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Abstract: Clustering, as an essential part in an hierarchy protocol that can prolong the network 

lifetime, is influenced by the cluster head selection and clustering scheme. A new clustering 

algorithm called clustering by fast search and finding of density peaks (CFSFDP) based on local 

density and distance is implementable and efficient. In this paper, we combine this clustering 

algorithm with a hierarchy protocol in wireless sensor networks (WSNs). However, energy 

consumption in each round is unbalanced only considering these two variables during the 

clustering phase, which leads to the early death of the first node. In order to solve this problem, we 

take residual energy into consideration in our improved CFSFDP-E (energy) algorithm so as to 

ultimately balance the energy consumption of the network. We analyze different forms of energy 

and choose a dynamic threshold for each round in the CFSFDP-E algorithm. Simulation results 

demonstrate that the proposed approach can not only postpone the death of the first node by almost 

50% compared to LEACH, but that it also outperforms several related protocols with respect to 

energy efficiency. 
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1. Introduction 

Wireless Sensor Networks (WSNs) are composed of a large number of multifunctional low cost 

sensor nodes with restricted battery power supplies, which are randomly deployed inside the sensing 

field [1]. Since WSNs are usually deployed in a hostile environment without supervision, it is 

complicated to recharge or replace the batteries when out of energy. Therefore, energy efficiency and 

network lifetime become an emphasis in WSNs. Due to the fact most of the energy of sensor nodes is 

consumed by data transmission, an energy-efficient routing scheme should be utilized to effectively 

reduce the energy consumption. Clustering, as an essential part in any hierarchy protocol, can 

prolong the network lifetime, and is influenced by the number of clusters, cluster head selection and 

clustering scheme. Sensor nodes are grouped by clustering algorithms. Each cluster contains one 

cluster head (CH) and some normal cluster member (CM) nodes. CMs transmit the data to their own 

CH which has the responsibilities of receiving, aggregating and forwarding these data to a base 

station (BS). When a node is out of energy, it is defined to be dead. The round when all the nodes 

have died is the network lifetime. As the sensed data has to be forwarded to the BS for further 

necessary action, routing becomes important for transferring data from node to node or to the BS 

efficiently [2]. Therefore, it is indispensable to balance the energy consumption among sensor nodes 

to prolong the network lifetime for clustered WSNs. 
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There have been lots of clustering algorithms and schemes applied to WSNs. KM-LEACH [3] 

uses the K-means clustering algorithm to form clusters. Reference [4] implemented both centralized 

and distributed K-means clustering algorithms. LEACH-CKM [5] takes the remote nodes into 

account during the formation of groups by the K-means classification method and uses a Minimum 

Transmission Energy routing protocol to transmit information. In addition to the application of K-

means, many factors are considered in other algorithms. Reference [6] proposed a new method called 

CAST-WSN based on the node distance from the gravity center of the cluster, the node distance from 

the energy center in each cluster and a Steiner tree structure, which brings significant improvements 

to the C-Means clustering algorithm. Besides residual energy, the distance from the nodes to the base 

station, neighbors and the number of neighbors are considered for cluster head selection [7]. 

Distributed unequal clustering using fuzzy logic (DUCF) takes residual energy, node degree and 

distance to the BS into account to ensure load balancing among the clusters by varying the cluster 

size [8]. Moreover, some other theories and algorithms are adopted in WSNs, such as game theory. 

Each sensor node is considered as a rational and selfish player which will play a clustering game with 

an equilibrium strategy. This approach is proved to have a good energy balancing performance and 

consequently the network lifetime is greatly enhanced [9]. 

In this paper, we implement a new clustering algorithm in WSN which is called clustering by 

fast search and finding of density peaks (CFSFDP) [10] published in Science in 2014. It is an 

implementable and efficient algorithm with two variables: local density and distance. It divides 

clusters based on the idea that cluster centers are characterized by a higher density than their 

neighbors and a relatively large distance from points with higher densities. 

This algorithm has been applied in some other areas, for example, reference [11] applied 

terahertz time-domain spectroscopy (THz-TDS) combined with CFSFDP for pesticide detection. To 

solve the similar distance problem in THz spectra data, they proposed PCA-CFSFDP. Principal 

component analysis (PCA) was used to reduce the dimensions of THz spectrum data, and then the 

PCA result was used as the input of CFSFDP. The experimental results showed that PCA-CFSFDP 

approach can get a satisfactory detection result. Reference [12] proposed a novel research scheme 

using density-based clustering and a backtracking strategy. In order to isolate the targets from noises, 

CFSFDP is employed to cluster targets by the spatial intensive distribution. Compared with several 

state-of-arts methods, this algorithm is more effective for dim targets with lower signal-to clutter ratio 

(SCR). Since this clustering algorithm has not been applied in WSNs so far, we adopt in this work in 

a WSN to choose cluster heads and form clusters. Our main contributions can be listed as follows: 

• We apply the CFSFDP algorithm to a WSN to choose cluster heads and form clusters. 

• We take nodes’ residual energy into consideration in CFSFDP-E algorithm to balance the energy 

consumption. The original CFSFDP uses the information of local density and distance to group 

data points in the dataset. However, all the nodes have limited energy in a WSN. Considering 

this unique attribute, we should take residual energy as a third key factor in the clustering 

process. 

• Different forms of energy to get a better performance are discussed and we use the value of local 

density, distance and residual energy after normalization as three main variables in the 

clustering scheme. 

