the location topology information as will be shown in section A. And in
section B, the process of finding the corresponding tetrahedron will be introduced.

A. Building the two-level index hash table

Since the principle of finding two congruent tetrahedrons is to find corresponding sides with
equal length, we use a linear hash function to hash the model point cloud into the corresponding
buckets, as given in Equation (2).

k = H(L) = f loor(
L− Lower

∆l
)

∆l =
Upper− Lower

binNum

(2)

where, L is the Euclidean distance of model point pair (mi, mj), L =
∥∥mi −mj

∥∥
2, i = 1, 2, ..., N,

j = 1, 2, ..., N, i 6= j, N is the number of model points. Upper ≥ Lmax, Lmax is the maximum Euclidean
distance between two points of model point cloud. Lower ≤ Lmin, Lmin is the minimum Euclidean
distance between two points of model point cloud. binNum is the number of buckets. k is the hash
value, k = 0, ..., binNum− 1.

With the Equation (2), all the point pairs, with the distance in the interval [k× ∆l, (k + 1)× ∆l]
are stored in the kth bucket. In the kth bucket, the first element and the second element of point pairs
are stored in level 1 index, and level 2 index, respectively. The process of building the hash table is
shown in Figure 4.
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Figure 4. Building the two-level index hash table.

B. Searching the congruent tetrahedron

Assuming Ts is the tetrahedron founded in scanning point cloud with vertexes s0, s1, s2, s3.
HT is the two-level index hash table built with model points. The process of searching the congruent
tetrahedron Tm with vertexes m0, m1, m2, m3 in hash table is shown in Algorithm 1.

Algorithm 1 Searching the congruent tetrahedron
Input: Ts = {s0, s1, s2, s3}: four vertexes of Ts; HT: hash table

Output: Tm = {m0, m1, m2, m3}: four vertexes of Tm

1: L0−1 = ‖s0 − s1‖2, k0−1 = H(L0−1) . Li−j, ki−j : length between si and sj, and bucket number
2: search the point pair (m0, m1) in the k0−1th bucket;
3: L0−2 = ‖s0 − s2‖2, L1−2 = ‖s1 − s2‖2, k0−2 = H(L0−2), k1−2 = H(L1−2)
4: search the point pair (m0, m2) in k0−2th bucket, and (m1, m2) in k1−2th bucket
5: if there is no point m2 was found in step 4 then
6: goto step 2 to find another pair
7: end if
8: L0−3 = ‖s0 − s3‖2, L1−3 = ‖s1 − s3‖2, L2−3 = ‖s2 − s3‖2, k0−3 = H(L0−3), k1−3 = H(L1−3),

k2−3 = H(L2−3)
9: search the point pair (m0, m3) in k0−3th bucket, the point pair (m1, m3) in k1−3th bucket, and

(m2, m3) in k2−3th bucket
10: if there is no point m3 was found in step 9 then
11: goto step 4 to find another pair
12: else
13: return the four points m0, m1, m2 and m3
14: end if

3.1.2. Selection Tetrahedron from Scanning Point Cloud

The farthest pair of points are extreme points on convex hull. Intuitively, the larger the volume
of the tetrahedron is, the stronger the resolution is. Therefore, the selection of tetrahedron is carried
out according to the principle of maximum volume. The vertexes of the tetrahedron with the largest
volume must be the vertexes of the convex hull. Hence, the convex hull of scan point cloud is
first constructed.
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The methods of establishing convex hull include Quickhull Algorithm [34,35], Gift Wrapping
Algorithm [36], Random Incremental Method [37] and so on. For the sake of time, we choose the
Quickhull Algorithm with faster speed.

