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Abstract: Compensation of gravity disturbance can improve the precision of inertial navigation,
but the effect of compensation will decrease due to the accelerometer bias, and estimation of the
accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates
the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the
accelerometer bias should be estimated is established. The accelerometer bias is estimated from the
gravity vector measurement, and a model of measurement noise in gravity vector measurement is
built. Based on this model, accelerometer bias is separated from the gravity vector measurement error
by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008
spherical harmonic model to build the simulation scene, and the simulation results indicate that
precise estimations of the accelerometer bias can be obtained with the proposed method.
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1. Introduction

An inertial navigation system (INS) is an instrument which can autonomously determine the
ship’s attitude, velocity and position based on its self-contained gyroscopes and accelerometers [1,2].
Because of the self-localization feature, INS is not vulnerable to any type of external interference and has
wide application in military fields. However, as a dead reckoning approach, the precision of INS will
drift with time due to its inherent error sources. The inherent error sources of INS not only include the
errors of inertial sensors, but also include the gravity disturbance [3,4]. In recent years, the significant
improvement of inertial sensors has left the gravity disturbance as the most important error source
in high precision inertial navigation [5,6]. In the future the inertial-sensors-induced position error
would be reduced to only a few meters per hour with cold atom interferometry gyroscopes [6], and the
gravity disturbance compensation should be considered [7–10].

The definition of gravity disturbance is illustrated in Figure 1 [11]. According to the potential
theory, gravity vector is the perpendicular line of equipotential surface of gravity. The Earth’s
equipotential surface of gravity is very complex, and the equipotential surface of reference ellipsoid
model such as WGS-84, is used to approximate the Earth’s equipotential surface of gravity. As shown in
Figure 1, g is the true gravity vector of point P and γ is the normal gravity vector of point P, the gravity
disturbance vector is the difference between the true gravity vector and the normal gravity vector [11].
The difference in magnitude is the gravity disturbance and the difference in direction is the deflection
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of vertical (DOV). Due to DOV, there are some projection components of the true gravity vector in the
horizontal plan, which are named horizontal gravity disturbance.
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Because of the instability of the INS’s vertical channel, INS generally only provides horizontal
velocity, latitude and longitude of the ship, and horizontal gravity disturbance is the main error
source of gravity-induced error. The study of compensation of horizontal gravity disturbance can
be traced back to the sixties of last century, and works have been done on the analysis of error
induced by horizontal gravity disturbance. In 1962, Kayton demonstrated that the practical limit
of measurement of inertial acceleration is the knowledge of gravitational field, and any differences
between the actual field and the model will cause a navigation error and the use of accelerometers
which are more sensitive than 10−5 g is probably ineffective unless acquiring detailed knowledge of
Earth’s gravity field [12]. Based on the work of Kayton, Levine and Gelb quantitatively analyzed the
effect of horizontal gravity disturbances on INS, where the horizontal gravity disturbance is modeled
as a first-order Gauss-Markov process and the effect on INS is evaluated with the steady-state solution
of the covariance matrix differential equation [13]. After that, based on the covariance analysis method
proposed by Levine and Gelb, Jordan analyzed the effect of horizontal gravity disturbance with a
new model, named self-consistent statistical model. Different from the first-order Gauss-Markov
model built by Levine and Gelb, this model is built based on the potential theory, so this model is
more consistent with the true covariance of horizontal gravity disturbance [14]. These works indicate
that the horizontal gravity disturbance will affect the accuracy of the initial alignment and velocity
calculation. In order to compensate the effect on INS, gravity gradiometers were developed to measure
the horizontal gravity disturbance along the ship’s trajectory, such as the universal gravity module
(UGM) developed by Lockheed Martin Federal Systems [15]. Nowadays, with the release of ultra-high
degree global Earth gravitational models, such as the EGM2008, horizontal gravity disturbances
can be precisely calculated based on these spherical harmonic models (SHMs), and the effect of
horizontal gravity disturbance on INS can be compensated. The compensation method based on SHM
is preferable, because only some software updates of INS are needed to obtain the horizontal gravity
disturbance, instead of using a costly gradiometer [16,17]. In this paper, calculation of the horizontal
gravity disturbance based on SHM is described in detail.

There is a crucial issue in horizontal gravity disturbance compensation, namely the fact that
the compensation effect is associated with the accelerometer bias. Because of the tight coupling
between accelerometer bias and horizontal gravity disturbance, the method of compensation is
ambiguous, especially when considering the initial alignment and INS calculation synthetically. In 1959,
the horizontal gravity component from the mission data was used in the MH-311 system for the Army’s
AN/USD-5 surveillance. After three years, the derivative of the MH-311 compensates the horizontal
gravity disturbance during self-alignment, while removes such compensation in navigation mode.
In 1982, an “improved” DOV compensation procedure was used in Mini-GEANS. In particular,
the system is firstly aligned to the local gravity vector and after takeoff, the alignment matrix is
rotated to the reference ellipsoid. In our early work [18], the compensation is studied in both



Sensors 2018, 18, 883 3 of 26

the initial alignment and navigation calculation. The inertial navigation experiment demonstrates
that compensation only in navigation calculation and not in initial alignment is more preferred.
Reference [19] reported a military standard ring laser inertial navigation unit named LN-93E, which
is an enhanced derivative of its earlier version, LN-93. One of the reasons for the performance
improvement of LN-93E is just the DOV compensation at the align location. In [20], the authors
analyze why the DOV compensation in initial alignment is not universal. It is pointed out that this is
mainly because the correlations between the accelerometer bias and horizontal gravity disturbance.
Unfortunately, the corresponding conclusion in [20] is qualitative and the proposed improved
compensation procedure is also case-dependent and not universal.

If the accelerometer bias can be accurately estimated, the compensation method can be worked
out, and the effect of accelerometer bias on compensation can be eliminated. INS/GNSS (GNSS, global
navigation satellite system) integrated is the usual method to estimate the accelerometer bias [21].
However, the precision of this method is limited by the poor observability of accelerometer bias [22,23],
and the estimation is the combination of accelerometer bias and horizontal gravity disturbance.
Although a statistical model of the horizontal gravity disturbance can be used in the filter to separate
the accelerometer bias from the horizontal gravity disturbance, it’s hard to build a universal statistical
model of horizontal gravity disturbance [24].

In some cases, the use of GNSS is not possible and the positioning can only depend on INS.
To improve the accuracy of INS in long-endurance navigation, the compensation of gravity disturbance
is very necessary. However, the effect of compensation will decrease due to the accelerometer bias.
One possible solution to this problem is estimating the accelerometer bias with GNSS before the
long-endurance inertial navigation. In this paper, we try to do the estimation in the method of gravity
vector measurement [25,26], we attempt to separate the accelerometer bias from the measurement error
of gravity vector. The model of measurement noise is built to implement the estimation. The contents
are organized as follows: the horizontal gravity disturbance calculation using SHM is described
in Section 2. In Section 3, the reason why accelerometer bias influences compensation is analyzed.
In Section 4, our proposed method of estimating accelerometer bias is introduced in detail and
simulation results are provided in Section 5. Finally, conclusions are drawn in Section 6.

2. Horizontal Gravity Disturbance and Spherical Harmonic Model

2.1. Definition of Horizontal Gravity Disturbance

DOV has two components as shown in Figure 2, where g is the true gravity vector, and γ is
the normal gravity vector obtained from the reference ellipsoid model such as WGS-84. The DOV,
which is a vector quantity, is usually decomposed into two mutually perpendicular components:
a north-south or meridional component ξ, which is reckoned positive northward, and an east-west or
prime vertical component η, which is reckoned positive eastward [27]. In other words, the deflection
components are positive if the direction of the gravity vector points further south and further west
than the corresponding ellipsoidal normal [28], or the level surface is rising to the south or west,
respectively, with respect to the ellipsoid [29].

