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Abstract: The Unscented Kalman filter (UKF) may suffer from performance degradation and even
divergence while mismatch between the noise distribution assumed as a priori by users and the actual
ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF
(RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance.
More specifically, at each timestep, a standard UKF will be implemented first to obtain the state
estimations using the new acquired measurement data. Then an online fault-detection mechanism is
adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based
method and residual-based method are used to calculate the estimations of current noise covariance
of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the
last noise covariance matrices with the estimations as the new noise covariance matrices. Finally,
the state estimations will be corrected according to the new noise covariance matrices and previous
state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF
converges faster to the actual noise covariance and thus achieves a better performance in terms of
robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance,
which is demonstrated by the simulation results.

Keywords: Adaptive filter; data fusion; robust state estimation; nonlinear system; uncertain
noise covariance

1. Introduction

Accurately and timely estimating the dynamic state in a nonlinear system is an important research
area and has attracted considerable interest. For decades, many classic nonlinear estimation algorithms
such as the extended Kalman filter (EKF) [1], unscented Kalman filter (UKF) [2], particle filter (PF) [3]
and a large number of their varieties are put forward to address the estimation of dynamic state in
nonlinear system. Among them, UKF is a considerably typical nonlinear filter algorithm, which has
many merits such as simplicity in realization, high accuracy, and rapid convergence [4,5]. Consequently,
it has been applied to many areas such as target tracking, navigation, energy estimation, structural
dynamics, system identification, and vehicle positioning [6–11].

However, UKF as one of Kalman filter varieties is also the minimum mean square error (MMSE)
estimator. It requires that the priori statistical characteristics of system noise be precisely known.
Among these statistical characteristics, the process noise covariance and the measurement noise
covariance are the most important as they directly regulate the impact of prediction values and
measurements on the system state estimations [12,13]. However, in practical applications, it is difficult
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to accurately describe covariances, which may suddenly change, leading to biased or even divergent
filter solutions. Therefore, it is absolutely necessary to adaptively update the two noise covariances by
using the information obtained in the filter process [14].

Recently, many efficient adaptive filter algorithms are proposed to address the above problem,
which are usually divided into four categories: Bayesian, maximum likelihood (ML), correlation,
and covariance-matching methods. Among the four categories, the covariance-matching method
is the most computationally efficient [15]. Over the decade, many covariance-matching adaptive
filter algorithms were proposed to address the above noise mismatch problem such as multiple
model-based [7,16], innovation-based or residual-based [17–19] adaptive estimation algorithms. In [20],
the authors propose an online adaptive UKF to update noise covariance matrices by minimizing a
cost function built based on the errors between the covariance matrices of innovation and their
corresponding estimations. However, considering a great amount of derivative calculations involved
in the minimization process, this method is difficult to achieve the real-time performance. Shi et al. [21]
adopt a modified Sage-Husa noise statistics estimator to estimate and adaptively adjust the process
noise covariance, which is able to compensate the errors resulting from the change of noise statistics.

To obtain an accurate noise covariance, the Sage windowing method is frequently used to estimate
system noise statistics based on windowing approximation [15]. For example, in [22], the authors
present an adaptive UKF by combining the windowing and random weighting concepts and then
extend the windowing method to nonlinear system. Reference [19] performs correction for the noise
covariance depending on the type of the fault and also uses a windowing method when updating
the process noise covariance. In [23], the authors propose an adaptive unscented particle filter which
focuses on the adaptive estimation of the measurement noise covariance by using a windowing method
with a fixed window size. Nevertheless, the sliding window method acquires the estimation of the
current noise covariance by smoothing the relevant parameters during previous timesteps, which
not only brings in heavy computational burden but also cannot adapt to the rapid changes of the
system state.

Instead of using the windowing method, another approach to adjust noise covariance is to scale
the noise covariance matrix with a time dependent variable. For example, in [24] a novel adaptive
UKF algorithm is employed to estimate the attitudes of a pico satellite, in which the process noise
covariance is adapted by a scaling factor calculated from the residual sequences. Furthermore, the
authors propose a fault-detection method and the process noise covariance is only corrected when the
fault occurs. In [25] the same authors put forward another adaptive UKF for the same purpose, where
the measurement noise covariance is scaled by a scaling matrix instead of the process noise covariance,
at the presence of measurement malfunction. Li et al. [26] presents a robust Masreliez–Martin
UKF which can provide reliable state estimates in the presence of both unknown process noise
and measurement noise covariance matrices. This method also adopts a fading factor to adjust the
pre-designed process noise covariance. Nevertheless, the positive definite is not guaranteed in this
scaling method [27]. Because the scaling factor is usually obtained by subtracting the two sum of traces
of positive define matrices. Thus, in some actual situations, the scaling factor may be negative, and
then the new coverance matrix will not be a positive definiteness matrix. Additionally, the calculation
of scale factors is also complex and unsuitable for devices with limited computational power, e.g.,
low-priced sensors.

