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Abstract: With the fast development of the Internet of Things, Radio Frequency Identification (RFID)
has been widely applied into many areas. Nevertheless, security problems of the RFID technology
are also gradually exposed, when it provides life convenience. In particular, the appearance of a large
number of fake and counterfeit goods has caused massive loss for both producers and customers,
for which the clone tag is a serious security threat. If attackers acquire the complete information of a
tag, they can then obtain the unique identifier of the tag by some technological means. In general,
because there is no extra identifier of a tag, it is difficult to distinguish an original tag and its clone
one. Once the legal tag data is obtained, attackers can be able to clone this tag. Therefore, this
paper shows an efficient RFID mutual verification protocol. This protocol is based on the Physical
Unclonable Function (PUF) and the lightweight cryptography to achieve efficient verification of a
single tag. The protocol includes three process: tag recognition, mutual verification and update.
The tag recognition is that the reader recognizes the tag; mutual verification is that the reader and tag
mutually verify the authenticity of each other; update is supposed to maintain the latest secret key
for the following verification. Analysis results show that this protocol has a good balance between
performance and security.

Keywords: RFID technology; Physical Unclonable Function; lightweight cryptography;
mutual verification

1. Introduction

Radio frequency identification technology is able to recognize objects and people automatically,
and it can also automatically obtain related data of recognized objects, which is the non-contract
recognition technique [1]. Because of this, the recognition of radio frequency identification (RFID)
does not only need the artificial interference, but also work well in the severe environment. Recently,
most RFID systems are based on the electric induction [2]. Attaching a RFID tag on an object, which
involves the information of this object, the dedicated recognition terminal can recognize this attached
object through reading the tag. In addition, since RFID products read data does not require light source
and can pass through external material, and the service life is durable, compared with bar code, RFID
products have more advantages [3].

By now, RFID has been used into many areas, such as supply chain management, electric passport,
credit card, driving license [4,5], vehicle system (charging system, keyless entry systems), entrance
guard card (building gate, public transport) and health care. Especially, in the USA, Japan, and other
developed countries, they have equipped with advanced and mature RFID systems [6]. Some retailers
have invested RFID technology, and also authorized RFID producers to attach tag on their goods,
so that the low-budget RFID tags are pervasively produced. Wal-Mart passed a resolution, which
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producers must sufficiently take advantage of the RFID, attaching RFID tags on all products to reduce
manpower and material resources [7].

Generally, a typical RFID framework is composed of a reader, tag and a database [8], which is
shown in Figure 1.

Figure 1. Radio frequency identification (RFID) system framework.

(1) Reader: The main function is to transfer energy to the tag via radio frequency and read data of
tag or write data to tag [9]. In common RFID systems, reader still needs to exchange data with
database. A reader is composed of the oscillating circuit, communication channel, and controller.

(2) Tag: According to the self-contained power or not, tag is classified into active tag, semi-passive tag
and passive tag; based on the frequency, tag is classified into low-frequency tag, high-frequency
tag and ultrahigh frequency tag [10]. By various applications, the proper tags are needed to
be chosen.

(3) Database: It stores all information of tags which indicate all objects.

Mechanism of RFID systems: Firstly, reader sends signals via antenna, and tag receives signal
and sends internal tag data. Then, reader receives and verifies the tag data. Finally, reader sends
verification result to the host computer which is connected to a database.