The north component of horizontal gravity disturbance ∆gn
N is associated with ξ, and the

east component of horizontal gravity disturbance ∆gn
E is associated with η. As shown in Figure 2,

Equation (1) describes the connections between DOV and horizontal gravity disturbance where γ is
the norm of the normal gravity vector γ:

tan ξ ≈ ξ = −∆gn
N

γ tan η ≈ η = −∆gn
E

γ
(1)
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2.2. Calculation of Horizontal Gravity Disturbance Based on SHM

According to the potential theory [11], DOV is the partial derivative of the disturbed gravitational
potential T, and r is the distance from the center of reference ellipsoid to the calculated point:

ξ = − 1
γ·r

∂T
∂L η = − 1

γ·r· cos L
∂T
∂λ (2)

Substituting Equation (2) into Equation (1), the connections between the disturbed gravitational
potential and the horizontal gravity disturbance can be built, and L is the geocentric latitude of
calculated point and λ is longitude of the calculated point:

∆gn
N = 1

r
∂T
∂L ∆gn

E = 1
r· cos L

∂T
∂λ

(3)

Usually the geocentric colatitude ϑ is used in the SHM calculation:

ϑ =
π

2
− L (4)

Then the horizontal gravity disturbances can be obtained as:

∆gn
N = −1

r
∂T
∂ϑ

(5)

∆gn
E =

1
r· sin ϑ

∂T
∂λ

(6)

The disturbed gravitational potential T is the solution of Laplace equation in the ellipsoidal
coordinate frame, which can be represented as follows [11]:

T =
GM

r

nmax

∑
n=2

n

∑
m=0

( a
r

)n(
C∗nm cos mλ + Snm sin mλ

)
Pnm(cos ϑ) (7)

where G is the gravitational constant, M is the mass of the Earth, a is the major semi-axis length of
the reference ellipsoid, n and m are called the degree and order of the SHM, C∗nm and Snm are the
coefficients of the SHM, Pnm(cos ϑ) is the fully normalized Legendre functions of degree n and order
m. The partial derivatives of the disturbed gravitation potential are Equations (8) and (9) [11]:

∂T
∂ϑ

=
GM

r

nmax

∑
n=2

n

∑
m=0

( a
r

)n(
C∗nm· cos mλ + Snm· sin mλ

)dPnm(cos ϑ)

dϑ
(8)
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∂T
∂λ

=
GM

r

nmax

∑
n=2

n

∑
m=0

( a
r

)n[
m
(
−C∗nm· sin mλ + Snm· cos mλ

)]
Pnm(cos ϑ) (9)

Substituting Equations (8) and (9) into Equations (5) and (6), the formulas of calculating horizontal
gravity disturbance are obtained:

∆gn
N = −GM

r2

nmax

∑
n=2

n

∑
m=0

( a
r

)n(
C∗nm· cos mλ + Snm· sin mλ

)dPnm(cos ϑ)

dϑ
(10)

∆gn
E =

GM
sin ϑ·r2

nmax

∑
n=2

n

∑
m=0

( a
r

)n[
m
(
−C∗nm· sin mλ + Snm· cos mλ

)]
Pnm(cos ϑ) (11)

3. The Effect of Accelerometer Bias on Horizontal Gravity Disturbance Compensation

3.1. Reference Coordinate Frames

3.1.1. Earth-Centered-Earth-Fixed Frame e

The origin of this coordinate frame is at center of the Earth, whose z-axis points in the direction of
the North pole, x-axis points towards the Greenwich Meridian, and y-axis completes the right-handed
orthogonal frame. This frame rotates with the Earth with the rate ωe

ie = [0 0 Ω]T , Ω is the Earth’s
rotation angular velocity, as shown in Figure 3a.

3.1.2. Navigation Coordinate Frame with North-Up-East Definition n

This frame is a local geodetic north-oriented, local-level coordinate frame, the origin of this
frame is at the position of the ship, and its xn−yn−zn axes respectively point towards North-Up-East,
as shown in Figure 3a. It should be noted that zn is collinear with the normal gravity vector which
points towards the center of the reference ellipsoid.

3.1.3. Body Coordinate Frame with Forward-Upward-Right b

This frame is defined based on the input axes of inertial sensors. Its axes respectively point
towards Right-Forward-Upward of the ship.

3.1.4. Navigation Coordinate Frame with True Vertical n’

This frame is similar to n coordinate frame. Based on the true gravity vector, whose axes are
denoted by { xn′ ,yn′ ,zn′ } and xn′ also points towards north, but zn′ is collinear with the true gravity
vector and yn′ can be determined based on the right-hand rule, as shown in Figure 3b.
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Direction cosine matrix (DCM) is used to express a rotation in three dimensions as a mathematical
transformation. The DCM between navigation frame and body frame is a function of Euler angles:

rn = Cn
b rb (12)

where rn is the projection of arbitrary vector r in n coordinate frame, rb is the projection of vector r in b
coordinate frame.

3.2. Mathmatical Formulation of INS

Inertial navigation is an integration algorithm based on Newton’s second law. It can be
decomposed into two successive steps as shown in Figure 4. Step I is the initial alignment in which the
initial values of the integration algorithm are obtained, including initial attitudes, initial velocities, and
initial positions. Step II is the integration calculation named navigation calculation, including attitude
calculation, velocity calculation and position calculation. In fact, the implementation of step I contains
step II. Navigation calculation is first executed in step I, then Kalman Filter (KF) recursion is performed
following the one-step navigation calculation. After the KF measurement update, the estimated state
can be fed back to fix the corresponding navigation calculation errors. Finally, the precise initial values
will be obtained in the KF recursion.
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Mechanization is very important for inertial navigation and the analysis in this paper.
The traditional INS strapdown mechanization is chosen in this paper for two reasons. Firstly,
as introduced in Section 1, the background of this paper is compensation of horizontal gravity
disturbance for high precision INS. Secondly, the accelerometer bias is estimated from the strapdown
gravity vector measurement, and in the field of strapdown gravity vector measurement, the traditional
INS strapdown mechanization is appropriate [30–32].

The navigation calculation is performed in the navigation frame and all the vectors should be
transformed into this frame before they can be used. Navigation coordinate frame with north-up-east
definition is usually chosen as the coordinate frame in which the navigation calculation is implemented.

The attitude kinematical equation with DCM parameterization is given by [2]:

.
C

n
b = Cn

b

[
ωb

nb×
]

(13)

where ωb
nb is the body angular rate with respect to the navigation frame n and is given by [2]:

ωb
nb = ωb

ib − Cb
n(ω

n
ie + ωn

en) (14)

ωb
ib is the body angular rate with respect to inertial frame and is measured by the gyroscopes. ωn

ie is
the earth rotational rate and is given by [2]:
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ωn
ie =

[
Ω cos L ΩsinL 0

]T
(15)

ωn
ie is the angular rate of navigation frame with respect to the Earth frame, which is caused by the

linear motion of the ship on the ellipsoidal surface. The formulation of ωn
ie is given by [2]:

ωn
en =

[
vn

E
RN+h

vn
E

RN+h tan L − vn
N

RM+h

]T
(16)

RM and RN are the meridian and transverse radius of the ellipsoid curvature, respectively. vn
E and vn

N
are the east and north components of the velocity, respectively. h is the height of the ship relative to the
reference ellipsoid, and it should be noted that this paper focuses on the ship mounted INS and the
height can be set to zero.

