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Abstract: For planetary gear has the characteristics of small volume, light weight and large
transmission ratio, it is widely used in high speed and high power mechanical system. Poor working
conditions result in frequent failures of planetary gear. A method is proposed for diagnosing
faults in planetary gear based on permutation entropy of Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) Adaptive Neuro-fuzzy Inference System (ANFIS)
in this paper. The original signal is decomposed into 6 intrinsic mode functions (IMF) and residual
components by CEEMDAN. Since the IMF contains the main characteristic information of planetary
gear faults, time complexity of IMFs are reflected by permutation entropies to quantify the fault
features. The permutation entropies of each IMF component are defined as the input of ANFIS,
and its parameters and membership functions are adaptively adjusted according to training samples.
Finally, the fuzzy inference rules are determined, and the optimal ANFIS is obtained. The overall
recognition rate of the test sample used for ANFIS is 90%, and the recognition rate of gear with one
missing tooth is relatively high. The recognition rates of different fault gears based on the method
can also achieve better results. Therefore, the proposed method can be applied to planetary gear fault
diagnosis effectively.
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1. Introduction

Gear transmission is a commonly used transmission method in mechanical equipment, in which
planetary gear transmission has the advantages of large transmission ratio, strong carrying capacity,
high transmission efficiency, etc., which is commonly used in the transmission system of mechanical
equipment [1]. In planetary gear transmission process, affected by installation error, manufacture
error and interference of environment, the planetary gear is not easy to be detected when it fails.
Moreover, the vibration signals collected are affected by multi-gear meshing, which has nonlinear and
non-stationary characteristics, increasing the difficulty of fault diagnosis and identification. At present,
gear fault diagnosis and recognition can use physical model to analyze the gear state feature, and then
generate health index can be got through data analysis. Finally, combined with geometric model,
prediction of gear state can be completed [2]. The gear in the gearbox can also be diagnosed by the
redundancy technology analytical redundancy [3].

The method of gear fault diagnosis proposed in this paper is based on the analysis of the
vibration signals which are collected by an acceleration sensor. The fault diagnosis of planetary
gear requires the signal processing of the vibration signal of planetary gear, so that the feature
information in the signal can be obtained. Traditional signal processing method is based on Fourier
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Transform [4], but the disadvantage of this method is that the time domain signal and the frequency
domain signal cannot be analyzed at the same time. To solve this problem, Wigner proposed Wigner
distribution (WD) [5]. Though WD has better time-frequency resolution, the distribution cannot
guarantee non negative, and it is not suitable for the analysis of multicomponent signals. EMD is a
new time-frequency analysis method in signal processing, and it is more suitable for the analysis of
nonlinear and non-stationary vibration signal compared with WD analysis methods [6]. And EMD
has been widely used in the field of mechanical fault diagnosis [7,8]. But EMD itself has defects,
including mode mixing, false mode and end point effect [9]. Therefore, Huang proposed the ensemble
empirical mode decomposition (EEMD) on the basis of EMD [10]. This algorithm can effectively
alleviate mode mixing of EMD by using Gaussian white noise which has uniform distribution in the
frequency domain and zero mean. However, there are deficiencies in the decomposition process of
EEMD. In the process of EEMD decomposition, the IMF components often carry residual noise, and
the time of Gauss white noise added is different, which will bring difficulties to the final average
operation [11]. In view of the reconstruction error of EEMD, complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) is proposed [12]. By adding the adaptive noise
modal components to each stage of the EMD decomposition, and averaging the modal components
after the decomposition, CEEMDAN is better than EEMD in decomposition ability, and effectively
reduce the residual noise in the reconstructed signal. Since then, scholars have studied CEEMDAN,
and achieved good results. Li [13] combined the EMD, EEMD, CEEMDAN and hybrid filtering
methods to denoise the friction signal. The results showed that CEEMDAN can better preserve the
signal features than EMD and EEMD. Humeau-Heurtier [14] proposed MCEEMDAN on the basis of
CEEMDAN, which can accurately extract the data features of laser speckle contrast imaging (LSCI) with
CEEMDAN, and effectively improve the understanding ability of image physiological information.
Therefore, this paper chooses CEEMDAN to decompose the vibration signals of the planetary gear in
each state, and the original signal is decomposed into a series of IMF which contain the fault features
of planetary gear in different states.