Because RFID has the advantages of supporting dynamic real-time communication, fast
recognition, easy to read, low cost, it is widely applied into various areas. Nevertheless, when
RFID brings convenience, at the same time, its security problem is gradually exposed. In detail, during
a simple write and read process, especially for the read or write on a passive tag, the read or write
operation will happen when tag is close to a reader with the information exchange. Later, with the
existence of a large number of fake and counterfeit RFID products, although researchers continuously
find anti-fake measures, it is unable to completely eradicate them. Fake and counterfeit products make
massive loss for world politics, economy, and culture, it has been a worldwide problem [11]. Clone tag
is a kind of serious security threat for RFID systems. If attackers acquire the complete information of a
tag, they could be able to obtain the unique identifier. In addition of this identifier, tag has no other
identify, clone tag is therefore difficult to distinguish from the real one. In addition, as long as the legal
tag data is obtained, attacker can launch such copy or clone attack.
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In this case, researchers have taken measures to defend against clone attack, such as tag
deactivation, encryption algorithms [12], identify verification [13] and hash code [14]. Reference [15]
showed a mutual RFID verification protocol by using the elliptic curve cryptograph (ECC), which
depends on ECC to enhance the ability of anti-clone. In the literature [16], authors gave a tag encryption
algorithm without storage of the secret key. Instead, it depends on the hash value stored in the host
computer. Reference [17] gave another RFID verification protocol based on hash, which provides
already modified identifier to increase the privacy of verification. These mentioned protocols above
rely on the security code which involve tag and the host computer, as well as one-way hash function.

Since the small and limited storage space in the tag, those solutions are based on the complex
encryption algorithm which is similar to the hash function and it cannot be applied into the low-cost
tag [18]. In such low-cost RFID systems, the biggest challenge to guarantee the security and privacy
comes from the sparse tag resource [19]. To solve this problem, some lightweight encryption algorithms
without hash function are put forward, and the method to identify clone tag as well [20,21]. Lehtonen
raised a method based on statistics to detect clone tag from the RFID track [22]. Zannetti showed a
method to detect clone attack with the protection of privacy [23].

Another anti-clone tag method is proposed by using the PUF technique. PUF technique is a
breakthrough of the semi-conductor security techniques. PUF is a “biometric” identification technique
in chips, which is also called the “chip DNA” technique [24]. PUF obtains the unique secrets from
each chip. This secret information can be used to verify the authenticity of a chip, in the safe-guarding
and anti-counterfeiting area, PUF has great application perspective. In the production of each chip,
the tiny difference among chips unavoidably exist, although the chip design and production are the
same, it is impossible to produce two chips which are completely same, so that PUF techniques can
enhance anti-clone function [25]. The PUF judge circuit is shown as Figure 2 [26]. In Figure 2, the
circuit is a decision-based PUF delay circuit. After inputting X[0], the circuit generates two delay paths
whose length are equal, and the input signal is sent to the two paths at the same time. The decision
module will choose the path that the input signal first reaches the destination. If the signal which is
connected to the D point arrives firstly, it will output 1, otherwise it will output 0. Different physical
manufacturing processes result in different outcomes which will give rather different outputs to the
same input. PUF circuit receives a search command as an input signal and produces a unique serial
feedback, which is verified by command/response mechanism. Different PUF circuits have various
delay features, so that their transport speed is different and time of two signals passing PUF is different.
The tail of a PUF circuit is an arbiter, and is able to judge the statue of signals before and after to
output “1” or “0”. A same signal passing two different PUF circuits can produce different outputs, and
because that input signal determines the transport rout in PUF circuit, the different input signals are
corresponding to different outputs.

Figure 2. PUF subgrade circuit diagram.
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In 2010, Kulseng proposed a lightweight mutual verification protocol based on PUF [27].
This lightweight protocol uses the PUF and linear feedback shift register (LFSR), rather than uses the
complex plus and minus operations, which is very suitable for low-cost RFID tag, but it indicates the
security problems of lightweight mutual verification [28].

This paper is structured as follows: section I introduces related research results about RFID
security. Section 2 describes Kulseng’s lightweight mutual verification protocol and the shortcomings
of this protocol. Section 3 introduces our lightweight mutual verification protocol. Section 4 uses GNY
logic analysis to prove the availability of our protocol. Section 5 executes the security analysis on
our protocol. Section 6 simulates our lightweight mutual verification protocol and evaluate it in the
experiments. Section 7 gives the performance analysis. At last, we conclude the paper.

2. Kulseng’s Mutual Verification Protocol and Its Security Analysis

This section specifically analyses the Kulseng’s mutual verification protocol based on the PUF.
In this paper, it is called K protocol in the following. Some definitions of K protocol are shown in
Table 1.

Table 1. The definitions of K protocol.