• Since the clustering process needs to be repeated in every round, we set a dynamic threshold for 

cluster head selection and it can determine an appropriate number of CHs and make every CM 

be clustered reasonably. 

• With the same simulation environment and parameters, it is proved that our proposed CFSFDP-

E algorithm in WSN outperforms the classical protocols (LEACH [13], LEACH-C [14], PEGASIS 

[15] and SEP [16]), some improved protocols based on LEACH (ALEACH [17], C-LEACH [18] 

and K-LEACH [19]) and some new protocols which were proposed in the last three years  

(KM-LEACH [3], DBCH [20] and EESCA [21]). 

The rest of this paper is organized as follows: Section 2 summarizes some related clustering 

protocols in WSN. The theory of the CFSFDP algorithm is described in Section 3. Based on CFSFDP, 

Section 4 proposes the implementation of our improved CFSFDP-E algorithm in WSNs. In Section 5, 
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we compare the performance of CFSFDP-E with those of several other protocols. Finally, we make a 

conclusions and suggest potential future work in Section 6. 

2. Related Works 

The most classical hierarchical routing protocol in WSN is Low Energy Adaptive Clustering 

Hierarchy (LEACH), proposed by Heinzelman [13]. In this protocol, cluster heads are randomly 

selected using a threshold and other nodes choose the nearest cluster heads to form clusters. LEACH 

incorporates data fusion into the routing protocol to reduce the amount of information that must be 

transmitted to the base station. However, since the rotation method may cause the hot spot problem, 

a number of new protocols based on LEACH has been proposed to balance energy consumption and 

prolong the lifetime of WSNs. 

Threshold sensitive Energy Efficient sensor Network (TEEN) [22] is a routing protocol for 

enhanced efficiency in wireless sensor networks. It sets two thresholds: a hard and a soft threshold. 

The hard threshold tries to reduce the number of transmissions by allowing the nodes to transmit 

only when the sensed attribute is in the range of interest. The soft threshold further reduces the 

number of transmissions by eliminating all the transmissions which might occur when there is little 

or no change in the sensed attribute according to the hard threshold. Power-efficient gathering in 

sensor information systems (PEGASIS) [15] is a chain-based protocol that is an improvement over 

LEACH. In PEGASIS, each node communicates only with a close neighbor and takes turns 

transmitting to the base station, thus reducing the amount of energy spent per round. 

To avoid uneven distribution problem of cluster heads and cluster sizes in LEACH, reference 

[14] proposed the LEACH-Centralized (LEACH-C) algorithm. LEACH-C uses a centralized 

clustering algorithm and the same steady-state phase as LEACH. During the set-up phase of LEACH-

C, each node sends information about its current location and residual energy level to the sink node. 

Thus, it can choose cluster heads with high residual energy. However, both of them are centralized 

approaches and not suitable for large-scale networks. To avoid cluster heads’ premature death in 

LEACH, reference [23] proposes the V-LEACH algorithm. V-LEACH is a new version of LEACH 

protocol to reduce energy consumption. The main concept of V-LEACH is that, besides having a 

cluster head in the cluster, there is a vice-cluster head that takes the role of the cluster head when the 

cluster head dies, so cluster nodes can send data to the base station without the need to select a new 

cluster head each time, which can prolong network lifetime. 

On the other hand, some heterogeneity-aware protocols such as SEP [16] and DEEC [24] are 

specially designed for heterogeneous WSNs. SEP is aimed at prolonging the stability period of two-

level heterogeneous networks, which consist of two types of nodes according to the initial energy, 

i.e., normal nodes and advanced nodes. SEP works in the same way as LEACH, but for SEP, the CH 

rotating epoch and election probability are directly related to the initial energy of nodes. As opposed 

to SEP, DEEC further improves the functions of election probability by considering both the initial 

and residual energy of the network. It achieves better performance than SEP and LEACH in a multi-

level heterogeneous WSN. Unfortunately, DEEC can’t be used when the sink node is located far from 

the sensor nodes since it is working under the assumption that sink node is located in the center of 

the WSN. 

In recent years, there have been lots of improvements on the original LEACH protocol. ALEACH 

[17], C-LEACH [18] and K-LEACH [19] improve the cluster head selection, which take nodes’ 

residual energy, initial energy or optimal cluster numbers into consideration. Raja and 

Samundiswary proposed the Self-Organized Tree-Based Energy-Balance (STEB) routing protocol [25] 

in which a sink node assigns a root node and broadcasts this selection to all sensor nodes. Each node 

selects its parent by considering only itself and its neighbors’ information. STEB outperforms LEACH 

in terms of rounds and remaining energy. A fuzzy-logical-based clustering approach called LEACH-

ERE [26] uses an extension to the energy prediction to prolong the lifetime of WSN by evenly 

distributing the workload. In addition to the residual energy, the expected residual energy has been 

introduced to act as a fuzzy descriptor during the cluster head selection process. 
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There are also some new algorithms and new protocols applied in WSNs. The harmony search 

algorithm (HSA) [27] is music-based meta-heuristic optimization method which is analogous with 

the music improvisation process where musician continue to polish the pitches in order to obtain a 

better harmony. Raval [28] applied it for minimizing the intra-cluster distance and optimizing the 

energy consumption of the network. IHSCR [29] was an energy-efficient clustering and routing based 

on the improved harmony search algorithm. It combines a discrete encoding scheme of HAS and the 

roulette wheel selection method. A three-level hybrid clustering routing protocol algorithm (MLHP) 