The vibration signal is decomposed by CEEMDAN, which solves the problem that the traditional
decomposition method cannot effectively decompose the non-stationary and nonlinear vibration signal.
However, the fault feature information in the IMF after CEEMDAN decomposition is not obvious and
needs to be quantified. At present, the commonly used methods of quantifying fault information are
fractal dimension, sample entropy and permutation entropy [15–17]. And the permutation entropy
is a random detection method of time series proposed by Bandt [18], which has the advantages of
simple design, strong anti-noise ability and fast running speed [19]. It can be used to quantify the fault
features of rotating mechanical vibration signal. Cheng [20] proposed the multi-scale permutation
entropy based on permutation entropy to complete quantization of fault features of the bearing signal,
and then refined feature vectors with Laplacian operator. Finally, classification and recognition were
realized by the support vector machine. So, permutation entropy can be used to extract fault features
of different states of sun gears.

After the mechanical vibration signal is decomposed and quantized, the fault feature vectors in
the signal can be extracted. The extracted feature vectors are identified by the identification model
to determine the fault types of sun gears. At present, the identification algorithms commonly used
in mechanical equipment fault diagnosis are fuzzy algorithm and neural network algorithm [21],
but both of the two algorithms have their own limitations. The fuzzy algorithm has a strong ability of
decision-making and reasoning, but the self-learning and adaptive ability is poor; the neural network
algorithm has good adaptability and nonlinear learning ability, but existing experience and knowledge
cannot be effectively expressed. Adaptive Neural-Network-Based Fuzzy Interference System (ANFIS)
is proposed by Jang [22] based on Takagi-Sugeno (T-S) which can be used in fault detection filter design
and sensor faults estimation [23,24], integrating the advantages of both fuzzy algorithm and neural
network algorithm [25]. By incorporating the neural network into each step of the fuzzy reasoning
process, the fuzzy rules and membership function parameters in the model can be adjusted adaptively,
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which makes the model have high prediction accuracy, and the algorithm can be completed under the
condition of less samples. In biomedicine, ANFIS has made some progress. Uğuz [26] used discrete
wavelet transform to decompose the heart sound signal into several sub-bands, and quantified it by
Shannon entropy. Finally, detection of heart valve disease is completed by using ANFIS to classify
the heart sound signal. In the mechanical equipment fault diagnosis, ANFIS has also achieved good
results. Cheng [27] combined LMD with fuzzy entropy to extract features of gears, and then used
ANFIS classifier to identify the fault categories of gears. The recognition results showed that ANFIS
has higher accuracy and better practicability.

In this paper, a fault diagnosis method based on CEEMDAN-permutation entropy ANFIS planet
gear is proposed to solve the problem that the state of the planetary gear fault is difficult to identify
under the condition of constant load. It is proved by the experiment that this method can realize the
fault diagnosis of the planetary gear under the condition of constant load and the method is mainly
based on application of sensors. This paper is structured as follows. The second part establishes a
mathematical model for fault diagnosis based on permutation entropy of CEEMDAN and ANFIS.
The third part presents experiments using DDS comprehensive mechanical fault simulation bench and
equipment which are acceleration sensors for collecting vibration signals of planetary gear. The forth
part carries on the experiment analysis. The collected vibration signals are decomposed into a series
of IMFs by CEEMDAN, and the permutation entropy of each IMF is extracted as the fault feature.
Label fault features and make them as inputs of ANFIS classifier to diagnose and identify fault models
through the corresponding outputs. The last part puts forward the conclusion of this paper.

2. Building Model

2.1. CEEMDAN Signal Decomposition Method

EEMD decomposition is made improvement based on the EMD decomposition, using the mean
scale characteristics of white noise to make the signal continuous in each scale, so that the distribution
of extreme points in the signal change, which effectively solves the problem, mode mixing, of EMD.

Although EEMD can effectively alleviate mode mixing, a problem of EMD, EEMD cannot
maintain the completeness of EMD, and it contains residual noise in each IMF component and residual
component of its decomposition, which affects the accuracy of reconstructing the original signal.
Therefore, the CEEMDAN algorithm is proposed. The multiple EMD decomposition is performed
on the adaptive noise component added to each stage, and IMF is calculated by averaging the results.
Thus completeness of EMD is maintained, and the problems which are model mixing problem and
reconstruction errors caused by the low efficiency are solved.