In this paper, a robust adaptive UKF (RAUKF) is proposed for nonlinear state estimation with
uncertain noise covariance to adaptively adjust the noise covariance according to its current estimation
and previous value. Note that the uncertainty here contains two aspects: (i) the unknown of actual
noise covariance in the estimation; and (ii) the dynamic change of actual noise covariance during
the estimation. More specifically, at each timestep, a standard UKF will be implemented first to
obtain current state estimations using the new acquired measurement. Then an online fault-detection
mechanism is performed by using a statistical function to judge whether the current noise covariance
needs to be updated. If needed, the innovation-based and residual-based methods are used to calculate
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the estimations of process and measurement noise covariance, respectively. Furthermore, by utilizing
a weighting factor, the filter obtains the new priori noise covariance values via combining the last ones
with their current theoretical estimations. Finally, the state estimations will be corrected according
to these new noise covariance matrices and previous state estimations. Unlike the above existing
adaptive UKF algorithms based on the windowing or the scale factor, RAUKF need neither to store
and smooth the relevant parameters during previous timesteps nor calculate scale factor at each
timestep, which brings about a noteworthy reduction in the computational burden. Therefore, it is
particularly well adapted for use in devices with limited computational power. Moreover, the proposed
RAUKF algorithm could ensure that the new prior covariance matrices are certainly positive definite
matrices, since it updates its covariance matrices with a weighting sum of two positive definite matrices.
Simulation results show that RAUKF performs well in accuracy, robustness, and computation with
uncertain noise covariance.

The rest of this paper is structured as follows. In Section 2, we introduce the nonlinear state
estimation based on standard UKF (SUKF). Section 3 describes the proposed RAUKF algorithm. The
simulation results of the proposed algorithm is investigated and evaluated in Section 4. Finally, Section
5 gives some conclusions to this paper.

2. Nonlinear State Estimation Based on SUKF

As we all know, the Kalman filter relies on two models, namely: a system or process model that
describes the state of transition and it is used for prediction; and a measurement model that describes
the relationship between state and measurements. In this paper, the state of system evolves according
to the following discrete-time dynamic model:

xk = f (xk−1) + wk−1, (1)

where k is the sampling time index, f (∗) is the state transition function, xk is the state vector at timestep
k, and wk−1 is the process noise vector, assumed the zero-mean white Gaussian with covariance matrix
Qk−1. The corresponding error covariance matrix of state xk is defined as

Pxx
k = E[(xk − x̂k|k)(xk − x̂k|k)

T ], (2)

where x̂k|k is the state estimation at timestep k, E(∗) is the expectation operation.
Subsequently, the measurements of system state at each timestep can be given indirectly by the

following discrete observation model:

zk = h(xk) + vk, (3)

where h(∗) is the measurement function, zkis the measurement at timestep k, and vk is the measurement
noise vector, which is also considered to be Gaussian with zero mean and covariance matrix Rk.

With respect to the two system models, the nonlinear estimation based on SUKF can be briefly
expressed as follows [2,6]. Note that the initial state vector x̂0 and its error covariance matrix P̂0 are
assumed to be known and the initial noise covariance matrices Q0 and R1 are set to the positive definite
matrices by users.

1. Compute weights with the initial parameter 0 < ω0 < 1:

ωj =
(1−ω0)

2nx
, j = 1, · · · , 2nx (4)

cj =

√
nx

1−ω0
rj, j = 1, · · · , 2nx, (5)
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where nx is the dimension of the state vector, {rj; j = 1, · · · , nx} is the jth standard basis vector
and rj = −r(j−nx) when j = nx + 1, · · · , 2nx. How to select an appreciate ω0 is also a meaningful
topic and readers could refer to reference [2,28] for more details about the selection of ω0.