The velocity kinematical equation in navigation frame is given by [2]:

.
vn

e = Cn
b fb − (2ωn

ie + ωn
en)× vn

e + gn (17)

where vn
e is the velocity relative to the Earth, fb is the specific force measured by the accelerometers,

and it’s emphasized here that gn is the true gravity vector at the position of ship. ∆gn is the horizontal
gravity disturbance described in Section 2, and γn is the normal gravity vector obtained from reference
ellipsoid model:

gn =

 ∆gn
N
−γ

∆gn
E

 =

 ∆gn
N

0
∆gn

E

+

 0
−γ

0

 = ∆gn + γn (18)

The definition of horizontal gravity disturbance compensation can be defined here, that is
horizontal gravity disturbance compensation means that the gravity vector used in initial alignment
and navigation calculation is gn rather than γn.

The position kinematical equation is given here and the kinematical equation of height is not
considered here for ship mount INS [2]:

.
L = 1

RM+h vn
N

.
λ = sec L

RN+h vn
E

(19)

3.3. Effect of Acceleromter Bias on Compensation

Attitude error equation and velocity error equation are the foundations of KF recursion in initial
alignment and are also the key point of the analysis. The attitude error equation is given in [2]:

δϕ =
[

δα δφ δβ
]T

(20)

δ
.

ϕ = −(ωn
ie + ωn

en)× δϕ+ δωn
in − Cn

b δωb
ib (21)

where δϕ is the attitude error vector, δα is the roll error, δφ is the yaw error, δβ is the pitch error and
δωb

ib is the gyroscope noise which can be usually regarded as white noise.
The velocity error equation is derived as follows. The true velocity kinematic equation is given

in [2], as Equation (22):
.
vn

e = Cn
b fb − (2ωn

ie + ωn
en)× vn

e + γn + ∆gn (22)

When the navigation calculation is implemented without the gravity disturbance compensation
and no accelerometer bias exists, the practical velocity kinematic equation in navigation calculation is
Equation (23):

.
ṽ

n
e = C̃

n
b fb − (2ω̃n

ie + ω̃n
en)× ṽn

e + γn + δfn (23)
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where ṽn
e is the calculated velocity-containing error. ω̃n

ie and ω̃n
en are angular velocities containing error,

γn is the normal gravity vector, and δfn is the white noise in accelerometer output. C̃
n
b is the DCM

containing error and is defined as follows:

C̃
n
b = (I3×3 − [δϕ×])Cn

b (24)

[δϕ×] =

 0 −δβ δφ

δβ 0 −δα

−δφ δα 0

 (25)

The velocity error equation without accelerometer bias is derived by subtracting Equation (22)
from Equation (23):

δvn
e = ṽn

e − vn
e =

[
δvn

N δvn
U δvn

E

]T
(26)

[fn×] =

 0 − f n
E f n

U
f n
E 0 − f n

N
− f n

U f n
N 0

 (27)

δ
.
vn

e = [fn×]δϕ+ δfn − ∆gn (28)

where δvn
e is the velocity error vector, δvn

N , δvn
U and δvn

E are the north, upward and east component of
velocity error vector. fn is the specific force measured at the initial point and projected in the n frame.
f n
N , f n

U and f n
E are the components of f n in the n frame.

Initial alignment is usually implemented when the INS is at static or mooring, f n can be regarded
as the opposite of the true gravity vector:

fn = −gn =
[
−∆gn

N γ −∆gn
E

]T
(29)

The Kalman filter state is updated with a new observation, velocity error is usually used as
observation in static initial alignment. Because the initial alignment is implemented when the ship is at
static or moored, the true value of velocity is approximately equal to zero, then the non-zero velocity
output of INS is the velocity error. KF recursion of initial alignment will converge when the velocity
error reaches zero, and the attitude estimation errors can be obtained by setting Equation (28) equal
to zero:

δα ≈
∆gn

E
γ

=
−η·γ

γ
= −η (30)

δβ ≈
−∆gn

N
γ

=
γ·ξ
γ

= ξ (31)

From Equations (30) and (31), it can be seen that horizontal gravity disturbance will give rise
to the attitude errors in the initial alignment. Compensation for horizontal gravity disturbance is
necessary in initial alignment.

However, if some accelerometer bias exists, the coupling between accelerometer bias and
horizontal gravity disturbance may decrease the compensation effect as analyzed below. When
navigation calculation is implemented without gravity disturbance compensation and accelerometer
bias exists, the velocity kinematic equation is Equation (32)

.
ṽ

n
e = C̃

n
b fb − (2ω̃n

ie + ω̃n
en)× ṽn

e + γn + δfn + bn
a (32)

The new velocity error equation is obtained by subtracting Equation (22) from Equation (32):

bn
a =

[
bn

a,N bn
a,U bn

a,E

]T
(33)
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δ
.
vn

e = [fn×]δϕ+ δfn − ∆gn + bn
a (34)

where bn
a is the accelerometer bias and bn

a,N , bn
a,U and bn

a,E are the north, upward and east component of
the accelerometer bias. The estimation errors of attitude are obtained as Equations (35) and (36)
which clearly describe the connection among attitude error, horizontal gravity disturbance and
accelerometer bias:

δα ≈
∆gn

E + bn
a,E

γ
=
−η·γ

γ
+

bn
a,E

γ
= −η +

bn
a,E

γ
(35)

δβ ≈
−∆gn

N + bn
a,N

γ
=

γ·ξ
γ

+
bn

a,N

γ
= ξ +

bn
a,N

γ
(36)

In the case of the accelerometer bias being much larger than the horizontal gravity disturbance,
whether the horizontal gravity disturbance being compensated will not obviously improve the
precision of initial alignment, because the accelerometer bias is the main error source. The accelerometer
bias can be estimated through INS/GNSS integrated Kalman filter [21].

In the case of the accelerometer bias being much smaller than the horizontal gravity disturbance,
the compensation of horizontal gravity disturbance which is the dominant error source will reliably
improve the accuracy of initial alignment, and there is no need to estimate accelerometer bias
in practice.

In the case of accelerometer bias being at the same order with horizontal gravity disturbance,
this is the hardest situation to handle. Taking Equation (35) for example, if the sign and magnitude
of east accelerometer bias are the same as those of east gravity disturbance, the effect of horizontal
gravity disturbance on initial alignment is counteracted with the accelerometer bias. If the gravity
disturbance is still compensated in initial alignment, then a new attitude error will arise due to the
compensation. Therefore, estimation of accelerometer bias is necessary in this situation, otherwise
whether do the gravity disturbance compensation in initial alignment will be ambiguous as mentioned
in the introduction.

The above analysis also shows the effect of horizontal gravity disturbance on navigation
calculation. As in Equation (32), the accelerometer bias is coupled with the horizontal gravity
disturbance in the velocity calculation. When the horizontal gravity disturbance is compensated,
the practical kinematic equation is Equation (37):

.
ṽ

n
e = C̃

n
b fb − (2ω̃n

ie + ω̃n
en)× ṽn

e + γn + ∆gn + δfn + ba
n (37)

Comparing Equation (37) with Equation (22), it can be found that the effect of compensation is
counteracted with the accelerometer bias. In the limit situation of the accelerometer bias being the
opposite of horizontal gravity disturbance, the compensation will be inefficient.

4. Model of Gravity Vector Measurement Noise

From the analysis in Section 3, when the accelerometer bias is at the same order with horizontal
gravity disturbance, accurate estimation of accelerometer bias is the crucial issue in gravity disturbance
compensation. Usually the accelerometer bias can be estimated using INS/GNSS integrated Kalman
filter in which the accelerometer bias is modeled as a constant. The disadvantage to this approach
is that the estimation is a combination of the accelerometer bias and horizontal gravity disturbance.
Maybe we can try to do the estimation from another angle. Inertial sensors not only can be used to
navigate but also can be used to measure the gravity vector. If the gravity information is the input,
position information is obtained. On the contrary, gravity vector can be measured as position and
velocity information being the input, that’s the principle of the strapdown gravimeter [25].