To better describe CEEMDAN algorithm, define an operator Ek(·), its function is to solve the kth
modal component IMFk of EMD decomposition. Let wi be the white noise satisfying distribution of
N(0, 1), and εk is the amplitude coefficient of white noise added for the Kth time. The decomposition
process for the specific CEEMDAN is shown below:

(1) The white noise X(t) + ε0ωi(t) is added to the original signal, and Ith EMD decomposition is
performed. Then complete the average operation on the result to get IMF1.

IMF1 =
1
I

1

∑
i=1

E1(X(t) + ε0ωi(t)) (1)

(2) The first stage residual component can be calculated.

r1(t) = X(t)− IMF1 (2)
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The white noise r1(t) + ε1E1(ω
i(t)), i = 1, 2, . . . , I is added to the first stage residual component,

and the EMD is performed. Then IMF2 can be calculated with the mean value of the first IMF.

IMF2 =
1
I

1

∑
i=1

E1(r1(t) + ε1E1(ω
i(t))) (3)

For k = 1, 2, . . . , K, the Kth residual component can be calculated.

rk(t) = rk−1(t)− IMFk (4)

(3) Adding white noise r1(t) + ε1E1(ω
i(t)), i = 1, 2, . . . , I to the kth residual component and

performing EMD decomposition. Then IMFk+1 can be calculated with the mean value of the
first IMF.

IMFk+1 =
1
I

1

∑
i=1

E1(rk(t) + εkEk(ω
i(t))) (5)

(4) Repeat Step (4) and Step (5) until the value of residual component is less than two extremes, then
the decomposition stops. Eventually the residual variable is obtained.

r(t) = X(t)−
K

∑
k=1

IMFk (6)

where K is the total number of modes in the decomposition process, the reconstructed signal can
be expressed as follows:

X(t) = r(t) +
K

∑
k=1

IMFk (7)

2.2. Permutation Entropy

Entropy is a quantitative tool to describe the complexity of a system, and entropy varies with
the state of the system. Permutation entropy is a kind of random time sequence detection method,
and can reflect the one-dimensional time series complexity, which has advantage of simple design,
strong anti-noise ability, better robustness and is suitable for feature extraction of nonlinear data.
The following is the specific principle of permutation entropy algorithm.

Assuming the time series {X(i), i = 1, 2, . . . , N} with length N, the phase space reconstruction is
carried out as follows: 

x(1) x(1 + τ) . . . x(1 + (m− 1)τ)
x(2) x(2 + τ) . . . x(2 + (m− 1)τ)
x(3) x(3 + τ) . . . x(3 + (m− 1)τ)
. . . . . . . . . . . .

x(K) x(K + τ) . . . x(K + (m− 1)τ)

 (8)

where m and τ represent the embedded dimension and the delay time, respectively, and each row vector
in the matrix represents a reconstructed component. The elements x(j), x(j + τ), . . . , x(j + (m− 1)τ)
of each row vector in the matrix are rearranged in ascending order.

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ . . . ≤ x(i + (jm − 1)τ) (9)

Thereby, a new set of row vectors X(i) is obtained.
If there are two elements in the reconstructed row vector equal to each other, such as

x(i + (j1 − 1)τ) = x(i + (j2 − 1)τ), they should be sorted by the column size of x(i + (j1 − 1)τ) and
x(i + (j2 − 1)τ)(j1 < j2), as follows:
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x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) (10)

Therefore, every row vector in the reconstructed matrix can be expressed as a set of symbolic
sequences for any time series.

S(l) = {j1, j2, . . . , jm} (11)

In the formula, l = 1, 2, . . . , k, k ≤ m!, S(l) composed of m elements has m! arrangements, so S(l) can
have m! symbol sequence. If the probabilities of k kinds of different symbol sequences are P1, P2, . . . ,
Pk, ∑k

s=1 Ps = 1, respectively. So the permutation entropy Hp of time series {X(i), i = 1, 2, . . . , N} can
be defined as the form of information entropy:

Hp(d) = −
k

∑
j=1

Pj ln(Pj) (12)

Normalizing Hp(d), as follows:

Hp(d) = Hp(d)/ ln(m!) (13)

The value range of Hp(d) is [0,1], and the size of the permutation entropy reflects the randomness
of the time series. The larger the permutation entropy is, the greater the randomness of the time series.
The smaller the permutation entropy is, the more regular the time series.