[30] based on the grey wolf optimizer [31] is proposed which use the bionics algorithm for 

probabilistic selection of CHs. In addition, PSO-ECHS [32] is an energy efficient cluster head selection 

algorithm based on particle swarm optimization for wireless sensor networks. It considers intra-

cluster distance, sink distance and residual energy of sensor nodes, which demonstrated the 

superiority for prolonging the lifetime of WSN. In order to solve energy bottleneck problem,  

Wang [33] proposed a pair-wise directional geographical routing (PWDGR) strategy. The source 

node sends the data to the pair-wise node around the sink node, which can effectively relieve the 

serious energy burden around sink node and also make the energy consumption balanced. Besides, 

reference [34] proposed an energy-efficient multi-hop routing algorithm based on grid clustering to 

tackle this problem. This algorithm optimizes the electoral process of functional nodes by combining 

various factors such as nodes’ energy, nodes’ location and levels of the network area. Communication 

nodes are introduced to select cluster heads and transfer data between clusters via multi-hop routing, 

easing the burden of cluster heads. To balance the energy among clusters, River Formation Dynamic 

based multi-hop routing protocol [35], which was integrated with clustering and a new hybrid 

technique, improves energy conservation by reducing the overall packet transmission distance of 

intra- and inter-cluster communication, which results in increased overall network lifetime. 

3. CFSFDP Algorithm 

The CFSFDP algorithm, proposed by Rodriguez and Laio, forms the basis of a clustering 

procedure in which the number of clusters arises intuitively, and outliers are automatically spotted 

and excluded from the analysis. Clusters are recognized regardless of their shape and the 

dimensionality of the space in which they are embedded. The nodes with higher local density and 

larger distance will be chosen as cluster heads. 

For each data point ix , two variables: local density i  and distance i  will be obtained 

through CFSFDP. The local density can be calculated by two ways [10]. One is by cut-off kernel: 
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where (1,2,..., )I N  represents the set of indices of data points. N  is the number of data points. 

ijd  is the Euclidean distance between point i  and point j . cd  represents cutoff distance.  

Equation (1) and (2) indicate that i  is equal to the number of points of which the distances to data 

point i  are smaller than cd . The other way to calculate local density is by Gaussian kernel: 
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The results of these two ways suggest that the larger the number of points in its neighborhood 

is, the higher the value of local density will be. The difference between them is that the value of cut-

off kernel is discrete while that of Gaussian kernel is continuous.  

The other important variable is distance which is based on the local density. Sort all the 

( 1,2,..., )i i N   in descending order, then the distance i  of the point with highest local density 

max  is set to the maximum value of distance maxd . The distance of other points are set to the 
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minimum distance between the point i  and any other points with higher density. The expression of 

distance is defined as Equation (4) [10]: 
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As mentioned above, the data points with high distance   and relatively high local density   

are regarded as the cluster centers. In order to determine the number of cluster centers accurately, 

Alex set   to represent the product of local density and distance [10]: 

i i i i I     (5) 

The data point with i  which is higher than the threshold   will be selected as cluster center. 

After the cluster centers have been found, each remaining point is allocated to the same cluster as its 

nearest neighbor with higher density. 

CFSFDP, which needs less parameters and no iteration, is highly efficient and effective for 

clustering non-spherical and unbalanced data and the clustering process is performed in a single step. 

Due to these advantages, we applied it to a WSN to get a better clustering division and cluster heads 

selection. 

4. An Energy-Balanced Protocol Based on the Improved CFSFDP 

4.1. Energy Model 

In this paper, the first order model [13] is used as the energy model of the network. The 

dissipated energy in the transmitter node ( TXE ) and in the receiver node ( RXE ) with distance d  for 

transmitting an l bit  data packet can be calculated as follows: 
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RX elecE l E   (7) 

where elecE  is the dissipated energy (per bit) in either transmitter or receiver circuit, and depends on 

such electronic factors as digital coding, modulation, filtering and spreading of the signal. l  is the 

number of bits. The distance threshold is defined as 0 /fs mpd   . The transmission distance d, the 

free space fs  or multipath fading channel mp  are used for the transmitter amplifier. 

In this model, the use of free space channel model or multipath fading channel model depends 

on the distance between the transmitter and receiver. If the distance is less than the threshold, the 

former one will be used, otherwise, the latter one. 

Assume that there is one cluster made up with a cluster head node and k  cluster member 

nodes. The transmission distance toBSd  between the cluster head and the sink node is larger than 0d  

and the distances between each normal node and the cluster head toCHd  are less than 0d , so, the 

energy consumption of this cluster head in one round can be calculated as: 

4( ) ( )CH TX DA mp toBS RX DAE l E E l d kl E E      (8) 

where DAE  represents the dissipated energy (per bit) in data aggregation. ( )RX DAkl E E  is the 

energy consumption of receiving packets from k  cluster members and data aggregation. 
4( )TX DA mp toBSl E E l d   is the energy consumption of the cluster head for sending aggregated data to 

the sink node. The energy consumption of a non-cluster head node is: 

2

non CH TX fs toCHE lE l d    (9) 
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where 2

TX fs toCHlE l d  is the energy consumption of a cluster member node for sending data to the 

cluster head. 