2. At timestep k, establish symmetric sigma points φ at timestep k− 1 with the last state estimation
x̂k−1|k−1 and last estimation of state error covariance P̂xx

k−1|k−1 which are both assumed to have
been obtained from the previous step:

Dk−1|k−1 = (P̂xx
k−1|k−1)

1/2 (6)

φ
(0)
k−1|k−1 = x̂k−1|k−1, φ

(j)
k−1|k−1 = x̂k−1|k−1 + Dk−1|k−1cj, j = 1, · · · , 2nx. (7)

3. Predict the current states x̄k|k−1 and its error covariance matrix P̄xx
k|k−1:

x̄k|k−1 =
2nx

∑
j=0

ωj f (φ(j)
k−1|k−1) (8)

P̄xx
k|k−1 =

2nx
∑

j=0
ωj[ f (φ(j)

k−1|k−1)− x̄k|k−1]× [ f (φ(j)
k−1|k−1)− x̄k|k−1]

T + Qk−1. (9)

4. Establish symmetric sigma points φ about the state prediction:

Dk|k−1 = (P̄xx
k|k−1)

1/2 (10)

φ
(0)
k|k−1 = x̄k|k−1, φ

(j)
k|k−1 = x̄k|k−1 + Dk|k−1c(j), j = 1, · · · , 2nx. (11)

5. Define µk = zk − h(x̄k|k−1) as the innovation vector at timestep k and the innovation covariance
matrix is Pzz

k = E[µk ∗ (µk)
T ]. Then, the predicted innovation covariance matrix P̄zz

k|k−1 and cross
covariance matrix P̄xz

k|k−1 are separately determined by:

P̄zz
k|k−1 =

2nx
∑

j=0
ωj[h(φ

(j)
k|k−1)− z̄k|k−1]× [h(φ(j)

k|k−1)− z̄k|k−1]
T + Rk (12)

P̄xz
k|k−1 =

2nx
∑

j=0
ωj[ f (φ(j)

k−1|k−1)− x̄k|k−1]× [h(φ(j)
k|k−1)− z̄k|k−1]

T , (13)

where z̄k|k−1 =
2nx
∑

j=0
ωjh(φ

(j)
k|k−1).

6. Calculate Kalman gain Kk and then obtain the estimation of current state x̂k|k and its error
covariance matrix P̂xx

k|k with current actual measurement zk:

Kk
∆
= P̄xz

k|k−1(P̄
zz
k|k−1)

−1 (14)

x̂k|k = x̄k|k−1 + Kk(zk − z̄k|k−1) (15)

P̂xx
k|k = P̄xx

k|k−1 −KkP̄zz
k|k−1(Kk)

T . (16)

To run the SUKF, users need to provide Qk−1 in Equation (9) and Rk in Equation (12). Performance
of a Kalman filter depends on how well users can configure the Qk−1 and Rk for current applications.
Conventionally, they are often configured as constant matrices during the running of SUKF using a
trial-and-error approach, which relies on the experience and background of users. Therefore, it is a
challenge for users to configure initial Q0 and R1 at the beginning.
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3. Robust Adaptive Unscented Kalman Filter

The SUKF algorithm works well under suitable Q and R. However, when users configure
unsuitable noise covariance matrices as a priori or there is a fault either in system as a change in the
noise covariance as a malfunction, SUKF may fail and thus its estimation results become inaccurate [19].

To address this challenge, we propose a robust adaptive unscented Kalman filter (RAUKF)
algorithm. The algorithm adaptively adjusts Q and R based on the weighting combination of their
current theoretical estimation values and the last data if a fault occurs in system. Note that SUKF
works well in normal cases. Therefore, a fault-detection mechanism should be adopted to judge if it is
necessary to revise noise covariance matrices. The adopted fault-detection mechanism in this letter is
similar to that used in work [19] which uses the following statistical function to detect the fault:

ϕk = µT
k [P̄

zz
k|k−1]

−1µk, (17)

The ϕk has a χ2 distribution with s degree of freedom and s is the dimension of the µk. Suppose
we wish to detect a fault with a reliability level of 1− σ, where σ is a chosen parameter. Then there is a
threshold, χ2

σ,s, determined by the χ2
σ,s distribution of ϕk such that

P(ϕk > χ2
σ,s) = σ (18)

Thus, using the preselected value of σ, we define a corresponding fault detection threshold χ2
σ,s

from Equation (18), such that a system fault can be detected with a reliability level of 1− σ.

3.1. Adaptive Adjustment of Q

The innovation sequence µk represents the additional information available to the filter as a
consequence of the incoming new measurements. Hence, it is considered as the most relevant
information for the filter adaptation and can be used to estimate the noise covariance [23]. According
to Equation (1), the process noise can be represented as wk−1 = xk − f (xk−1).

Furthermore, from equations in SUKF, it yields

ŵk−1 = x̂k − f (x̂k−1|k−1) ≈ x̂k − x̄k|k−1
= Kk(zk − z̄k|k−1) ≈ Kkµk.