According to the principle of permutation entropy, the embedded dimension m and the time delay
τ are two key parameters that determine the value of permutation entropy, and the value of embedding
dimension was proposed between 3 and 7. If the value of embedding dimension is too small, algorithm
will not effectively reflect the dynamic mutation of time series, which makes permutation entropy lose
effectiveness and practical significance. If the value of embedding dimension is too large, embedded
dimension value will not reflect the subtle change accurately, which can affect computing efficiency
of permutation entropy. Yan [28] found that when m = 6 and τ = 3, permutation entropy can better
reflect the subtle changes of mechanical system. Therefore, this paper permutation entropy embedding
dimension m = 6 and time delay τ = 3.

2.3. Adaptive Neuro-Fuzzy Inference System

The typical ANFIS structure consists of a two-input-single-output 5-layer network. As shown in
Figure 1, the squares and the circles represent the nodes with adjustable parameters and non-adjustable
parameters, respectively.

(1) Layer 1 is input layer which is composed of square nodes, and the membership degree of
the output fuzzy set corresponding to each input is calculated by blurring the input quantity.
The transfer function transmitted from the first layer nodes to the second layer nodes can be
expressed as follows: {

Oi,j = µAi (x1), i = 1, 2
Oi,j = µBi−2(x2), i = 3, 4

(14)

where x1 and x2 are two inputs of ANFIS, µAi and µBi−2 , which often use Gauss function,
are membership functions of fuzzy sets.

(2) Layer 2 is rule operation layer which is composed of round nodes. Each node represents one
rule. The fitness of each rule is obtained by performing product operation, which is expressed
as follows:

O2,j = wi = µAi (x1)µBi (x2) i = 1, 2 (15)
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(3) Layer 3 is normalized layer which is composed of circular nodes, whose function is to the
normalize fitness fuzzy rules.

O3,j = wi =
wi

w1 + w2
i = 1, 2 (16)

where wi is the fitness of the ith rule.
(4) Layer 4 is rule output layer which is composed of square nodes. Each node’s transfer function is

a linear function, whose role is to calculate the output of all fuzzy rules, expressed as follows:

O4,j = wi fi = wi(pix1 + qix2 + ri) i = 1, 2 (17)

where wi represents the output value of the rule layer, and the set composed of pi, qi, ri is the
conclusion parameter set of the regular layer.

(5) Layer 5 is output layer which is composed of round nodes, whose role is to calculate the sum of
all outputs. It can be expressed as follows:

O5,i = ∑
i

wi fi =
∑i wi fi

∑i wi
(18)

The essence of fault diagnosis research using ANFIS is to adjust the premise parameter and
conclusion parameter of the model constantly. The correction method generally includes
BP algorithm and hybrid algorithm. However, in the practical application of the fault
diagnosis, both hybrid algorithm and BP algorithm have slow training speed, which can
make algorithms easily fall into the local minimum. Therefore, this study overcomes slow
convergence which BP algorithm usually has by using numerical optimization technique and
Levenberg-Marquart algorithm.
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3. Experimental Equipment and Data Acquisition