3.1.3. Calculation of Transformation

From the set of corresponding points si and mi, (i = 0, 1, 2, 3), the transformation matrix Tsm,
containing rotation matrix Rsm and translation vector tsm, can be calculated by Equations (3) and (4)
respectively. 

tsm = Os −Om

Os =
∑3

i=0 si
4

Om =
∑3

i=0 m
′
i

4

(3)


Rsm =

Sx ·Mx Sx ·My Sx ·Mz

Sy ·Mx Sy ·My Sy ·Mz

Sz ·Mx Sz ·My Sz ·Mz


Sx = s1−s0

‖s1−s0‖2
, Sy = Sx × s2−s0

‖s2−s0‖2
, Sz = Sx × Sy

Mx = m1−m0
‖m1−m0‖2

, My = Mx × m2−m0
‖m2−m0‖2

, Mz = Mx ×My

(4)

3.1.4. CTA Failure Detection Approach

In general, more than one corresponding tetrahedron can be found in the hash table, but only
one is correct. In order to deal with this case and choose the correct one, a strategy is used to detect
the failure of the CTA algorithm autonomously. The logic of the approach is shown in Figure 5.
When a corresponding tetrahedron is found, the relative transformation is calculated as described in
Section 3.1.3 and the transformation is applied to the whole scanning point cloud. After that, the ICP
algorithm is used to refine the registration result. The accuracy measurement of the algorithm is ICP
convergence score fconv, the minimum value of the closest point to the Euclidean distance which is
calculated by Equation (5). Moreover, two threshold values fmax and fmin are set up. If fconv ≤ fmin, the
registration is believed to be correct, then it is used as the input parameters of the pose tracking stage.
Otherwise, if ( fconv > fmin) & ( fconv < fmax), it is saved as a candidate, until all of the candidates are
looked up in the hash table. After that, choose the transformation corresponding to the smallest fconv

as the output of the CTA for the input of the pose tracking.

fconv =
1
n

n

∑
i=1
‖mi − (Rsi + t)‖2 (5)
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Figure 5. Logic of successful pose estimation for the CTA algorithms.

3.2. Pose Tracking

The output of CTA will be used as the input of pose tracking and the ICP algorithm is used
for pose tracking. Although the CTA algorithm has a high success rate, which has been verified in
Section 5, a stability strategy is added in order to further guarantee the correctness of the initial pose.
The strategy is shown as follows:

(1) For the first scanning point cloud, using CTA algorithm to calculate the transformation Tsm1;
(2) For the second frame, using CTA algorithm to calculate the transformation Tsm2;
(3) For the second frame, calculating the transformation Tsm2

′
using Tsm1 as the initial pose in

another thread;
(4) Computing the relative translation between Tsm2 and Tsm2

′
, ∆T = Tsm2

−1Tsm2
′
, and the Euler

angles ∆α, ∆β, ∆γ can be determined from ∆T. If (∆α ≤ eα)&(∆β ≤ eβ)&(∆γ ≤ eγ) (eα, eβ, eγ

are the thresholds), the CTA algorithm is considered as a stable and accurate initial value, and
then goto step (5). Otherwise, the result of the CTA algorithm is incorrect, then replace Tsm2 with
Tsm2

′
and go to step (3);

(5) For the subsequent frames, using ICP algorithm to calculate the transformation Tsmi for
pose tracking.

4. Analysis of Influence Factors

According to hash function (Equation (2)) and the process of searching in the hash table, the main
influencing factors are the number of buckets binNum which is equivalent to ∆l, and the number of
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point pairs in each bucket which is related to the distance interval of the model point cloud Iv. As
shown in Figure 6, m1 and m2 are points of model point cloud, d is one of the ideal corresponding
points in Tm, m1 and m2 are adjacent to d. If |m2 −m1| > ∆l, then it could not guarantee that d will fall
into the bucket that contains m1 or/and m2. This means that it may not be possible to find the correct
match in the hash table. Only when |m2 −m1| ≤ ∆l, it can be ensured that no matter how the distance
grid around d is divided, d must be in the bucket that contains m1 or/and m2.