(19)

Note that there are two approximations via linearization used in the above derivation,
x̄k|k−1 ≈ f (x̂k−1|k−1) and z̄k|k−1 ≈ h(x̄k|k−1), in which the forward evolution of the mean at time k− 1
is approximated by the mean computed from the forward evolved sigma points; respectively the
observation of the mean is approximated by the mean observation, computed via the observations of
the sigma points.

Therefore, the estimation of process noise covariance matrix Qk−1 can be estimated as:

Qk−1 = cov(ŵk−1) = KkE[µkµT
k ]K

T
k , (20)

where cov(∗) is the covariance operation and E(∗) is the expectation operation.
To implement above equation, E(µkµT

k ) usually approximated by means of averaging µkµT
k

over time using a windowing method. Instead of using moving window methods (like in
works [15,19,23,29]), this paper adaptively adjusts Q by utilizing a weighting factor λ to balance
the last noise covariance value and current estimation. The weighting factor λ is set with a lower limit
λ0 ∈ (0, 1) to ensure the update strength and will increase as the rise of the ϕk if the ϕk exceeds a preset
threshold. Therefore, the system process noise covariance matrix is updated as:

Qk−1 = (1− λ)Qk−1 + λ(KkµkµT
k KT

k ), (21)
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λ = max{λ0, (ϕk − a× χ2
σ,s)/ϕk}, (22)

where a (a > 0) is a tuning parameter dependent on the actual environment, and a larger a implies a
higher probability of using the default λ0. Specially, how the trade-off between λ0 and a will determine
how sensitive the covariance update is to the new innovation statistics.

3.2. Adaptive Adjustment of R

The measurement noise covariance matrix R at timestep k can also be estimated by the
innovation-based approach as follows:

R̂k = E[µkµT
k ]− S̄zz

k|k−1, (23)

where S̄zz
k|k−1 =

2nx
∑

j=0
ωj[h(φ

(j)
k|k−1)− z̄k|k−1]× [h(φ(j)

k|k−1)− z̄k|k−1]
T . Readers could refer to reference [30]

for more details about the derivation process. Generally speaking, the Rk should be positive definite
as it is a covariance matrix. However, its estimation R̂k from Equation (23) cannot guarantee to be
a positive definite matrix, since it is obtained by subtracting the two positive definite matrix. Then,
if there are negative parameters in the main diagonal of noise covariance matrix, the adaptive filter
will suddenly diverge [22]. To obtain a positive definite matrix R̂k, a residual-based approach is used.
From Equation (3) the measurement noise at timestep k can be derived as vk = zk − h(xk). Then, the
residual vector at timestep k is given by

εk = zk − h(x̂k|k). (24)

Furthermore, according to work [23], the estimation of measurement noise covariance based on
the residual vector εk is given by

R̂k = cov(v̂k) = E[εkεk
T ] + Ŝzz

k|k, (25)

where

Ŝzz
k|k =

2nx

∑
j=0

ωj[h(φ
(j)
k|k)− ẑk|k]× [h(φ(j)

k|k)− ẑk|k]
T , (26)

φ
(0)
k|k = x̂k|k, φ

(j)
k|k = x̂k|k + Dk|kc(j), j = 1, · · · , 2nx, Dk|k = (P̂xx

k|k)
1/2, (27)

ẑk|k =
2nx

∑
j=0

ωjh(φ
(j)
k|k). (28)

Similar to the method used in the previous section, the Rk is updated utilizing a weighting factor
δ set with a lower limit δ0 ∈ (0, 1) as:

Rk = (1− δ)Rk + δ[εkεk
T + Ŝzz

k|k] (29)

δ = max{δ0, (ϕk − b× χ2
σ,s)/ϕk}, (30)

where b (b > 0) is also a tuning parameter dependent on the actual environment, and the selection of
the b and δ0 is the same as that of the a and λ0.

3.3. Correct Estimations

Once the covariance matrices Qk−1 and Rk are updated, current state estimations should be
corrected with the new Rk, Qk−1 and the estimations x̂k|k, P̂xx

k|k to obtain more accurate state estimations.
The correction process is described as follows:
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1. Compute the new predicted error covariance matrix P̄xx
k|k and cross covariance matrix P̄xz

k|k, which
treats the acquired state x̂k|k as the predicted state of timestep k:

P̄xx
k|k =

2nx

∑
j=0

ωj[φ
(j)
k|k − x̂k|k]

T × [φ
(j)
k|k − x̂k|k] + Qk−1, (31)