Based on analysis above, the residual energy for node i  in the current round r  can be 

calculated by Equation (10): 
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where ( 1)iE r   is the residual energy for node i  in the 1r   round. CHG  represents the set of 

cluster heads. 

4.2. Proposed CFSFDP-E Algorithm 

In WSNs, the routing protocols can be divided into flat protocols and hierarchy protocols. All 

the nodes will be divided into several clusters in a hierarchy protocol. For example, in LEACH, cluster 

heads are selected randomly and the remaining nodes will choose the clusters in which the distance 

between the node and cluster head is the smallest. 

The CFSFDP algorithm can divide data points into clusters according to the local density and 

distance. Based on this algorithm, we propose an energy-balanced protocol called CFSFDP-Energy 

(CFSFDP-E) to form clusters in a WSN. In this paper, the premise is that the nodes in the WSN are 

deployed randomly and each node is location-fixed, energy-constrained and has the same 

capabilities. The BS is not subject to energy restrictions and has strong communication and 

computation capabilities. Sensor nodes can be regarded as special data points which have energy 

attributes. Therefore, it is possible to apply the CFSFDP clustering scheme in the WSN. However, due 

to the fixed location, the cluster centers will not be changed until the energy of nodes is exhausted. 

The first dead node will emerge earlier than that in LEACH, so we should take energy into 

consideration to select the nodes with high local density, high distance and high residual energy as 

cluster heads. 

In order to consider the impact of residual energy, Equation (5) should be changed as follows: 

( ) ( ) ( ) ( )i i i ir r E r r i I     (11) 

where ( )i r , ( )i r  is the local density and distance of node i in the current round r of WSN 

respectively, and ( )iE r  is the residual energy of node i. The number of cluster heads depends on 

the threshold η. In the CFSFDP clustering algorithm, the threshold is fixed. However, the threshold 

must be dynamic to follow the trend of energy changing in improved algorithm when considering 

energy. We will discuss the dynamic threshold in Section 5.4. 

The following is an example to explain our proposed CFSFDP-E algorithm. Suppose that there 

are six nodes , , , , ,a b c d e f  to be clustered, shown in Figure 1. The local densities are in descending 

order and the distance of each node shown in Table 1 are calculated by Equation (4). Then, according 

to the algorithm, since the local density of node a  is the largest, the distance of this node should be 

the maximum value of all the distances. The farthest node from node a  is node f . Then according 

to the descending order of local density, b  should be the distance between node b  and a node with 

higher local density, that is, b  is bad . Notice that in Table 1, DESC means the local densities are in 

descending order and the distance of each node is determined by the value of local density. 

 

Figure 1. The deployment of six nodes. 
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Suppose that we only choose two nodes as cluster centers. In the CFSFDP algorithm, assuming 

that two points with the largest   value are node a  and node c , that is, the class of node a  is 1 

and the class of node c  is 2, then other nodes can be clustered based on the descending order of local 

density. For example, node b  choose the same class as the node which has a higher local density and 

closest to itself. So, the class of node b  is 1 which is the same as node a  and the class of node 

, ,d e f   is 1, 2, 2 respectively. 

Table 1. The local density and distance of six nodes. 

Nodes a  b  c  d  e  f  

 (DESC) 
a  b  c  d  e  f

 

  afd  
bad

 cad
 dad

 ecd
 fed

 
Class 1 1 2 1 2 2 

When considering residual energy in CFSFDP-E, the  value will be changed. If the two nodes 

with the largest   are node c  and node b  in the CFSFDP-E algorithm, the class of node a  

obviously cannot be determined because node a  has the largest local density and we can’t find a 

node with higher local density than node a . It doesn’t belong to any class if we still allocate nodes 

according to local density. 

Due to the above problems, we consider how to allocate other normal nodes based on both local 

density and energy. We define a variable   called density-energy which can be calculated as follows: 

( ) ( ) ( )i i ir r E r i I    (12) 

Sort   value in descending order in Table 2. However, the distance of each node is the same 

with Table 1, which is still determined by its local density according to Equation (4). Suppose that the 

nodes with largest   value are node c  and node b , then according to the descending order of  , 

we need to discuss about the class of node f . The class of node f  should be the same as node e . 

But the node e  hasn’t been allocated to any cluster, resulting in the class of node f  can’t be 

determined, either. 

Table 2. The density-energy and distance (determined by local density) of six nodes. 

Nodes c  f  b  d  e  a  

 (DESC) c  f  b  d  e  a  

  cad  fed  
cad  dad  ecd  afd  

Class 1 ? 2 \ \ ? 

From the analysis above, we can know that CFSFDP-E needs to multiply residual energy into 

the expression of  as (11). The allocation of non-CHs should base on the order of density-energy 

instead of the local density in CFSFDP algorithm. Besides, the value of distance should also be 

determined by density-energy   in order to allocate all the nodes correctly. Therefore, the 

expression of distance should be revised to: 

max

max
:

max(

min (
j i

ij i

i
ij i

j

d if

d if
 

 


 




 


)    
=

)   
 (13) 

Table 3 shows the value of distance according to the  . The maximum   is c . The farthest 

distance from node c  is node b , that is, c  is cbd . Other   values can be calculated through 

Equation (13). The cluster heads are still node c  and node b , so other unclassed nodes can be 

allocated into clusters according to the descending order of density-energy  . For example, the 

distance of node f  is fcd , which means the nearest node to node f  in other nodes that have a 
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higher density-energy is node c . Hence the class of node f  is 1, the same as that of node c . 