ΔlΔl

m1 m2 d

Figure 6. A small ∆l incurring a failure of finding a corresponding point.

Taking account of all the point pairs of model points, it can be ensured that the match candidates
contain the global optimal matching, as long as ∆l ≥ Ivsparse (Ivsparse is the largest distance interval of
the model point cloud). However, if Ivsparse is much larger than the other interval, more points will
be hashed in the same bucket as shown in Figure 7. Assuming that m3 is the correct model point
corresponding to s, a vertex of Ts. All of the sides containing m3 will be retrieved as equally as possible
to replace m3 with m1,m2,m4 and m5. Therefore, it is easy to bring redundant matches to increase ∆l.
Simply, if Ivsparse = Ivdense (Ivdense is the smallest distance interval of the model point cloud), we can get
a balance between time and accuracy. Therefore, the model point cloud be sampled uniformly at a
interval of Iv , and let ∆l = Iv.

m1 

Δl

m2 m3 m4 m5 

Figure 7. A large ∆l introducing redundant candidates.

5. Experiments

In this section, we have performed numerical simulation experiments and a field experiment to
test the performance of the algorithm. In the experiments, the target is a 1:6 scale satellite model as
shown in Figure 8. The size of scale target model is 1521 mm× 559 mm× 870 mm. Simulations are
carried out in C++ environment run by a commercial desktop PC equipped with an IntelTM I5 CPU at
2.4 GHz.

5.1. Simulation System

We also developed a 3D point cloud simulation software. After entering the 3D model, and set
the relevant scanning parameters, the output of the laser scanner can be simulated. 3D point cloud
simulation software is as shown in Figure 8:
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(a) (b) (c)

Figure 8. The 3D point cloud simulation software (a) Lissajous, (b) Rosette, (c) Spiral.

In the simulation system, the three scanning patterns of Lissajous, Rosette and Spiral, all of which
can cover an area in the fastest time [38], are implemented. The Rosette and Spiral patterns have a
high density of points in the middle of the field of view, which will increase the number of points and
lead to a more time-consuming process of constructing the 3D convex hull. By contrast, the Lissajous
pattern can obtain more uniform points in the middle of the field of view. Therefore, the Lissajous
pattern is better in filed experiments. In order to ensure the consistency of the simulation and field
experiments, all experiments were conducted using the Lissajous pattern.

5.2. Impact of Different binNum

According to the discussion in Section 4, the point cloud of model should be uniform. We use the
software of Geomagic Studio to convert the 3D geometric model to point cloud, and further reduce the
number of points uniformly to 484 with the interval Iv = (348 mm∼521 mm). The two parameters ∆l
and Iv involved in the algorithm are interrelated through the analysis. The impact of ∆l on the CTA
algorithm and the relative between ∆l and Iv are verified in the case of fixed Iv obtained above.

Through Equation (2), ∆l and binNum are equivalent. Therefore, in this section we discuss the
efficiency of different binNum on the accuracy and speed of the algorithm. After the equidistant
sampling of the model point cloud, the interval is about (348 mm∼521 mm). During the process of
acquiring the simulated scanning point cloud, the noise with standard deviation of 200 mm is added in
the direction of the ray. The average estimation pose errors of different binNum are shown in Table 1.
All of the Euler angles in the experiments use the Z-X-Y convention.
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Table 1. The average estimation pose error of different binNum.