Sensors 2018, 18, 883 10 of 26

Horizontal gravity disturbance can be measured by subtracting the normal gravity vector from
the measured value of gravity vector as Equation (38):

∆gn + w =
.
vn

e − Cn
b fb + (2ωn

ie + ωn
en)× vn

e − γn (38)

Equation (38) is the transformation of Equation (22). In gravity vector measurement, some terms
of Equation (38) is calculated based on GNSS information, and some are provided by inertial sensors.
.
vn

e is the difference of velocity provided by GNSS, ωn
ie and ωn

en can be calculated by substituting the
velocity and position provided by GNSS into Equation (15) and Equation (16). Cn

b is calculated with
the output of gyroscopes and Equation (13). fb is the output of the accelerometers.

The precise measurement of specific force is crucial for gravity vector measurement and INS is
aided with GNSS to improve attitude accuracy, thus high precise measurement of specific force can
be obtained. As described in [33], there are four main data fusion schemes for INS/GNSS. In the
traditional strapdown gravity vector measurement, feedback correction is the main data fusion scheme
of INS/GNSS which is also the data fusion scheme adopted in this paper. And a new and compact data
fusion scheme proposed in [33] is a novel and worthwhile approach in the advancement of strapdown
gravity vector measurement.

In addition, it should be noted that w is the measurement noise of gravity vector, which is a
composite term due to some error sources except accelerometer bias, including noise of inertial sensors
and error of GNSS. The measured value of horizontal gravity disturbance can be expressed as follows:

∆gn
N,E =

[
∆gn

N ∆gn
E

]T
w =

[
wN wE

]T
(39)

∆g̃n
N,E = ∆gn

N,E + w (40)

where ∆gn
N,E is the true value of horizontal gravity disturbance, ∆g̃n

N,E is the measured value containing
error, w is the measurement noise. When the accelerometer bias exits, the accelerometer bias is added
to the measurement equation and the measured value also changes:

∆gn + w + ∆fn =
.
vn

e − Cn
b fb + (2ωn

ie + ωn
en)× vn

e − γn (41)

∆g̃n
N,E = ∆gn

N,E + w +
[

bn
a,N bn

a,E

]T
(42)

The measurement error of horizontal gravity disturbance can be obtained by subtracting the
measured value from the true value:

δgn
N,E =

[
δgn

N

δgn
E

]
=

[
bn

a,N

bn
a,E

]
+

[
wN
wE

]
(43)

where δgn
N and δgn

E are the north and east component of measurement error of horizontal gravity
disturbance. Because the background of this paper is using the calculated horizontal gravity
disturbance based on SHM to compensate INS, the horizontal gravity disturbance from SHM is
regarded as the true value, the measurement error can be calculated by subtracting the true value from
the measured value.

In fact, we can have estimations of accelerometer biases by averaging the measurement error as
follows:

b̂n
a,N = 1

N

N
∑

i=1

[
δgn

N(i)
]

b̂n
a,E = 1

N

N
∑

i=1

[
δgn

E(i)
]

(44)

b̂n
a,N and b̂n

a,E will be precise estimations if and only if the measurement noise is zero-mean, but it is a
too rigorous condition for practice. Based on the Equation (44), when the mean value of measurement
noise isn’t zero, is it possible to have a precise estimation of the accelerometer bias? The conjecture is
that accelerometer bias is the inherent error of accelerometer which is not related to the Earth’s gravity
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field, but the contribution of measurement noise to measurement error may be associated with the
gravity field.

4.1. The Measurement Noise of Horizontal Gravity Disturbance

In this subsection, the model of measurement noise will be derived. The true gravity vector
projected in n coordinate frame is Equation (18), while the true gravity vector projected in n′ coordinate
frame is Equation (45):

gn′ =
[

0 −γ 0
]T

(45)

It should be noted that the y-axis of n′ coordinate frame is collinear with the true gravity vector,
the horizontal components of gn′ are zeroes. The DCM between n coordinate frame and n′ coordinate
frame can be determined based on the geometric relationship between the two navigation coordinate
frames, as shown in Figure 5.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 26 

 

the Earth’s gravity field, but the contribution of measurement noise to measurement error may be 
associated with the gravity field.  

4.1. The Measurement Noise of Horizontal Gravity Disturbance 

In this subsection, the model of measurement noise will be derived. The true gravity vector 
projected in n  coordinate frame is Equation (18), while the true gravity vector projected in n′  
coordinate frame is Equation (45): 

[ ]0 0
Tn γ′ = −g  (45) 

It should be noted that the y-axis of n′  coordinate frame is collinear with the true gravity vector, 
the horizontal components of n ′g  are zeroes. The DCM between n  coordinate frame and n′  
coordinate frame can be determined based on the geometric relationship between the two navigation 
coordinate frames, as shown in Figure 5.  

Rotation Axis

 

Figure 5. The geometric relationship between the two navigation coordinate frames. 

The coordinate frame n’ can be obtained through rotating the coordinate frame n by ϑ  along 
the rotational axis u. It is obvious that the rotational axis and rotational angle are associated with the 
DOV components and can be determined based on some constraints. The rotation axis 

=
Tn

x y zu u u  u  satisfies four constraints: 

(1) In the plane n nx z− ; 
(2) Pass through the origin of the two coordinate frames; 
(3) Be orthogonal to the plane n ny y ′− ; 
(4) u  is unit vector; 

Based on constraint 1: 

0yu =  (46) 

Based on constraint 2, k is a constant to be determined: 

x zu k u= ⋅  (47) 

Based on constraint 3: 

[ ]= 0
T Tn n

x y zu u u ε γ γ η γ ⋅ ⋅ ⋅ − ⋅ = u g  (48) 

Based on constraint 4: 

Figure 5. The geometric relationship between the two navigation coordinate frames.

The coordinate frame n′ can be obtained through rotating the coordinate frame n by ϑ along
the rotational axis u. It is obvious that the rotational axis and rotational angle are associated
with the DOV components and can be determined based on some constraints. The rotation axis

un =
[

ux uy uz

]T
satisfies four constraints:

(1) In the plane xn − zn;
(2) Pass through the origin of the two coordinate frames;
(3) Be orthogonal to the plane yn − yn′ ;
(4) u is unit vector;

Based on constraint 1:
uy = 0 (46)

Based on constraint 2, k is a constant to be determined:

ux = k·uz (47)

Based on constraint 3:

un·gn =
[

ux uy uz

]T
·
[

ε·γ −γ η·γ
]T

= 0 (48)

Based on constraint 4: √
u2

x + u2
y + u2

z = 1 (49)
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According to Equations (46)–(49), the rotation axis u can be determined:

ux = (−η)/
√

ξ2 + η2 uy = 0 uz = ξ/
√

ξ2 + η2 (50)

u =
[

ux 0 uz

]
=
[
−η/

√
ξ2 + η2 0 ξ/

√
ξ2 + η2

]T
(51)

ϑ is the angle between γn and gn, and can be calculated based on vector product:

γn =
[

0 −γ 0
]T

gn =
[

δgN −γ δgE

]
cos ϑ = (g·g)/(‖g‖·‖g‖) (52)

ϑ = arccos
(

1/
√

1 + ξ2 + η2
)

(53)

Based on the rotation axis and the rotation angle, the corresponding quaternion and DCM can be
obtained [2]:

Q =
[

q0 q1 q2 q3

]
=
[

cos(ϑ/2) ux· cos(ϑ/2) uy· cos(ϑ/2) uz· cos(ϑ/2)
]

(54)

Cn
n′ =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1·q2 − q0·q3) 2(q1·q3 + q0·q2)

2(q1·q2 + q0·q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2·q3 − q0·q1)