P̄xz
k|k =

2nx

∑
j=0

ωj[φ
(j)
k|k − x̂k|k]× [h(φ(j)

k|k)− ẑk|k]
T (32)

2. Evaluate the updated innovation covariance matrix P̄zz
k|k and Kalman gain K̂k:

P̂zz
k|k = Ŝzz

k|k + Rk, K̂k
∆
= P̄xz

k|k(P̂
zz
k|k)
−1 (33)

3. Correct the estimation of current state x̂k|k and its error covariance matrix P̂xx
k|k

x̂k|k = x̂k|k + K̂k(zk − ẑk|k) (34)

P̂xx
k|k = P̄xx

k|k − K̂kP̄xz
k|k(K̂k)

T . (35)

In this subsection, we use the estimation x̂k|k and its sigma point φ
(j)
k|k to replace the previous

forecast x̄k|k−1 and its sigma point φ
(j)
k|k−1 as the new input values in the correction phase. Although

this method will incorporate the previous mis-estimated Qk−1 and Rk into the final estimations, the
previous estimation x̂k|k obtained from Equation (15) is more precise than the prediction value x̄k|k−1.

Thus, in this paper we adopt the estimation x̂k|k and its sigma point φ
(j)
k|k as the input values of our

correction phase, which is like in many iterated UKF algorithms, e.g., [31,32].
From Equation (21) and Equation (29), we can find that the proposed RAUKF adopts a one-step

update instead of using the windowing procedure, which brings about the decrease of computation
burden and is friendly to the sensors with limited computation power and storage capacity. Moreover,
the new noise covariance matrices obtained via weighting sum of previous values and current
estimation are certainly the positive definite matrices. The proof is given as follows. The overall
procedure of the proposed RAUKF algorithm is summarized in Algorithm 1.

Theorem 1. The new obtained prior noise covariance matrices in Equations (21) and Equation (29) are both the
positive definite matrices.

Proof. At the begaining of the proposed algorithm, the initial noise covariance matrices Q0 and R1 is
set to the positive definite matrices by users. At timestep k, the prior noise covariance matrices will be
updated if the system fault occurs. The new noise covariance matrices are obtained via weighting sum
of their previous values and current estimation which are described in Equations (21) and Equation (29).
In the equations, the previous noise covariance matrices Qk−1 and Rk are already both the positive
definite matrices. The expression KkµkµT

k KT
k in Equation (21) is a positive definite matrix as it is the

product of (Kkµk) and its transpose (Kkµk)
T . Similarly, the expression εkεk

T in Equation (29) is also a
positive definite matrix. Furthermore, from Equation 26, the new obtained Ŝzz

k|k is a weighting sum of
products which are all positive definite matrices. Thus, it is also a positive definite matrix. Additionly,
the weight factors λ, δ ∈ (0, 1). Therefore, the new obtained prior noise covariance matrices Qk−1 and
Rk in Equations (21) and (29) are both the positive definite matrices.
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Algorithm 1. The robust adaptive unscented Kalman filter (RAUKF) algorithm.

Input: f (∗), h(∗), x̂0, Q0, R1, P̂0, λ0, δ0, ω0, χ2
σ,s.

1: Initialization:
2: ωj = (1−ω0)/2nx, c0 =

√
nx

1−ω0
, c(j) =

√
nx

1−ω0
r(j), j = 1, · · · , 2nx.

3: for k = 1→ K do
4: Implement SUKF to obtain x̂k|k, P̄zz

k|k−1, Kk, P̂xx
k|k.

5: Perform the fault-detection mechanism:
6: ϕk = µT

k [P̄
zz
k|k−1 + Rk]

−1µk
7: if ϕk > χ2

σ,s, then
8: Update the Qk−1 and Rk:
9: µk = zk − h(x̄k|k−1), εk = zk − h(x̂k|k);

10: Ŝzz
k|k =

2nx

∑
j=0

ωj[h(φ
(j)
k|k)− z̄k|k]× [h(φ(j)

k|k)− z̄k|k]
T ;

11: δ = max{δ0, (ϕk − a× χ2
σ,s)/ϕk}; λ = max{λ0, (ϕk − b× χ2

σ,s)/ϕk};
12: Qk−1 ← (1− λ)Qk−1 + λ(KkµkµT

k KT
k ); Rk ← (1− δ)Rk + δ[εk(εk)

T + Ŝzz
k|k].