Similarly, the class of node , ,d e a  is 2, 1, 2. 

Table 3. The density-energy and distance (determined by density-energy) of six nodes. 

Nodes c  f  b  d  e  a  

 (DESC) c  f  
b  d  e  a  

  cbd  fcd  
bcd  dbd  efd  

add  

Class 1 1 2 2 1 2 

4.3. Algorithm Description 

The steps of the CFSFDP-E algorithm for each round can be divided into two phases. The first is 

clustering set-up phase, when all the sensor nodes should be clustered according to the CFSFDP-E 

algorithm. It will determine the CHs and CMs. The second phase is data transmission. Cluster 

members send data to their cluster heads and the cluster heads send data to the sink node. From the 

discussion above, the detailed steps of CFSFDP-E algorithm for one round can be described as 

follows: 

4.3.1. Phase 1: Clustering Set-up Phase 

Step 1. Parameter Initialization 

(1) Set the number of nodes N  and maximum round maxr  for WSN; 

(2) Set cutoff distance cd and threshold  ; 

(3) Calculate the distance ijd  between nodes; 

Step 2. Determine whether the node is exhausted 

Calculate every node’s residual energy through Equation (10). If the energy is exhausted, the 

node is dead. Only living nodes can go on following steps. 

Step 3. Select CHs 

Calculate every node’s local density, density-energy and distance through Equations (3), (12) 

and (13) in the current round r, respectively. Based on these parameters, calculate   of all the living 

nodes through Equation (11). If i  , the node i  will be chosen as cluster head. 

Step 4. Allocate CMs. 

Sort all   calculated by Equation (12) in decreasing order. Assign the remaining nodes to the 

same cluster as its nearest neighbor with higher density-energy. 

4.3.2. Phase 2: Steady-state Phase 

This phase is the same as in LEACH [9]. The cluster head node sets up a TDMA schedule and 

transmits the schedule to the nodes in its cluster. After all nodes in cluster have received the TDMA 

schedule, the steady-state operation will begin. All the normal nodes send their data to their own 

cluster heads and the energy of normal nodes will be consumed in this process. Once the cluster head 

receives all the data, it performs data aggregation to enhance the common signal and reduce the 

energy consumption. The aggregated data are sent to the sink node by routing path. Hence the energy 

consumption of cluster head contains receiving data from cluster members and sending aggregated 

data to sink node. 

After the steady-state phase, the round ends. If total energy has not been exhausted or the 

current round r  hasn’t reached the maximum number of rounds, the next round will choose cluster 

heads and divide clusters by CFSFDP-E algorithm again, which will repeat Phase 1 and Phase 2. 

Figure 2 is the flow chart of CFSFDP-E algorithm implemented in WSN. r  represents the 

current round of the network. 
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The pseudo-code of the CFSFDP-E algorithm (Algorithm 1) is as follows: 

Algorithm 1 CFSFDP-E Algorithm 

1  Input: maxr , N ,   

2  For each round r   

3    For each node i   

4      calculate its residual energy iE   

5      If iE  > 0 

6        the node is still alive, calculate its local density i , distance i  and density-energy i   

7        calculate i   

8        If i  >    

9          select node i  as cluster head 

10       end 

11     else 

12       the node i  is dead 

13     end 

14     Sort all the   in descending order 

15     Allocate normal nodes into several clusters based on the value of    

16     Data transmission phase 

17   end 

18 end 

 

Figure 2. Flow chart of CFSFDP-E. 
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5. Experimental Results and Analysis 

5.1. Operation Environment 

The simulation environment is MATLAB R2015a and executed on a 3.40 GHz Intel Core i7-

2600U CPU equipped with 4 GB RAM and Windows 10. The main parameters are shown in Table 4. 

In this paper, the final result of each algorithm is the average result of 20 independent experiments. 

The number of nodes N is 100. 

Table 4. Experimental Parameters. 

Parameter Value Parameter Value 

Area 100 m × 100 m TXE  50 nJ/bit 

Sink Node (50,150) RXE  50 nJ/bit 

Initial Energy 0.5J fs  10 pJ/bit 

Packet Length 4000 bits mp  0.0013 pJ/bit 

Control Length 100 bits DAE  5 nJ/bit 

p  0.1 maxr
 

3000 

In the LEACH protocol, the threshold ( )T i  for cluster head selection is defined as: 

1 [ mod(1/ )]( )

0

p
i G

p r pT i

other




 



 

               

 (14) 

where p is the probability to be selected as cluster head in each round. G  is the nodes set including 

those nodes which have not yet been selected as cluster head in recent 1/ p  rounds. mod(1/ )r p  

means the remainder for division of r and 1/ p . 

5.2. Simulation Results of CFSFDP-E Compared with LEACH and CFSFDP 

To test the performance of CFSFDP-E, we compare it with LEACH and CFSFDP. Results are 

shown in Table 5. FND means the first node dies, and HND, LND represent the half of nodes die and 

last node dies. The network lifetime is defined as the round that all nodes’ energy is exhausted. If the 

protocol can balance energy well and last dead time is late, it can be defined that the network lifetime 

is long. In this paper, we assume that the death of 90% nodes means all nodes dead. 