2(q1·q3 − q0·q2) 2(q2·q3 + q0·q1) q2
0 − q2

1 − q2
2 + q2

3

 (55)

Equations (54) and (55) can be simplified due to uy being zero:

Q =
[

cos(ϑ/2) ux· cos(ϑ/2) 0 uz· cos(ϑ/2)
]

(56)

Cn
n′ =

 q2
0 + q2

1 − q2
3 −2(q0·q3) 2(q1·q3)

2(q0·q3) q2
0 − q2

1 − q2
3 2(−q0·q1)

2(q1·q3) 2(q0·q1) q2
0 − q2

1 + q2
3

 (57)

Based on the Equations (50)–(57), it can be seen that Cn
n′ is a function of the horizontal gravity

disturbance:
Cn

n′ = F(∆gn
N , ∆gn

E) (58)

and Equation (18) can be approximately rearranged as:

Cn
n′g

n′ = Cn
n′

 0
−γ

0

 = gn =

 ∆gn
N
−γ

∆gn
E

 (59)

Now, when only considering the measurement noise, the DCM based on the measured values is
supposed to has the following form:

F(∆gn
N + wN , ∆gn

E + wE) = C̃
n
n′ = (Cn

n′ + δCn
n′) (60)

Substituting Equation (60) into Equation (59): ∆gn
N + wN
−γ

∆gn
E + wE

 ≈ C̃
n
n′

 0
−γ

0

 = (Cn
n′ + δCn

n′)

 0
−γ

0

 = Cn
n′

 0
−γ

0

+ δCn
n′

 0
−γ

0

 (61)

The expression of measurement noise is obtained:
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 wN
0

wE

 = δCn
n′

 0
−γ

0

 (62)

Suppose δCn
n′ has the following form:

δCn
n′ =

 δc11 δc12 δc13

δc21 δc22 δc23

δc31 δc32 δc33

 (63)

The model of measurement noise is obtained, this is the foundation of estimating accelerometer
bias in this paper:

wN = δc12·(−γ)

wE = δc32·(−γ)
(64)

Substituting Equation (64) into Equation (43), the model of measurement error is rearranged as:[
δgn

N
δgn

E

]
=

[
bn

a,N − δc12·(γ)
bn

a,E − δc32·(γ)

]
(65)

4.2. Parameters of the Model of Measurement Noise

δc12 and δc32 are derived below. According Equations (50)–(57), the elements of the quaternion
are also the functions of measured values of horizontal gravity disturbance. These elements will also
contain some error due to the measurement noise as follows:

q̃0 = q0 + δq0 q̃1 = q1 + δq1 q̃3 = q3 + δq3 (66)

δq0, δq1 and δq3 are the errors caused only by the measurement noise. Substituting Equation (66)
into Equation (57), we can get:

δc12 = −2(q0δq3 + δq0q3) δc32 = 2(q0δq1 + δq0q1) (67)

δCn
n′ =

 2(q0·δq0 + q1·δq1 − q3·δq3) −2(q0δq3 + δq0q3) 2(q1δq3 + δq1q3)

2(q0δq3 + δq0q3) 2(q0·δq0 − q1·δq1 − q3·δq3) 2(q0δq1 + δq0q1)

2(q1δq3 + δq1q3) 2(q0δq1 + δq0q1) 2(q0·δq0 − q1·δq1 + q3·δq3)

 (68)

The model of measurement error is rearranged as:[
δgn

N
δgn

E

]
=

[
bn

a,N + [2(q0δq3 + δq0q3)]·(γ)
bn

a,E − [2(q0δq1 + δq0q1)]·(γ)

]
(69)

The next work is to derivate the expression of δqi,i=0,1,3 through the following partial differential
equations:

δq0 =
(

∂q0
∂ξ

)
δξ +

(
∂q0
∂η

)
δη δq1 =

(
∂q1
∂ξ

)
δξ +

(
∂q1
∂η

)
δη δq3 =

(
∂q3
∂ξ

)
δξ +

(
∂q3
∂η

)
δη (70)

According to the Equations (50)–(57), these partial derivatives are obtained:

f (ξ, η) = 1/
√

1 + ξ2 + η2 g( f ) = arccos( f ) (71)

∂q0

∂ξ
=

(
− sin(g( f )/2)·ξ

2(1 + η2 + ξ2)
√

η2 + ξ2

)
(72)
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∂q0

∂η
=

− sin(g( f )/2)·η
2(1 + η2 + ξ2)

√
η2 + ξ2

(73)

∂q1

∂ξ
=

(ξ·η)
(η2 + ξ2)

[
− cos(g( f )/2)
2(1 + η2 + ξ2)

+
sin(g( f )/2)√

ξ2 + η2

]
(74)

∂q1

∂η
= − cos(g( f )/2)·η2

2(1 + ξ2 + η2)(ξ2 + η2)
−

sin(g( f )/2)·
(
ξ2)

(ξ2 + η2)
3/2 (75)

∂q3

∂ξ
=

cos(g( f )/2)·ξ2

2(1 + η2 + ξ2)·(η2 + ξ2)
+

sin(g( f ))·
(
η2)

(ξ2 + η2)
3/2 (76)

∂q3

∂η
=

cos(g( f )/2)ξ·η
2(1 + ξ2 + η2)(ξ2 + η2)

− sin(g( f )/2)·(ξ·η)
(

ξ2 + η2
)−3/2

(77)

4.3. Estimation Model of the Accelerate Bias

Finally, based on the model of measurement noise, the model of measurement error is rearranged
as follows: [

δgn
N

δgn
E

]
=

[
2γ·Φ1 2γ·Φ2 1 0
−2γ·Φ3 −2γ·Φ4 0 1

]
δξ

δη

bn
a,N

bn
a,E

 (78)

Φ1 =

{
cos
(

g( f )
2

)(
∂q3

∂ξ

)
+ sin

(
g( f )

2

)
·
(

ξ√
ξ2 + η2

)(
∂q0

∂ξ

)}
(79)

Φ2 =

{
cos
(

g( f )
2

)(
∂q3

∂η

)
+ sin

(
g( f )

2

)
·
(

ξ√
ξ2 + η2

)(
∂q0

∂η

)}
(80)

Φ3 =

{
cos
(

g( f )
2

)(
∂q1

∂ξ

)
+ sin

(
g( f )

2

)
·
(

−η√
ξ2 + η2

)
·
(

∂q0

∂ξ

)}
(81)

Φ4 =

{
cos
(

g( f )
2

)(
∂q1

∂η

)
+ sin

(
g( f )

2

)
·
(

−η√
ξ2 + η2

)
·
(

∂q0

∂η

)}
(82)

δξ and δη can be regarded as the measurement errors of DOV only due to the measurement noise wN
and wE, and the contribution of δξ and δη to the measurement error of horizontal gravity disturbance
is associated with the variation of gravity field, these connections are represented by Φi,i=1,2,3,4.

5. Simulation Results

5.1. Estimation Methods of Accelerometer Bias

The model of measurement error, as Equation (78), can be utilized in the method of least squares
to estimate the accelerometer bias, the elements Φi,i=1,2,3,4 change with the variation of gravity field,
then uncorrelated observation equations are built to ensure the numerical stability of solving the
pseudo-inverse in the least squares. Assuming that N times measurements of horizontal gravity
disturbance are made, then there are 2N observation equations built as below:

z2N×1 = H2N×4·x (83)

x =
[

x1 x2 x3 x4

]T
=
[

δξ δη bn
a,N bn

a,E

]T
(84)

z2N×1 =
[

δgn
N(1) δgn

E(1) · · · δgn
N(N) δgn

E(N)
]

(85)
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H2N×4 =


2γ(1)·Φ1(1) 2γ(1)·Φ2(1) 1 0
−2γ(1)·Φ3(1) −2γ(1)·Φ4(1) 0 1

...
...