In order to verify the feasibility and effectiveness of the proposed gear fault diagnosis method
based on permutation entropy of CEEMDAN and ANFIS, the experiment uses the machinery fault
simulator made by Spectra Quest, an American company. Experiment table, as shown in Figure 2,
consists of the following systems: motor, two stage planetary gear box, two-parallel-shaft gearbox
consisting of a rolling bearing or two parallel shafts, bearing load, magnetic brake, vibration sensor,
signal acquisition system and portable computer. The test bench contains configuration of the
powertrain, which is suitable for study based on diagnostic technology, lubrication conditions, gear box
dynamics and health monitoring of abrasive particle analysis, noise characteristics and vibration
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characteristics. So the experiment table can simulate four fault states which are normal gear, broken
gear, gear with one missing tooth and gear with a tooth root crack, as shown in Figure 3. And the basic
parameters of the second-stage planetary gear are shown in Table 1. Because of the requirement of load
and load change, the setting of gear load can be accomplished by programming. The vibration signal
is detected by the 608A11PCB acceleration sensor produced by IMI. The layout mode of acceleration
sensor is shown in Figure 4. The main factor affecting the signal acquisition of planetary gear is
the installation position of the sensor. In this paper, the main study of the two stage planetary gear
fault, and the main selection of placement of sensors to collect planetary gear’s vibration signals are
position 1, position 2, position 3 and position 4. From the structure of the two stage planetary gear,
the position 1 is more accurate for collecting the vibration signals of the sun gear, and it is found that
vibration information is mainly concentrated on the vertical plane, so the single axis sensor installed at
position 1 is selected for signal acquisition of the sun gear. The sensor has a detection frequency range
of 500~10,000 Hz and a resolution of 350 g. The vibration signal detected by the acceleration sensor
is accurately collected by a computer connected to the bench. In the process of gear transmission,
high speed rotating sun gear meshes with multiple planetary gears at the same time, which is liable to
fail. Therefore, this paper takes the sun gear damage of planetary gear as an example, and performs
fault diagnosis on four states of sun gear, normal, broken teeth, missing teeth and tooth root. In the
process of experiment, the output frequency of the motor is set as 40 Hz, and the operating condition is
constant load. And the load controlled by a programmable brake component is set as 13.5 Nm. In the
experiments, the sampling frequency is set as 13,107.2 Hz. The four kinds of vibration signals of the
sun gear under constant load are collected and shown in Figure 5.
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Sensors 2018, 18, 782 8 of 17

Sensors 2018, 18, x FOR PEER REVIEW  8 of 17 

 

  
(c) (d) 

Figure 3. Four types of gears, (a) normal gear, (b) broken gear, (c) gear with one missing tooth, (d) 

gear with a tooth root crack. 

  
(a) (b) 

Figure 4. Layout mode of acceleration sensor (a) location of acceleration sensor, (b) type of 

acceleration sensor. 

 

Figure 5. Vibration signals of four different states of sun gears in constant load condition. 

Table 1. Basic parameters of the second-stage planetary gear. 

Parameter 
Transmission 

Ratio 

Pressure 

Angle 
Material Module 

Number of 

Sun Gear  

Number of Teeth 

on the Sun Gear  

Number of Inner 

Ring Gear 

Value 4.57 20° S45C 1 28 36 100 

-0.2

0

0.2
normal gear

A
m

p
li

tu
d

e/
g

-0.2

0

0.2

broken gear

A
m

p
li

tu
d

e/
g

-0.2

0

0.2
gear with one missing tooth

A
m

p
li

tu
d

e/
g

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

gear with a tooth root crack

t/s

A
m

p
li

tu
d

e/
g

Figure 4. Layout mode of acceleration sensor (a) location of acceleration sensor, (b) type of
acceleration sensor.
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Figure 5. Vibration signals of four different states of sun gears in constant load condition.

Table 1. Basic parameters of the second-stage planetary gear.