Table 5. Network lifetime comparison of LEACH, CFSFDP and CFSFDP-E. 

ALGORITHM FND HND LND (90%) 

LEACH 688 874 1075 

CFSFDP 91 972 1765 

CFSFDP-E 822 1009 1036 

We also compare the CFSFDP algorithm in the WSN. It divides nodes into clusters only based 

on local density   and distance   and the  value for each node is calculated through Equation (5), 

while in the proposed CFSFDP-E algorithm, the formation of clusters considers not only these two 

factors, but also the residual energy of each living node. These algorithms are simulated in the same 

experimental scenario. The threshold η should be a dynamic value rather than a fixed number to 

determine the number of CHs. Before discussing about threshold, we choose 10% of living nodes as 

the number of CHs in each round for both CFSFDP and CFSFDP-E. 

From Table 5, we can find that the FND of CFSFDP algorithm in WSN occurs much earlier than 

that of LEACH. The reason for this result is that the CFSFDP algorithm selects cluster heads with 

local density and distance, so the location of all nodes is fixed if there is no node to die and the value 

of local density and distance will not change, which means when a node is selected as CH, it will 
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remain the CH in the following rounds until the energy is exhausted. Thus, the round of FND is 91, 

which is much earlier than 688 in LEACH. However, the LND in CFSFDP happens later compared 

with LEACH and CFSFDP-E. It is obvious that the energy consumption of the CFSFDP algorithm is 

unbalanced. 

The proposed CFSFDP-E algorithm takes energy into account. When selecting CHs, we choose 

the nodes with high local density, large distance and high residual energy. The result shows that 

CFSFDP-E clustering algorithm can effectively postpone the FND. The FND of CFSFDP-E is 822, 

which is about nine times the 91 of CFDFDP. It is also longer than that of LEACH which means 

CFSFDP-E can balance the energy consumption of the networks effectively. Figure 3 shows the 

simulation results of these three algorithms. Figure 4 is the energy consumption of every round in 

LEACH and CFSFDP-E. Obviously, CFSFDP-E can keep most of the nodes alive in the network, 

which means it can balance the energy consumption more effectively than LEACH, so that the 

existence of the death of first node happens later. 

 

Figure 3. Network lifetime comparison of LEACH, CFSFDP and CFSFDP-E. 

 

Figure 4. Energy consumption of LEACH and CFSFDP-E. 

5.3. Different Forms of Energy in CFSFDP-E 

CFSFDP-E considers the residual energy, while the energy can have many forms that make the 

nodes with high residual energy more likely to become CHs than those with lower residual energy. 

In order to get a better performance of balancing energy consumption, we make some improvements 

on CFSFDP-E. Set fE  to describe different forms of energy. The trends of curves (1/ log )x

fE E  or 
y

fE E  can adjust the proportion of energy appropriately. Because when the expression of   is 
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changed from Equation (11) to ( ) ( )[1/ log ( )] ( )x

i i i ir r E r r    or ( ) ( )[ ( )] ( )y

i i i ir r E r r   , the impact 

of residual energy will be increased so that the possibility of nodes with high residual energy to be 

selected as cluster heads will increase. 

In following experiments, Table 6 shows the results of different values of ,x y for different forms 

of energy. 

Table 6. Network lifetime with different forms of energy. 

FORM OF ENERFGY \ FND HND LND (90%) 

y

fE E
 

y = 1 822 1009 1036 

y = 2 980 1000 1006 

y = 3 978 1001 1005 

(1/ log )x

fE E
 

x = 2 873 1006 1068 

x = 4 965 1005 1023 

x = 6 991 1014 1021 

From the result, we can observe that when the form of energy is yE , the FND is 978 as 3y= , 

which is more than 150 rounds longer than that of 1y  . And when the form of energy is 
6(1/ log )E , 

the FND, HND and LND is very close to each other which means the energy consumption of all nodes 

is in a state of equilibrium. In addition, it is obvious that the performance of FND is better as the order 

increases for both forms of energy. The reason for this result is that when the order of energy increases, 

the impact of energy will hold the dominate position, while the influence of local density and distance 

will be less and less. In order to balance the impact of local density, distance and energy, it is 

indispensable to normalize these three elements. 

We set ’ as the  after normalization. ’ in the r round for node i can be calculated as follows: 

' ' ' '

min min min

max min max min max min

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

i i i i

i i i

r r E r r

r r E r E r r r
i I

r r E r E r r r

  

   

   

  
  

  

=

    =  
 (15) 

where 
' ' '( ), ( ), ( )i i ir E r r   represent the local density, residual energy and distance of each node after 

normalization in the r round, respectively: 

min

max

min

max

min

max

( ) min[ ( )],

( ) max[ ( )],

( ) min[ ( )],

( ) max[ ( )],

( ) min[ ( )],

( ) max[ ( )],

i

i

i

i

i

i

r r i I

r r i I

E r E r i I

E r E r i I

r r i I

r r i I

 

 

 

 

 


 
  


 
  


 

 

 

 

 

 

 

 (16) 

In the first round, the initial energy of all nodes is the same. Therefore, we do not normalize the 

energy and the value of i  is still calculated by Equation (5) for each node in this round. Table 7 is 

the result of different forms of energy after normalization. 

Table 7. Network lifetime with different forms of energy after normalization. 