...
...

2γ(N)·Φ1(N) 2γ(N)·Φ2(N) 1 0
−2γ(N)·Φ3(N) −2γ(N)·Φ4(N) 0 1

 (86)

where z2N×1 is the measurement error of horizontal gravity disturbance which is calculated by
subtracting the true values from the measurement values, and the subscript means the vector has
2N rows and one column. H2N×4 is the observation matrix which has 2N rows and four columns,
Φi,i=1,2,3,4 can be determined by substituting true values of DOV into Equations (79)–(82). γ(i) is the
norm of the normal gravity vector.

The accelerometer bias can be estimated by least squares as follows. b̂n
a,N and b̂n

a,E are the
estimations of the accelerometer biases:

x =
(

HT
2N×4·H2N×4

)−1
·HT

2N×4·z2N×1 (87)

b̂n
a,N = x3 b̂n

a,E = x4 (88)

5.2. Simulation of Horizontal Gravity Disturbance

From the model of measurement error, it can be known that the contribution of measurement
noise to measurement error changes with the variation of gravity field. In this simulation, an area with
moderate variation of gravity field is chosen whose latitude range is from 1◦ N to 5◦ N and longitude
range is from 76◦ E to 80◦ E, as shown in Table 1. The horizontal gravity disturbance in this area is
calculated based on SHM as described in Section 2, the SHM adopted here is EGM2008 whose the
maximum degree is 2190. The horizontal gravity disturbance in the simulation area is calculated with
maximum degree and the grid spacing is 5 n mile, the horizontal gravity disturbance in this simulation
area is shown in Figure 6.
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Figure 6. The horizontal gravity disturbance in the simulation area. (a) is the north component of the
horizontal gravity disturbance and (b) is the east component of the horizontal gravity disturbance.
(1 mGal = 10−5 m/s2).

The ship is assumed to sail along some straight lines in this area, these straight lines are called
survey lines. The gravity disturbance measurement is implemented along these survey lines. Five
latitude lines and five longitude lines in this area are taken as survey lines as shown in Figure 7 and
the horizontal gravity disturbance on the survey lines is shown in Figure 8.
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Figure 8. The horizontal gravity disturbance on the survey lines. (a) is the north component of
horizontal gravity disturbance on survey lines and (b) is the east component of horizontal gravity
disturbance on survey lines.

Table 1. The coordinate range of the survey lines.

Line No. Latitude Range Longitude Range Grid Spacing

Line 1 1◦ N~5◦ N 76◦ E 5 n mile
Line 2 1◦ N~5◦ N 77◦ E 5 n mile
Line 3 1◦ N~5◦ N 78◦ E 5 n mile
Line 4 1◦ N~5◦ 79◦ E 5 n mile
Line 5 1◦ N~5◦ N 80◦ E 5 n mile
Line 6 1◦ N 76◦ E~80◦ E 5 n mile
Line 7 2◦ N 76◦ E~80◦ E 5 n mile
Line 8 3◦ N 76◦ E~80◦ E 5 n mile
Line 9 4◦ N 76◦ E~80◦ E 5 n mile

Line 10 5◦ N 76◦ E~80◦ E 5 n mile
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5.3. Simulation Results

In this subsection, the efficiency of the proposed estimation method will be verified by the
simulations. The true values of horizontal gravity disturbances are the calculation results of SHM,
and the measured values are constructed as Equation (42), then the measurement error can be obtained
by subtracting the true values from the measurement values.

The bias of accelerometer ba is sometimes split into static component and dynamic component [34].
The static component denoted by bas is also known as the bias repeatability and comprises the
run-to-run variation of instrument bias plus the residual fixed bias remaining after calibration. bas is
constant throughout an IMU operating period but varies from run to run. The dynamic component
denoted by bad is also known as the bias instability and varies over time and temperature:

ba = bas + bad (89)

The value of bias repeatability is chosen with reference to the datasheet of QA3000, which is the
highest navigation-grade accelerometer from Honeywell®. The one-year composite repeatability of
QA3000 is less than 40 mGal, this value can be regarded as the upper bound of accelerometer bias.
According to the analysis in the end of Section 3, when the accelerometer bias is at the same order
with horizontal gravity disturbance, estimation of accelerometer bias is a crucial issue in the horizontal
gravity disturbance compensation, so the magnitude of accelerometer bias is carefully chosen based
on the magnitude of horizontal gravity disturbance in the simulation area. The statistical values of the
horizontal gravity disturbance on the survey lines are list in Table 2.

Table 2. The statistical values of horizontal gravity disturbance on the survey lines.

Line No.
Mean Value/mGal Median/mGal

North Component East Component North Component East Component

1 −1.21 −10.36 −1.55 −10.57
2 −1.61 −6.87 −2.42 −6.64
3 −2.61 −3.20 −2.97 1.25
4 −7.07 −6.27 −3.43 −3.23
5 −5.50 2.58 −8.65 3.32
6 −6.42 −3.62 −5.70 −2.17
7 −2.24 −2.62 −2.01 −3.21
8 −4.96 −2.58 −4.44 −3.10
9 −3.61 −5.79 −2.92 −3.50
10 6.84 −7.92 8.35 −6.84

Mean value of all survey lines Median of all survey lines
−2.84 −4.67 −2.97 −3.23

The values of bias instability are chosen with reference to the measured data of a high-quality
accelerometer. A long term static experiment for investigating the bias instability characteristics of this
accelerometer is carried out in December 2016. The output of the accelerometer is recorded for 450 h
and the accelerometer is mounted on a stable platform. The sampling frequency is 200 Hz and the
mean values of outputs are calculated every one hundred seconds as shown in Figure 9a. The drift
of the accelerometer output can be obtained by subtracting the first mean value form the subsequent
mean values as shown in Figure 9b.

It can be seen from Figure 9 that the characteristics of bias instability changes over time. From the
beginning to the 150th hour, the bias instability of accelerometer is a linear drift, and the drift rate is
approximately 1.31 mGal/day. From the 150th hour to the 250th hour, the bias instability changes to a
second-order curve. From the 250th hour to the end, the bias instability changes to a linear drift again,
and the drift rate is approximately 0.59 mGal/day.
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Figure 9. (a) is the mean values of the accelerometer outputs every one hundred seconds, and (b) is the
bias instability of the accelerometer.

Maintaining a nearly constant and stable temperature of the IMU improves its accuracy
during calibration and operation, as temperature stability is directly related to the sensor accuracy.
A multi-point thermal control is used in this experiment to improve the precision of the accelerometer,
and the temperatures of the accelerometer and the environment are recorded for the first 140 h.
The connections between the outputs of the accelerometer and the measured temperatures are shown
in Figures 10 and 11. Comparing Figures 10 and 11, there is no cyclic change in the temperature of
the accelerometer while the temperature of the environment changing day and night, which means
under the control the temperature of the accelerometer is stable. And there is no obvious correlation
between the output of the accelerometer and the temperature of the accelerometer. This indicates that
the bias instability of accelerometer is approximately irrelevant to the temperature in this experiment,
and can be considered to be a linear drift over time, then the model of bias instability can be built as
Equation (90), where t is time, kn

ad,N is the drift rate of north component and kn
ad,E is the drift rate of the

east component:
bn

ad,N = kn
ad,N ·t

bn
ad,E = kn

ad,E·t
(90)
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Sensors 2018, 18, 883 19 of 26
Sensors 2018, 18, x FOR PEER REVIEW  19 of 26 

 

 

Figure 11. Comparing the temperature of the environment with the output of the accelerometer. 