Parameter Transmission
Ratio

Pressure
Angle Material Module Number of

Sun Gear
Number of Teeth
on the Sun Gear

Number of Inner
Ring Gear

Value 4.57 20◦ S45C 1 28 36 100

4. Experimental Analysis

The experimental analysis flowchart of the fault diagnosis method based on Permutation Entropy
of CEEMDAN and ANFIS is proposed and shown in Figure 6. The vibration signals of the sun gear are
collected in four different states, such as normal gear, broken gear, gear with one missing tooth and gear
with a tooth root crack, as shown in Figure 5. In the condition of constant load of motor, the vibration
signals of four states are sampled 50 times respectively, and 200 sets of original samples are obtained.
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Every sample signal is decomposed by CEEMDAN to obtain a series of IMF components, the signal
sample length is 5120, the average number of times is 100, and the standard deviation of the added
noise is 0.15 times of the original signal. Due to limited space, taking the vibration signal of broken
gear as an example to show the decomposition process of CEEMDAN and EEMD in Figure 7, and it
can be found that the decomposition result of CEEMDAN is superior to that of EEMD. For EEMD,
it is obvious that there is the phenomenon of modal aliasing in IMF6 and IMF8 which will affect the
extraction of fault information. The non-stationary of four different states of sun gears’ the vibration
signals makes CEEMDAN decompose many IMF components. In order to improve the recognition
accuracy of the prediction model, using permutation entropy algorithm to reflect complexity of each
IMF component, which completes the quantitative features of fault information.
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decomposition of broken gear.
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A series of IMF components decomposed by CEEMDAN contain fault information of the sun
gear vibration signal in different time series, and the fault information is generally concentrated in
the relatively high frequency band of vibration signal. Therefore, the first 6 IMFs are selected as the
analysis objects to extract the fault feature of the sun gear. For the sake of length, this paper only lists
permutation entropy values of the first three sets of samples of the sun gear in four different states,
as is shown in Table 2. For the fault features of gears are mainly concentrated in the high frequency
sections, the first six IMF components which contain the main features are selected as the research
objects. As shown in Figure 8. Through calculation of permutation entropy of CEEMDAN, it can be
clearly see that IMF1~IMF4 and IMF6 can represent main fault features of four different states of sun
gears, and the fault features are more obvious, which can make the recognition model more quickly
and accurately identify fault models of sun gears. Therefore IMF1~IMF4 and IMF6 can be chosen as
the fault features of four different states of sun gears.

Table 2. Permutation entropies of IMFs.

Type IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Normal gear
0.9422 0.7792 0.9012 0.8525 0.6132 0.4595
0.9527 0.7924 0.9119 0.8679 0.6170 0.4684
0.9513 0.7930 0.9029 0.8603 0.6320 0.4837

Broken gear
0.9500 0.8356 0.9151 0.8431 0.6277 0.4497
0.9517 0.8199 0.9109 0.8541 0.6045 0.4583
0.9517 0.8276 0.9132 0.8507 0.6069 0.4748

Gear with one
missing tooth

0.9687 0.8366 0.8859 0.8774 0.6258 0.4968
0.9688 0.8379 0.8882 0.8784 0.6233 0.4889
0.9694 0.8319 0.8850 0.8855 0.6130 0.4942

Gear with a tooth
root crack

0.9286 0.8156 0.8954 0.8734 0.6245 0.4794
0.9379 0.8109 0.9009 0.8767 0.6411 0.4885
0.9328 0.8161 0.8972 0.8707 0.6170 0.4776
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Since the above analysis is only based on a small amount of samples analysis, which is random
and cannot verify the validity of fault features extraction for fault classification and identification.
In this regard, adaptive neuro-fuzzy inference system is constructed, and 50 sets of sample data are
collected from four different states of sun gears. Thus, the four different states of sun gears have
200 samples. The first 30 groups are used as training samples, and the left 20 groups are used as testing
samples. Using CEEMDAN decomposition algorithm to get the IMF components, and permutation
entropy is calculated to get feature vectors respectively. These feature vectors with obvious fault
features are used to train ANFIS, and the same method is used to identify testing samples. The ANFIS
model has 5 inputs, each input is configured with three Gauss membership functions, and inputs are
divided into three levels which are large, medium, and small. Figure 9 shows the initial ANFIS model
of each input membership function.

The outputs of ANFIS are states of sun gears. Therefore, in order to train the ANFIS model,
four different states of sun gears are labeled with different numbers, such as: normal gear-1, broken
gear-2, gear with one missing tooth-3, gear with a tooth root crack-4. ANFIS model parameters and
membership functions are adjusted adaptively according to the training samples. The root mean square
error (RMSE) is used to evaluate the training process. The training process is controlled by setting
RMSE and training time. In the process of training, following methods are adopted for adjusting
training steps: When the RMSE reaches a local maximum, the training step remains stable; When
RMSE stabilizes at around 0.002, the training step decreases four times in a row. The changes the
training step size is shown in Figure 10a, and the changes of training RMSE is shown in Figure 10b.
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Figure 9. Initial membership functions of each input of ANFIS.
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Figure 10. Changes of the training RMSE and the training step size during the training process: (a) the
changes of training RMSE; (b) the changes of the training step size.

Figure 10a shows that the training RMSE dropped to about 0.002 after 140 training times. When the
training process is completed, the parameters and shapes corresponding to the membership functions
of each input are adjusted to the most suitable values. The final adjusted membership function
corresponding to each input is shown in Figure 11. Compared with Figures 9 and 11, the membership
functions of inputs 2 and 4 change slightly, and the membership functions of inputs 1, 3 and 5
vary observably.
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Figure 11. Final adjusted membership functions of each input of the trained ANFIS.