binNum Time/ms Points Num α/◦ β/◦ γ/◦ X/mm Y/mm Z/mm Error Rate/%

5 28,752.59 102 1.36 1.60 0.50 23.53 81.40 81.82 0
10 1703.99 102 1.53 1.58 0.52 25.04 75.07 85.24 0
15 221.18 102 1.92 1.63 0.51 27.00 70.12 92.00 0
20 62.24 102 1.76 1.92 0.51 27.16 75.03 85.45 0
25 33.27 102 1.77 1.55 0.54 24.98 86.77 81.04 2.8
30 17.23 102 1.72 1.77 0.53 25.63 75.01 83.10 5.7
35 17.17 102 1.50 1.78 0.53 22.45 85.64 95.75 11.4
40 15.11 102 1.30 1.46 0.49 21.34 96.88 72.48 25.7
50 14.98 103 1.46 1.41 0.56 22.79 88.69 89.51 34.3
60 13.14 104 1.60 1.52 0.37 19.16 69.69 71.50 60
70 14.49 106 2.78 2.01 0.55 23.17 94.40 60.70 85.7
80 13.95 105 2.03 1.58 0.52 26.64 89.31 76.10 80

According to Equation (2), binNum = 28∼19 under the Iv = (348 mm∼521 mm). From the results
in Table 1, it is obvious that with the increase of the number of buckets, the registration time gradually
decreases and the registration error rate increases. When the binNum is between 20 and 30, better
registration accuracy and lower error rate are achieved, and the registration time is less than 100 ms.
This conclusion is consistent with the discussion in Section 4.

In order to balance the registration time and the registration accuracy, binNum = 25 is taken in
the following experiments.

5.3. CTA Algorithm Test

The accuracy of pose tracking is closely related to the initial attitude estimation results, so it
is necessary to test the performance of initial attitude estimation algorithm CTA. In this simulation
experiment, we also added the noise with standard deviation of 200 mm in the direction of ray and
selected 10 groups of 20 positions for testing. The absolute error of initial translation error, initial
rotation error and time consuming are given in Figure 9.
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Figure 9. Performance of congruent tetrahedron align algorithm. (a) CDF of rotation error; (b) CDF of
translation error; (c) CDF of processing time.

Figure 9 shows the Cumulative Distribution Function (CDF), we can see that the proposed relative
pose estimation method can estimate the real-time relative pose effectively. The 90% translation
error is less than 150 mm, and 90% rotation error is less than 2.5◦. Furthermore, we can see that
90% time-consuming is less than 70 ms. The time-consuming and accuracy of transformation satisfy
pose tracking.
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5.4. Pose Tracking Test

To test the efficiency of the proposed method for pose tracking, simulated experiments for
tumbling targets, which exist widely in space, are carried out under the following different conditions.

In test 1, the initial attitude (α, β, γ) is set to (0◦, 0◦, 0◦), as shown in Figure 10a, and the target
rotates around the model’s Y-axis (blue axis). For each simulated point cloud, the β is changing from
0◦ to 360◦ at 2◦ interval;

In test 2, the initial attitude (α, β, γ) is set to (0◦, 0◦, 0◦), as shown in Figure 10a, and the target
rotates around the model’s Z-axis (axis perpendicular to the solar array of the model and perpendicular
to the screen). For each simulated point cloud, the γ is changing from 0◦ to 180◦ at 2◦ interval;

In test 3, the initial attitude (α, β, γ) is set to (0◦, 180◦, 0◦), as shown in Figure 10b, and the target
rotates around the model’s Z-axis (axis perpendicular to the solar array of the model and perpendicular
to the screen). For each simulated point cloud, the γ is changing from 0◦ to 180◦ at 2◦ interval;

In test 4, the initial attitude (α, β, γ) is set to (−120◦, 0◦, 40◦), as shown in Figure 10c, and the
target rotates around the model’s Z-axis (axis perpendicular to the solar array of the model).

(a) (b) (c)

Figure 10. Three different initial attitudes of numerical simulated experiments. (a) α = 0◦, β = 0◦, γ =

0◦; (b) α = 0◦, β = 180◦, γ = 0◦; (c) α = −120◦, β = 0◦, γ = 40◦.

When simulating the LIDAR to get point cloud, the white noise with a standard deviation of
200 mm is added in the direction of the simulated rays. The rotation error and translation error of the
four tests are given from Figures 11–14.
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Figure 11. The error curve of (a) rotation and (b) translation of test 1.
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(a) (b)

Figure 12. The error curve of (a) rotation and (b) translation of test 2.
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Figure 13. The error curve of (a) rotation and (b) translation of test 3.
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Figure 14. The error curve of (a) rotation and (b) translation of test 4.