FORM OF ENERFGY \ FND HND LND (90%) 

y

fE E
 

y = 1 991 1017 1032 

y = 2 1005 1026 1030 

y = 3 1002 1021 1027 

(1/ log )x

fE E
 

x = 2 994 1018 1047 

x = 4 995 1019 1036 

x = 6 998 1020 1027 
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We can observe that after normalization, the results in Table 7 are close to each other, which 

means that different forms of energy don’t make much difference in the results. 

Considering the simplicity and performance, we choose 2

fE E  as the form of energy in the 

following experiments, then the value of '( )i r  for node i  in the round r  after normalization 

should be calculated by ' ' ' '

,( ) ( ) ( ) ( )i i f i ir r E r r   . '

, ( )f iE r  is defined as: 

2 2

'

, 2 2

( ) min[ ( )]
( )

max[ ( )] min[ ( )]

i j
j I

f i

j j
j Ij I

E r E r
E r

E r E r









 (17) 

Thus, the values of density-energy after normalization can be calculated by ' ' '

,( ) ( ) ( )i i f ir r E r = , 

and they should be listed in descending order to determine the distance of every node and allocation 

of CMs. 

5.4. Dynamic Threshold   

In the CFSFDP algorithm, the threshold η is fixed. However, in a WSN, the local density, distance 

and energy of each node are changing as the number of rounds increases. Therefore, it is necessary 

to choose an appropriate dynamic threshold to determine the number of cluster heads. According to 

LEACH, we set p = 0.1, which represents the possibility of being selected as cluster head is 0.1. In the 

experiments above, we choose 10% of the number of surviving nodes as the number of cluster heads. 

It is not an optimal threshold for this algorithm. It’s necessary to choose a dynamic threshold to deal 

with three changeable factors. 

Firstly, we set min max min( ) [ ( ) ( )] / [ ( ) ( )]dc ct r d r r r r     , which represents the normalization of 

cutoff distance, where min max( ) , ( )r r   is the minimum and maximum value of distance in the 

current round explained in (16). The dynamic threshold should also take residual energy, local 

density and distance into consideration. In CFSFDP-E algorithm, we have already set ' ' '

fE = . Thus, 

we define dynamic threshold as Equation (18): 

'

max( ) ( ) ( )dcr r t r      (18) 

where   is a constant to determine the threshold. 
'

max ( )r  represents the maximum value of 
' ( )r  

in the current round, that is, 
' '

max ( ) max[ ( )]r r = . In order to get a better performance of WSN,  

Table 8 shows the performance of network lifetime with different  . 

Table 8. Network lifetime with different  . 

Threshold η FND HND LND (90%) 

10% alive nodes 1001 1019 1030 

0.5   978 1002 1011 

1   995 1016 1023 

1.5   996 1017 1024 

2   1003 1025 1031 

2.25   1002 1027 1034 

2.5   1000 1026 1033 

2.75   999 1026 1033 

3   993 1023 1030 

When the value of the threshold is too small, the number of nodes with the i  above the 

threshold is large, resulting in the formation of too many clusters. In the contrast, if threshold is too 

large, there will be little or no clusters in the network. Both situations will cause more energy 

consumption. From Table 8, the performance of different values of   varies from each other. By 

comparing with the previous experiments, we choose 2  , which means the dynamic threshold of 

this experimental scenario is 
'

max2 dct  . Figure 5 describes distributions of the number of cluster 
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heads in CFSFDP-E and LEACH. In the LEACH protocol, the number of clusters is almost between 6 

and 12, and in the CFSFDP-E algorithm, the most densely distributed region is 6 to 10, which is similar 

to LEACH. Therefore, the dynamic and adaptive threshold is suitable for WSNs. 

  
(a) (b) 

Figure 5. Distributions of the number of cluster heads in CFSFDP-E and LEACH. (a) distribution of 

the number cluster heads in CFSFDP-E. (b) distribution of the number of cluster heads in LEACH. 

5.5. Comparative Experiments 

The proposed CFSFDP-E algorithm takes local density, distance and residual energy into 

consideration to get the appropriate number of clusters and choose suitable cluster heads. Based on 

the experiments above, we choose 2

fE E  as the form of energy. The normalization of density-

energy   and   can be calculated by ' ' '

,( ) ( ) ( )i i f ir r E r  , ' ' ' '

,( ) ( ) ( ) ( )i i f i ir r E r r    for each node in 

the r round, respectively. The dynamic threshold is set to 
'

max( ) 2 ( ) ( )dcr r t r  . 

In order to demonstrate the performance of CFSFDP-E algorithm, several protocols will be 

compared in this part. The results shown below are all the average values of 20 independent 

experiments. 

Figure 6 shows the network lifetime comparison of LEACH-C [10], PEGASIS [11], SEP [12] and 

CFSFDP-E. The first three protocols are famous and classical. In SEP protocol, there are a percentage 

of numbers of sensor nodes is equipped with additional energy resources. In this experiment, we set 

10 nodes with double energy compared to normal nodes. The area size, number of nodes, location of 

sink node, length of data packets and control packets and other basic simulation parameters are all 

the same as those in Table 4. 

 

Figure 6. Network lifetime comparison of LEACH-C, PEGASIS, SEP and CFSFDP-E. 



Sensors 2018, 18, 881 15 of 18 

 

From Figure 6, we can also observe that the FND of CFSFDP-E is larger than that of the other 

protocols, which means it can keep all the nodes alive in most of rounds and the death for first node 

is later. Experiments prove that the performance of CFSFDP-E algorithm is better than these classical 

protocols, indicating that the proposed approach can balance the energy consumption of the network. 