The bias repeatability is supposed to be equal to the mean value or median of all the survey lines, 
and the bias instability is supposed to be equal to the first drift rate in the above static experiment, 
1.31 mGal/day. The measurement noise ranges from 1 mGal to 20 mGal, which is a reasonable range 
for high precision inertial sensors and GNSS receiver. The signal-to-noise ratio (SNR) is defined as: 

10

   
20 log

   

magnitude of accelerometer bias
SNR dB

magnitude of measurement noise

 
=  

 
 (91) 

Three simulations are designed here to verify the validity of the proposed method as described in 
Table 3, and the differences among these simulations are the types and scales of the accelerometer bias. 

Table 3. Simulations on the survey lines. 

Simulation No. Description

Simulation I 
Only bias repeatability is considered and is equal to the mean value of all the survey 
lines 

Simulation II 
Only bias repeatability is considered and is equal to the median value of all the survey 
lines 

Simulation III 
Bias repeatability and bias instability are both considered, where bias repeatability is 
equal to the mean value of all the survey lines and drift rate is 1.31 mGal/day 

The estimation errors of accelerometer bias in Simulation I are shown in Figure 12 and the 
estimation errors of accelerometer bias in Simulation II are shown in Figure 13. From Figures 12 and 13, 
the precise estimations of accelerometer bias are obtained in the proposed method. Even if the SNR 
is −15 dB, the estimation error is less than 210− %. For estimating the north component of 
accelerometer bias, the estimation error of survey line 10 is significantly greater than the errors of 
other survey lines, this may be explained from Table 2, the mean value and median of survey line 10 
are both large values which indicates the variation of north component of horizontal gravity 
disturbance on line 10 is the most drastic. The more drastic variation of gravity field, the more 
contribution of measurement noise to measurement error, so the weight of accelerometer bias in 
measurement noise is less. The decrease of the effective information in the observed quantity leads 
to the decrease of the estimation accuracy. This interpretation is also suitable for survey line 1, on 
which the variation of east component of horizontal gravity disturbance is the most drastic, and the 
estimation error of east component of accelerometer bias is significantly greater. 

0 50 100 150
15

20

25

time/hour

te
m

pe
ra

tu
re

/°

 

 

0 50 100 150
 -979110

 -979100

 -979090

ou
tp

ut
/m

G
al

temperature of environment
output of accelerometer

Figure 11. Comparing the temperature of the environment with the output of the accelerometer.

The bias repeatability is supposed to be equal to the mean value or median of all the survey lines,
and the bias instability is supposed to be equal to the first drift rate in the above static experiment,
1.31 mGal/day. The measurement noise ranges from 1 mGal to 20 mGal, which is a reasonable range
for high precision inertial sensors and GNSS receiver. The signal-to-noise ratio (SNR) is defined as:

SNR = 20 log10

(
magnitude o f accelerometer bias
magnitude o f measurement noise

)
dB (91)

Three simulations are designed here to verify the validity of the proposed method as described in
Table 3, and the differences among these simulations are the types and scales of the accelerometer bias.

Table 3. Simulations on the survey lines.

Simulation No. Description

Simulation I Only bias repeatability is considered and is equal to the mean value of all the survey lines

Simulation II Only bias repeatability is considered and is equal to the median value of all the survey lines

Simulation III Bias repeatability and bias instability are both considered, where bias repeatability is equal
to the mean value of all the survey lines and drift rate is 1.31 mGal/day

The estimation errors of accelerometer bias in Simulation I are shown in Figure 12 and the
estimation errors of accelerometer bias in Simulation II are shown in Figure 13. From Figures 12 and 13,
the precise estimations of accelerometer bias are obtained in the proposed method. Even if the SNR is
−15 dB, the estimation error is less than 10−2%. For estimating the north component of accelerometer
bias, the estimation error of survey line 10 is significantly greater than the errors of other survey lines,
this may be explained from Table 2, the mean value and median of survey line 10 are both large values
which indicates the variation of north component of horizontal gravity disturbance on line 10 is the
most drastic. The more drastic variation of gravity field, the more contribution of measurement noise
to measurement error, so the weight of accelerometer bias in measurement noise is less. The decrease
of the effective information in the observed quantity leads to the decrease of the estimation accuracy.
This interpretation is also suitable for survey line 1, on which the variation of east component of
horizontal gravity disturbance is the most drastic, and the estimation error of east component of
accelerometer bias is significantly greater.
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Figure 12. The estimation error of accelerometer bias in simulation I. (a) is the estimation error of the
north component of the accelerometer bias, and (b) is the estimation error of the east component of the
accelerometer bias.
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Figure 13. The estimation error of accelerometer bias in simulation II. (a) is the estimation error of the
north component of the accelerometer bias, and (b) is the estimation error of the east component of the
accelerometer bias.

In Simulation III, some modifications are needed on Equations (83)–(86) to estimate the bias
repeatability and drift rate simultaneously:

z2N×1 = H2N×6·x (92)

x =
[

δξ δη bn
as,N bn

as,E kn
ad,N kn

ad,E

]T
(93)

H2N×6 =


2γ(1)·Φ1(1) 2γ(1)·Φ2(1) 1 0 t 0
−2γ(1)·Φ3(1) −2γ(1)·Φ4(1) 0 1 0 t

...
...

...
...

...
...

2γ(N)·Φ1(N) 2γ(N)·Φ2(N) 1 0 t 0
−2γ(N)·Φ3(N) −2γ(N)·Φ4(N) 0 1 0 t

 (94)

x =
(

HT
2N×6·H2N×6

)−1
·HT

2N×6·z2N×1 (95)
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b̂n
as,N = x3 b̂n

as,E = x4 k̂n
ad,N = x5 k̂n

ad,E = x6 (96)

where t is time, b̂n
as,N and b̂n

as,E are the estimations of bias repeatability, k̂ad,N and k̂ad,E are the estimations
of drift rates.

In order to obtain more observations to improve the accuracy of estimation, the speed of the ship
is assumed to be 5 knot, and it can be seen from Table 2 that the sailing time is 48 h. The estimation
error in Simulation III are shown in Figures 14 and 15.

In Simulation III, the accelerometer bias is time varying, so the x-axis is measurement noise instead
of SNR. And from Figures 14 and 15, the estimation errors of bias repeatability are less than 10−2%, and
the estimation errors of drift rate are also less than 10−2%. The results of simulation III indicate that
the proposed method can accurately estimate the bias repeatability and bias instability simultaneously.
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Figure 14. The estimation error of accelerometer bias in simulation III. (a) is the estimation error of the
north component of the bias repeatability, and (b) is the estimation error of the east component of the
bias repeatability.
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Figure 15. The estimation error of drift rate in simulation III. (a) is the estimation error of the drift rate
of the north component, and (b) is the estimation error of the drift rate of the east component.

It should be noted that, in the above simulations, although a precise estimation of accelerometer
bias is obtained, the length of the survey line is 240 n miles, which is too long and not suitable for
practical applications. Further simulations are carried out for the typical application scenario.
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The ship’s speed is generally 20 knots, and the time for estimating accelerometer bias is assumed
to be one hour. The sample period of strapdown gravimeter is generally 160~300 s [25], then the
distance between the measurement points is supposed to be 1 n mile. Based on the three assumed
conditions, the length of survey line is supposed to be 20 n miles and the coordinate range of these
short survey lines are list in Table 4 and the horizontal gravity disturbances on the short survey lines
are shown in Figure 16.

Three simulations are designed here to verify the validity of the proposed method on the short
survey lines as described in Table 5, and the differences among these simulations are also the types
and scales of the accelerometer bias. The measurement noise is consistent with the previous setting.

Table 4. The coordinate range of the short survey lines.