From Figures 11–14, we can see that, the rotation error is almost less than 1◦, and the translation
error is almost less than 10 mm in different initial attitudes and different rotation axes. This indicates
that the CTA computing initial position proposed in this paper, and pose tracking by ICP algorithm
is accurate, fast and robust. However, there also exist some outliers which can be divided into two
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groups. One of the groups appears in the first few frames, which is due to the large error of the initial
pose estimation. The other group appears in the frames, e.g., frame 43 and 133 in Figure 11a, in which
the LIDAR can only scan a small part of the target. Under this condition, the feature of the scanning
point cloud is not obvious. At the same time, the standard ICP algorithm tends to fall into a local
optimal solution, leading to an increase in the error.

5.5. Field Experiment

In order to test the real performance of the algorithm, a field experiment was carried out. The
satellite model with a 1:6 scale, shown in Figure 15, was fixed on a 6-DOF turntable, and the model
can follow the turntable to make a rotary motion about the fixed axis. The control precision of the
turntable is 0.01◦.

Figure 15. Field experiment.

The measurement sensor is a single-line scanning 3D-LIDAR (Time-of-Flight) system developed
by BICE and the point cloud acquisition frequency is greater than 10 Hz.

When the target rotates continuously, the points outside the target cannot be easily removed.
Therefore, only the experiment about rotating around the y-axis is performed. Based on known
information such as the distance between the target and the wall, we can filter out the noise outside
the model that does not appear in space. Turntable rotation speed is set to be 10◦/s, the frequency of
point cloud data acquisition is set to be 10 Hz. In this experiment, the target only rotates around the
y-axis without translation. The experimental results are as shown in Figure 16.
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Figure 16. The error curve of (a) rotation and (b) translation of field experiment.
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From Figure 16, we can see that both the rotation error and the translation error of the field
experiment are increased compared with the results of simulation experiments. The reason is that the
measurement error of LIDAR itself is more complicated than the simulation error, and the rotation of
the target also leads to the deformation of the point cloud data. However, the overall result still shows
good accuracy and stability; the rotation error is almost less than 2◦, and the translation error is almost
less than 20 mm.

6. Conclusions

In this paper, a high accuracy, good real-time and reliable initial pose determination method CTA,
which can be used for sparse unordered LIDAR data, is proposed to provide a reliable initial value for
tracking. Based on the known target model, this method uses the congruent tetrahedron approach
to estimate relative pose, and then uses ICP algorithm for pose tracking. The two main parameters
that affect the CTA algorithm are analyzed in detail. The 3D target model point cloud should be
resampled as uniform as possible, and there is a speed/accuracy tradeoff when the ∆l value nears to
the point cloud interval value which have been verified in the subsequent simulation experiments.
At the same time, the numerical simulated experiments are completed in a variety of attitudes by
artificially adding noise. The results denote that the proposed CTA algorithm is accurate, efficient
and robust. The results of numerical simulated experiments and field experiments, which simulate
the motion of a high-speed spinning target, demonstrate that the proposed method CTA to estimate
the Initial pose and ICP method to track pose can satisfy the real-time calculation of 6-DOF pose of
high-speed tumbling target system.

In addition, the LIDAR point cloud in this algorithm can be very sparse and unorganized. The
method also can be used for dense point cloud only if the down sampling is used to reduce the time
off establishing the convex hull, to ensure the real-time performance of the algorithm. Therefore, it is
suitable for other types of LIDAR systems, such as flash LIDAR.

In future work, the robustness of the CTA algorithm will be analyzed considering the different
shape and various kinematic states of the targets. In addition, the situation in which the target is
occluded also needs to be considered in future work. .
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