The protocols of ALEACH [17], C-LEACH [18] and K-LEACH [19] are improvements based on 

LEACH. They optimize the clustering division and cluster heads selection. ALEACH, C-LEACH and 

K-LEACH select nodes with high residual energy as cluster heads with different forms of threshold 

( )T i  shown in (14). ALEACH takes nodes’ residual energy and maximum energy into consideration 

while C-LEACH and K-LEACH considers residual energy and initial energy with different forms to 

choose clusters heads. Figure 7 is the result for these four protocols and CFSFDP-E algorithm with 

same parameters in the same experimental scenario shown in Table 4. 

 

Figure 7. Network Lifetime comparison of ALEACH, C-LEACH, K-LEACH and CFSFDP-E. 

It is obvious that the death of first node of the three improved protocols based on LEACH are 

all less than 800 rounds, while the FND of CFSFDP-E is over 1000. When first node dies, the residual 

energy of all nodes will be exhausted in hundreds of rounds. Table 9 and Figure 8 show a network 

lifetime comparison of the proposed CFSFDP-E, KM-LEACH [3], DBCH [20] and EESCA [21]. 

Table 9. Network lifetime Comparison of KM-LEACH, DBCH, EESCA and CFSFDP-E. 

ALGORITHM FND HND LND (90%) 

KM-LEACH 440 1004 1087 

DBCH 611 819 1106 

EESCA 948 997 1085 

CFSFDP-E 1003 1025 1031 

KM-LEACH (KMEANS-LEACH) uses the k-means clustering algorithm to form clusters and 

chooses cluster heads which are the nearest to the centers. The Distance-Based Cluster Head (DBCH) 

algorithm establishes a new threshold which includes the node energy and distance between node 

and sink node and distance between cluster head and sink node for measuring the threshold value. 

The Energy Efficient Structured Clustering Algorithm (EESCA) is a hybrid cluster head selection 

method with parameter location centrality and nodes’ residual energy on the fixed clusters [21]. The 

area of deployment is exactly divided into four regions based on coordinates. Initially, the nodes 

which have the minimum average communication distance with other nodes are selected as cluster 

heads and remain their role until the cluster heads lose its 50% of their energy. This process continues 

until all the nodes in the cluster lose 50% of their total energy. And the remaining cluster head 

selection process is based on the residual energy of the nodes. Node which has the higher residual 

energy acts as the cluster head for the corresponding rounds. 
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These algorithms are simulated in the same experimental situations to compare the performance. 

From Figure 8, it is obvious that CFSFDP-E algorithm outperforms KM-LEACH, DBCH and EESCA 

in terms of energy consumption equilibrium. The FND of CFSFDP-E is 1003, which is over  

2 times higher than KM-LEACH, 1.6 times than DBCH and over 50 rounds larger than EESCA. We 

can find that the result of EESCA is very close to our proposed algorithm CFSFDP-E. However, the 

clustering scheme of EESCA is inflexible. It always divides all the nodes into four clusters based on 

their coordinates, while the CFSFDP-E algorithm divides various clusters based on changing local 

density, residual energy and distance of each living node in every round. 

 

Figure 8. Network Lifetime Comparison of KM-LEACH, DBCH, EESCA, and CFSFDP-E. 

From the analysis above, our proposed CFSFDP-E algorithm can balance energy consumption 

effectively based on every node’s local density, distance and residual energy. Figure 9 shows FND, 

HND and LND for above algorithms. It is proved that our proposed CFSFDP-E algorithm prolongs 

the life span of the first dead node and half dead nodes compared to these related algorithms. 

 

Figure 9. Network lifetime comparison of LEACH, LEACH-C, SEP, ALEACH, C-LEACH, K-LEACH, 

KM-LEACH, DBCH, EESCA, and CFSFDP-E. 

6. Conclusions 

In this paper, we propose an energy balanced CFSFDP-E algorithm protocol based on CFSFDP. 

It considers local density, distance and residual energy when selecting cluster heads in WSN. The 

nodes with high local density and high residual energy will be chosen as cluster heads. To get better 

performance, we also discuss about different forms of energy to balance energy consumption 

effectively and we determine 2E  as the form of energy. In addition, in order to balance the influence 

of three factors, we use parameters after normalization in the simulation experiments. Due to the 

changing parameters of every round, we set a dynamic threshold to determine an appropriate 
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number of cluster heads. Experiments have demonstrated that CFSFDP-E algorithm can delay the 

number of rounds before the first node’s death. The round when the first node dies is prolonged by 

50% compared to LEACH and it also outperforms several classical protocols (LEACH-C, PEGASIS 

and SEP), improved LEACH and KM-LEACH protocols (ALEACH, C-LEACH and K-LEACH) and 

protocols proposed in recent years (DBCH and EESCA. All these results show that the CFSFDP-E 

algorithm has superiority in terms of energy-balance, the total energy consumption and the number 

of living nodes. 

The main limitation of our proposed CFSFDP-E algorithm is that it cannot decide the number of 

cluster heads, which relies on the threshold we set for every round. In future works, we may further 

study the dynamic threshold for different simulation scenarios and multi-hop communication 

between cluster heads based on the CFSFDP-E algorithm to prolong the lifetime of the network. 
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