Line No. Latitude Range Longitude Range Spacing

Line 1 1◦ N~1◦20′ N 76◦ E 1 n mile
Line 2 1◦ N~1◦20′ N 77◦ E 1 n mile
Line 3 1◦ N~1◦20′ N 78◦ E 1 n mile
Line 4 1◦ N~1◦20′ N 79◦ E 1 n mile
Line 5 1◦ N~1◦20′ N 80◦ E 1 n mile
Line 6 1◦ N 76◦ E~76◦20′ E 1 n mile
Line 7 2◦ N 76◦ E~76◦20′ E 1 n mile
Line 8 3◦ N 76◦ E~76◦20′ E 1 n mile
Line 9 4◦ N 76◦ E~76◦20′ E 1 n mile

Line 10 5◦ N 76◦ E~76◦20′ E 1 n mile

Table 5. Simulations on the short survey lines.

Simulation No. Description

Simulation IV On the short survey lines, only bias repeatability is considered and is equal to the mean
value of all the survey lines

Simulation V On the short survey lines, only bias repeatability is considered and is equal to the median
value of all the survey lines

Simulation VI
On the short survey lines, bias repeatability and bias instability are both considered, where
bias repeatability is equal to the mean value of all the survey lines and drift rate is 1.31
mGal/day
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Figure 16. The horizontal gravity disturbance on the short survey lines. (a) is the north component of
horizontal gravity disturbance on the short survey lines and (b) is the east component of horizontal
gravity disturbance on the short survey lines.
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The estimation errors of accelerometer bias on the short survey lines in Simulation IV are shown
in Figure 17 and the estimation errors of accelerometer bias on the short survey lines in Simulation V
are shown in Figure 18. From Figures 17 and 18, it can be seen that the maximum estimation error
of accelerometer bias is less than 10−1% in the typical application scenario. It can be known from
Table 4 that there are only twenty-one measured values of the horizontal gravity disturbance in this
application scenario. Compared the estimation errors with those of the long survey lines, the reduction
of estimation accuracy is due to the reduction of observation.Sensors 2018, 18, x FOR PEER REVIEW  23 of 26 

 

(a) (b) 

Figure 17. The estimation error of accelerometer bias on the short survey lines in simulation IV. (a) Is 
the estimation error of the north component of the accelerometer bias, and (b) is the estimation error 
of the east component of the accelerometer bias. 

(a) (b)

Figure 18. The estimation error of accelerometer bias on the short survey lines in simulation V. (a) Is 
the estimation error of the north component of the accelerometer bias, and (b) is the estimation error 
of the east component of the accelerometer bias. 

The estimation errors of bias repeatability in Simulation VI are shown in Figure 19 and the 
estimation errors of bias instability in Simulation VI are shown in Figure 20. It can be found that the 
estimation errors of bias repeatability are less than 10−1%, and the estimation errors of drift rate are 
also less than 10−1%. The results in Simulation VI indicate that the proposed method can accurately 
estimate the bias repeatability and bias instability simultaneously in the typical application scenario. 
Also due to the reduction of the observations, the estimation errors of bias repeatability and bias 
instability in simulation VI are both larger than those in Simulation III. 

It should be noted that in the above simulations the bias of the gyroscope is assumed to be zero. 
In practice, gyroscope bias may affect the estimation accuracy of the proposed method, as gyroscope 
bias will produce some specific force measurement error. In other words, the estimation may be a 
combination of accelerometer bias and gyroscope bias. As described in [35], observability is crucial 
for estimation of gyroscope bias in INS/GNSS. From the observability analysis, biases of the 
horizontal gyroscopes can be accurately estimated. But it’s difficult to accurately estimate the bias of 
the vertical gyroscope due to the poor observability. Thus, the estimation accuracy of the proposed 
approach may be affected by the bias of the vertical gyroscope. 

-20 -15 -10 -5 0 5 10
10-7

10-6

10-5

10-4

10-3

10-2

10-1

SNR/dB

pe
rc

en
ta

ge
 e

rr
or

/%

Estimation error of the north component of accelerometer bias

 

 
Line1
Line2
Line3
Line4
Line5

Line6
Line7
Line8
Line9
Line10

-15 -10 -5 0 5 10 15
10-7

10-6

10-5

10-4

10-3

10-2

10-1
Estimation error of the east component of accelerometer bias

SNR/dB

pe
rc

en
ta

ge
 e

rr
or

/%

 

 
Line1
Line2
Line3
Line4
Line5

Line6
Line7
Line8
Line9
Line10

-20 -15 -10 -5 0 5 10
10

-7

10-6

10-5

10-4

10-3

10
-2

10-1

SNR/dB

pe
rc

en
ta

ge
 e

rr
or

/%

Estimation error of the north component of accelerometer bias

 

 
Line1
Line2
Line3
Line4
Line5

Line6
Line7
Line8
Line9
Line10

-20 -15 -10 -5 0 5 10 15
10-7

10-6

10-5

10-4

10-3

10-2

10-1
Estimation error of the east component of accelerometer bias

SNR/dB

pe
rc

en
ta

ge
 e

rr
or

/%

 

 
Line1
Line2
Line3
Line4
Line5

Line6
Line7
Line8
Line9
Line10

Figure 17. The estimation error of accelerometer bias on the short survey lines in simulation IV.
(a) Is the estimation error of the north component of the accelerometer bias, and (b) is the estimation
error of the east component of the accelerometer bias.
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Figure 18. The estimation error of accelerometer bias on the short survey lines in simulation V.
(a) Is the estimation error of the north component of the accelerometer bias, and (b) is the estimation
error of the east component of the accelerometer bias.

The estimation errors of bias repeatability in Simulation VI are shown in Figure 19 and the
estimation errors of bias instability in Simulation VI are shown in Figure 20. It can be found that the
estimation errors of bias repeatability are less than 10−1%, and the estimation errors of drift rate are
also less than 10−1%. The results in Simulation VI indicate that the proposed method can accurately
estimate the bias repeatability and bias instability simultaneously in the typical application scenario.
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Also due to the reduction of the observations, the estimation errors of bias repeatability and bias
instability in simulation VI are both larger than those in Simulation III.

It should be noted that in the above simulations the bias of the gyroscope is assumed to be zero.
In practice, gyroscope bias may affect the estimation accuracy of the proposed method, as gyroscope
bias will produce some specific force measurement error. In other words, the estimation may be a
combination of accelerometer bias and gyroscope bias. As described in [35], observability is crucial for
estimation of gyroscope bias in INS/GNSS. From the observability analysis, biases of the horizontal
gyroscopes can be accurately estimated. But it’s difficult to accurately estimate the bias of the vertical
gyroscope due to the poor observability. Thus, the estimation accuracy of the proposed approach may
be affected by the bias of the vertical gyroscope.Sensors 2018, 18, x FOR PEER REVIEW  24 of 26 
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Figure 19. The estimation error of the bias repeatability on the short survey lines in simulation VI.
(a) Is the estimation error of the north component of the bias repeatability, and (b) is the estimation
error of the east component of the bias repeatability.
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Figure 20. The estimation error of drift rate on the short survey lines in simulation VI. (a) is the
estimation error of the drift rate of the north component, and (b) is the estimation error of the drift rate
of the east component.

6. Conclusions

Horizontal gravity disturbance produces a restriction on the achievable accuracy of INS. Although
based on SHM horizontal gravity disturbances can be accurately obtained and compensated, the effect
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of compensation will decrease due to the accelerometer bias. Through the analysis, it is found
that estimating the accelerometer bias is a necessary condition to ensure the effect of horizontal
gravity disturbance compensation, especially when the accelerometer bias is of the same order as the
horizontal gravity disturbance. The method of estimating the accelerometer bias from the gravity
vector measurement is proposed, and the model of measurement noise is derived to separate the
accelerometer bias from the measurement error. Simulation results verify the effect of the proposed
method, and a precise estimation of accelerometer bias is obtained in the typical application scenario.
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