13: Correct state estimations:

14: K̂k
∆
= P̄xz

k|k(P̂
zz
k|k)
−1;

15: x̂k|k = x̂k|k + K̂k(zk − ẑk|k); P̂xx
k|k = P̄xx

k|k − K̂kP̄xz
k|k(Kk)

T ;
16: end if
17: Qk ← Qk−1, Rk+1 ← Rk.
18: Save the x̂k|k and P̂xx

k|k.
19: end for

4. Simulation Results

To highlight the merits of RAUKF, we conduct the simulation experiment on a simple
vehicle-tracking problem in two different cases. In the first experiment, the actual noise covariance
matrices are assumed unknown and impossible to estimate off-line. In the second experiment, the
actual noise covariance of the system will dynamically change during the estimation. The experiment
results are compared with that of SUKF algorithm with fixed noise covariance, AUKF algorithm
with a moving window method (called AUKF-window, the window size is set to 10 here) [23],
and AUKF algorithm with scaling factor method (called AUKF-scaling-factor) [24]. Note that the
AUKF-scaling-factor method in [24] only updates its process noise covariance matrix when the fault
occurs. Thus, this method will only be compared with the proposed RAUKF in the second case.
All simulations are executed on an Intel Core i5-2520M CPU 2.50 GHz × 4 personal computer with
10 GB of random-access memory.

xk = [xk, ẋk, yk, ẏk]
T denotes the vehicle state at discrete timestep k, where pk = (xk, yk) is the

current vehicle position and (ẋk, ẏk) is its velocity. ∆ is the constant sampling time interval between
two successive measurements. Meanwhile, a stationary radar is assumed to be used to track the
vehicle at position (0, 0). Its measurement vector is described by zk = [ρk, θk, νk], where ρk and θk are
respectively the distance and angle between the radar and vehicle, νk is the vehicle speed. Therefore,
the system models are given by

xk = f (xk−1) + wk−1 = Axk−1 + wk−1

zk = h(xk) + vk =


√

x2
k + y2

k

arctan(yk/xk)√
ẋ2

k + ẏ2
k

+ vk,
(36)

where A is the state transition matrix.
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In this paper, the root mean-squared error in position at each timestep, RMSEp, and its average,
ARMSEp, are adopted as the indications of tracking accuracy, since it yields a combined measurement
of the bias and variance of a filter estimate [33,34]. The ARMSEp is given by

ARMSEp =

√√√√ 1
NmK

Nm

∑
i=1

K

∑
k=1

[(x̂(i)k − xk)
2
+ (ŷ(i)k − yk)

2
], (37)

and the RMSEp at timestep k yields

RMSEp(k) =

√√√√ 1
Nm

Nm

∑
i=1

[(x̂(i)k − xk)
2
+ (ŷ(i)k − yk)

2
], (38)

where (x̂(i)k , ŷ(i)k ) is the estimated vehicle position in timestep k at i-th Monte Carlo run. Nm is the
number of Monte Carlo runs and K = 100 is the number of time sample in one run. χ2

σ,s is taken as 2.37,
and this value comes from chi-square distribution when the degree of freedom is 3 and the reliability
level is 50%. Other parameters in the simulations are set as follows:

Q◦ = 9 ∗


∆3

3
∆2

2 0 0
∆2

2 ∆ 0 0
0 0 ∆3

3
∆2

2
0 0 ∆2

2 ∆

, A =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

,

R◦ = diag([1, 0.0001, 9]), P̂0 = diag([2, 3, 2, 3]),
x̂0 = [0, 10, 0, 10], ∆ = 0.1,
Nm = 1000, λ0 = δ0 = 0.2,

where Q◦ and R◦ are the actual process and measurement noise covariance matrices of our simulation
system, respectively.

4.1. Selection of Tuning Parameters a and b

Before implementing the simulation experiments, we need to select suitable tuning parameter a
and b. According to Equations (21), (22) and (29), (30), the adaptive adjustments of Qk−1 and Rk have
the same theories and structures. Thus, in this paper, the parameter a and b are given the same values.

To select suitable values for the two tuning parameters, they are varied from 1 to 8 in two different
situations. In first situation, the initial prior noise covariance matrices are set to the actual noise
covariance matrices, namely, Q0 = Q◦, R1 = R◦. While, the initial prior noise covariance matrices in
another one is that Q0 = 100×Q◦, R1 = 0.01× R◦.

As shown in Figure 1a, the improvement of estimation accuracy diminishes and seems to be
trivial after a > 4. In this situation, the prior noise covariance is close to the actual one. Thus, the
weighting factor λ should be as small as possible and then a large a implies that the λ will be set to
its lower limit λ0 with a very high probability. From Figure 1b, the ARMSEp decreases first and then
rising a little. In this situation, a moderate tuning parameter is necessary, as too large or too small
tuning parameter may have negative influences on the covariance-matching. The principle of selecting
δ is the same with that of λ. Therefore, in the following simulation experiments, a and b are chosen
as 5.
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Figure 1. ARMSEp results of different weighting parameters in two different situations.