The effectiveness of the trained ANFIS model in determining states of sun gears are demonstrated
by using testing samples to verify the trained ANFIS model. The permutation entropy of each IMF
component of the testing samples is used as input of the training ANFIS model, corresponding to the
output is shown in Figure 12. Different states of sun gears need different labels in the training process
to distinguish the different sun gear states, namely the normal gear-1, the broken gear-2, gear with one
missing tooth-3, gear with a tooth root crack-4. When the testing samples are used as inputs, sun gear
states are identified and diagnosed according to the outputs of the trained ANFIS model. If the output
in the interval [0.5, 1.5], it should be normal gear. If the output in the interval [1.5, 2.5], it should be
broken gear. If the output in the interval [2.5, 3.5], it should be gear with one missing tooth. If the
output in the interval [3.5, 4.5], it should be gear with a tooth root crack. If the output exceeds the range
of [0.5, 5.5], it is unable to determine the state of sun gear. Figure 12 shows that the trained ANFIS
model has the best performance in fault recognition of gear with one missing tooth, and the fault
recognition rate is 100%. The fault recognition rate of broken gear is 95%, and the recognition rate of
normal gear and gear with a tooth root crack is 80% and 85% respectively. The overall fault recognition
rate is 90%, showing that the performance of ANFIS model after training has better performance.

The BP error convergence factor is set to 0.1, and the error target value is 0.00004, meanwhile
the number of neurons is set to 100. By comparing two kinds of identification results of planetary
gear fault diagnosis, as is shown in the Table 3, planetary gear fault diagnosis based on permutation
entropy of CEEMDAN and ANFIS has obvious advantages. Therefore, the proposed planetary gear
fault diagnosis method can extract fault features, and more accurately identify sun gear states, which is
an effective method to diagnose the planetary gear fault.
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Table 3. Recognition rate of permutation entropy of CEEMDAN and BP and permutation entropy of
CEEMDAN and ANFIS.

Fault Modes Normal
Gear

Broken
Gear

Gear with One
Missing Tooth

Gear with a
Tooth Root Overall

The number of trained samples 30 30 30 30 120
The number of test samples 20 20 20 20 80
Permutation entropy of CEEMDAN and BP Accuracy (%) 85 95 100 60 85
Permutation entropy of CEEMDAN and ANFIS Accuracy (%) 80 95 100 85 90

5. Conclusions

This paper presents a planetary gear fault diagnosis method based on permutation entropy of
CEEMAN and ANFIS. The planetary gear vibration signal is decomposed with CEEMAN into a series
of IMF components. The time complexity of each IMF component is evaluated by permutation entropy,
so that the fault features of sun gear in different states are extracted. Then, the feature vectors of the sun
gears’ faults in different states are defined as inputs of the ANFIS model, and the number of labeled
sun gear in four different states are defined as outputs of the ANFIS model. The initial membership
function of each input is set as Gauss function, and the training process of ANFIS is controlled by
RMSE and training time. In the process of training ANFIS, the membership and shape of each input
and other ANFIS parameters can be adjusted according to the training samples, and finally the optimal
ANFIS model is obtained. The test samples are evaluated and identified by the optimal ANFIS model,
and test result is that fault recognition rate of gear with one missing tooth is 100%, fault recognition
rate of broken gear is 95%, and fault recognition rate of normal gear and gear with a tooth root crack
are 85% and 80%, respectively. The overall fault recognition rate is 90%, showing that ANFIS model
perform well after training. By comparing two kinds of identification results of planetary gear fault
diagnosis, planetary gear fault diagnosis based on permutation entropy of CEEMDAN and BP and
planetary gear fault diagnosis based on permutation entropy of CEEMDAN and ANFIS, planetary
gear fault diagnosis based on permutation entropy of CEEMDAN and ANFIS has obvious advantages.
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The results illustrate that the proposed planetary gear fault diagnosis method based on permutation
entropy of CEEMDAN and ANFIS can accurately extract fault features generated from four different
states of sun gears, and realize fault diagnosis of sun gears well.
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