4.2. Simulation Results in Unknown Noise Environment

In the first simulation case, we evaluate the performance of RAUKF with arbitrary initial noise
covariance matrices. Specifically, Q0 and R1 are varied apart from small to large by scaling Q◦ and
R◦ to test the accuracy and robustness of RAUKF. Under the same setup of simulations, the ARMSEp

results of different algorithms are respectively summarized from Tables 1–3.
Comparing the three tables, one can observe that in general the proposed RAUKF achieves the

best performance in robustness and accuracy among the three algorithms. In detail, from Table 1,
the ARMSEp results of SUKF are relatively greater when the Q0 or R1 is set to a large or small value
than those of a normal range, especially in the situation that the initial noise covariance matrices
are considerably lower than the actual ones. In many cases, the ARMSEp results are more robust in
AUKF-window rather than in SUKF by contrasting Tables 1 and 2. However, owing to the window
smoothing operations, the ARMSEp results of AUKF-window are almost similar in most of different
initial noise covariance matrices. Furthermore, they are slightly above that of SUKF except at the
bottom left of the table. It says that the windowing-based AUKF improves the robustness of estimation
but reduces its accuracy. Meanwhile, in some cases (e.g., m = 0.01, n = 100) the ARMSEp results are
also large. As shown in Table 3, the performance improvement of RAUKF is more obvious when the
ARMSEp results of AUKF-window and SUKF are both large. For example, Figure 2 shows the RMSEp

results of the three algorithms at each timestep when Q0 = 100×Q◦ and R1 = 0.01×R◦. Additionally,
in the normal situations, the ARMSEp results of RAUKF are also almost the same as those of SUKF.
In summarize, RAUKF achieves a good performance even if users know very little about the actual
noise covariance and uses an unsuitable approximation.

As for the computational performance, all algorithms are run in the same computer and their
running time results are all averaged over 1000 runs. The time consumption of RAUKF is 28.40 ms
for each run, which is slightly higher than that of SUKF (23.30 ms). This is because RAUKF needs to
update the noise covariance matrices and correct the state estimations. However, AUKF-window’s
computation time is 52.04 ms, which is much greater than that of SUKF and RAUKF. This is due to it
involves a vast number of calculations in the updates of noise covariance utilizing a windowing method.
Furthermore, the length of the window in AUKF-window determines the amount of the measurements
that need to be accumulated and averaged to calculate the estimated covariance matrices [23]. Thus,
the longer the length of the window is, the higher the computation is.
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Table 1. ARMSEp results of SUKF.

ARMSEp

R1 = m × R◦

m = 0.01 m = 0.1 m = 1 m = 10 m = 100

Q
0
=

n
×

Q
◦ n = 0.01 7.1569 5.0975 1.0752 1.2882 1.4639

n = 0.1 7.1716 5.0995 0.8666 1.0588 1.2598
n = 1 7.1879 5.1180 0.8563 0.8496 1.0433

n = 10 7.1974 5.0640 0.9520 0.8692 0.9305
n = 100 21.3282 18.1290 1.0739 1.3955 2.7678

Table 2. ARMSEp results of AUKF-window (windowsize = 10).

ARMSEp

R1 = m × R◦

m = 0.01 m = 0.1 m = 1 m = 10 m = 100

Q
0
=

n
×

Q
◦ n = 0.01 1.6672 1.6577 1.6136 1.5858 1.5636

n = 0.1 1.6558 1.6561 1.6128 1.5851 1.5534
n = 1 1.6629 1.6470 1.6054 1.5791 1.5613

n = 10 5.0705 1.6141 1.5831 1.5578 1.5492
n = 100 7.2723 6.6321 1.6130 1.5886 1.5847

Table 3. ARMSEp results of RAUKF.

ARMSEp

R1 = m × R◦

m = 0.01 m = 0.1 m = 1 m = 10 m = 100

Q
0
=

n
×

Q
◦ n = 0.01 1.5843 1.4737 1.1664 1.2476 1.4639

n = 0.1 1.4917 1.3922 1.1271 1.0368 1.2598
n = 1 1.3424 1.2940 1.0827 0.8472 1.0433
n = 10 1.8842 1.6269 1.1120 0.8752 0.9305

n = 100 2.4231 3.7601 1.5362 1.3892 2.5616
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Figure 2. Comparison of RMSEp(k) results of different algorithms when Q0 = 100 × Q◦ and
R1 = 0.01 × R◦.
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4.3. Simulation Results in Dynamic Noise Environment

In the second case, we assume that the actual noise intensity of the vehicle occurs a sudden
dramatic change during the tracking to highlight the robustness of RAUKF. Therefore, the actual
process noise covariance in this simulation is set as{

Q(v)
k = Q◦, k = 1, · · · , 20

Q(v)
k = 100×Q◦, k = 21, · · · , K.

(39)

It should be noted that the parameter δ is set as 0, since the R(v)
k of the vehicle do not change during

the simulation. In this case, the proposed RAUKF algorithm will be compared with AUKF-window,
AUKF-scaling-factor, and SUKF for a comprehensive evaluation. Meanwhile, the Rk of AUKF-window
keeps fixed for fairness to compare with RAUKF. R1 = R◦ and other parameters are the same with
previous setup.

Figure 3 shows one of comparison results of different algorithms in state estimation at each
timestep and Figure 4 presents the RMSEp results of the four algorithms at each timestep, from which

we can see that RAUKF successfully track the vehicle after an abrupt change of the Q(v)
k . Moreover,

SUKF cannot track the vehicle well now due to the fixed preudonoise intensity, which couldn’t provide
enough drive power to the related estimation. Thus, its RMSEp results increase rapidly after timestep
20. As for the comparison of AUKF-window, AUKF-scaling-factor, and RAUKF, their Qk will increase
after timestep 20 because of the adaptive adjusting mechanisms. Thus, the RMSEp results of them
are all steady decline after timestep 20. However, the proposed RAUKF performs better than that of
AUKF-window method and AUKF-scaling-factor method.

More concretely, as shown in Table 4, the averaged RMSEp results of the four different algorithms
before timestep 20 are almost the same, which means that all of them could deal with the normal
situation well. Then, the actual process noise of system changes at the timestep 20, the averaged
RMSEp results of the four different algorithms begin to be different. There is no doubt that SUKF
algorithm performs the worst among the four algorithms after timestep 20 as the mismatch between
its prior noise covariance and the actual one. The averaged RMSEp of the proposed RAUKF after
timestep 20 is the lowest compared with that of AUKF-window method and AUKF-scaling-factor
method, which shows the superiority of RAUKF in dealing with the nonlinear estimation in dynamic
noise environment. In detail, the convergence speed of RMSEp of RAUKF is the fastest among the
three different adaptive algorithms (about 10 sample steps).

0 10 20 30 40 50 60 70 80 90

X (m)

0

20

40

60

80

100

Y
 (

m
)

target trajectory
RAUKF
AUKF-scaling-factor
AUKF-window
SUKF

Figure 3. Comparison of state estimation results of different algorithms before and after an abrupt

change of the Q(v)
k .
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Figure 4. Comparison of RMSEp(k) results of different algorithms before and after an abrupt change

of the Q(v)
k .

Table 4. Averaged RMSEp before and after timestep 20.

Averaged RMSEp SUKF AUKF-Window AUKF-Scaling-Factor RAUKF

Before timestep 20 0.6886 0.7397 0.7970 0.8163
After timestep 20 7.6859 4.0566 2.1757 1.6093

5. Conclusions

In this paper, a robust adaptive unscented Kalman filter (RAUKF) is proposed for the state
estimation of nonlinear system under a sequential framework with uncertain noise covariance.
A fault-detection mechanism is used to judge if it is necessary to update the noise covariance matrices.
If necessary, RAUKF will adjust Q and R based on the weighting combination of current theoretical
estimation and previous values. The state estimations will then be corrected. Unlike many existing
adaptive UKF algorithms based on the windowing or the scale factor, RAUKF need neither to store
and smooth the relevant parameters during previous timesteps nor calculate scale factor at each
timestep, which brings about a noteworthy reduction in the computational burden. Therefore, it is
particularly well adapted for use in devices with limited computational power. Moreover, the proposed
RAUKF algorithm could ensure that the new prior covariance matrices are certainly positive definite
matrices, since it updates its covariance matrices with a weighting sum of two positive definite matrices.
Simulations results from two aspects demonstrate that the proposed RAUKF performs well in accuracy
and robustness on nonlinear estimation with uncertain noise covariance.

This work adaptively updates the process and measurement noise covariance simultaneously
when the system fault is detected. Thus, in the further research work, we will focus on investigating
how to exactly detect the type of the fault (either a process noise uncertainty or a measurement
malfunction). Then the process noise covariance or measurement noise covariance will be revised
respectively according to the fault type.
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