Symbol Definition

ID The ID of tag
FID The false ID of tag
IDS The index of tag in the database

PUF(X) The result of the value X processed by the PUF module in the tag⊕
The XOR operation

F(X) The Permutation function
Kn The shared secret key by the reader and the tag
Pn The secret value of the tag

< < < The loop left movement operation
& The AND operation
|| The JOIN operation

2.1. Protocol Process

Figure 3 shows the Kulseng’s mutual verification protocol. The specific steps are listed in
the following.

S1: Reader firstly sends a search request to the tag.
S2: After receiving the request, the tag sends the IDS to reader.
S3: After receiving the IDS from the tag, reader searches this IDS in database. If this IDS can be

found, it means that the database stores this IDS, and the tag is successfully recognized and reader
sends ID ⊕ Gn to the tag. If not, this tag can not be recognised and the protocol stops.

S4: After receiving ID ⊕ Gn, by calculating ID ⊕ Gn ⊕ ID to obtain Gn of ID ⊕ Gn sent
from reader, and tag compares this with its own Gn. If they are different, it means that the reader
is not been verified, and the protocol stops. Otherwise, this reader is verified. The tag executes
following operations:

1© Calculating following value:

Gn+1 = PUF( Gn), Gn+2 = PUF( Gn+1), Kn = F( Gn), Kn+1 = F( Kn)

2© Calculating the following value and sending them to the reader.

Kn ⊕ Gn+1, Kn+1 ⊕ Gn+2
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3© Update tag data:
IDS = F(IDS ⊕ Gn), Gn = Gn+1

S5: After receiving Kn⊕ Gn+1, Kn+1⊕ Gn+2, reader judges whether Kn⊕ Gn+1 = F( Gn) ⊕ Gn+1

or not. If not, this tag is not verified, and the K protocol stops; if it is equal, tag is verified and reader
executes the following operations:

1© Calculating value of Gn+2:
Kn+1 ⊕ Gn+2 ⊕ F(F( Gn))

2© Updating reader data by the calculated value of Gn+2:

IDS = F(IDS ⊕ Gn), Gn = Gn+1, Gn+1 = Gn+2
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2.2. Security Analysis of K protocol

2.2.1. Data Confidentiality

Attacker firstly intercepts a complete verification process to obtain ID ⊕ Gn, Kn⊕ Gn+1 and Kn+1⊕
Gn+2. Tag updates its data after a complete verification, and IDS = F(IDS ⊕ Gn) is updated
at the same time. In the next verification, attacker pretends to be a reader and sends a request
to tag, and the tag sends its IDS to attacker after receiving the request from attacker, in which
the IDS = F(IDS ⊕ Gn). The attacker has four values: ID ⊕ Gn, Kn ⊕ Gn+1, Kn+1 ⊕ Gn+2 and
(IDS ⊕ Gn). Here, F is the function representing Linear Feedback Shifting Register (LFSR). According
to the LFSR, if the attacker knows the LFSR’s characteristic polynomial and output, the attacker can
know the seed of LFSR via the matrix multiplication. In this way, combining the IDS in last verification
and F(IDS ⊕ Gn) obtained at this time, attacker can easily know the secret key Gn used in the last
verification, and use XOR between Gn and ID ⊕ Gn, then attacker can know the ID of tag.

2.2.2. Desynchronized Attack

Attack one: Intercept the last information sent by tag to reader ( Kn ⊕ Gn+1, Kn+1 ⊕ Gn+2).
Assume attacker is intercepting a verification process, after the tag confirms the reader, tag

updates its data and sends Kn ⊕ Gn+1, Kn+1 ⊕ Gn+2 to the reader. At this moment, the attacker can
obtain this information without being received by the reader. Because reader cannot verify the tag, the
database cannot update the corresponding secret key value to the tag, which causes the data of the tag
and the database are not synchronized. In the following verification, due to the difference between Gn

of the tag and Gn of the datab Kn ase, tag would refuse service.
Attack two: Modify Kn+1 ⊕ Gn+2 of (⊕ Gn+1, Kn+1 ⊕ Gn+2) sent from tag to reader.
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Assume an attacker is intercepting a verification process, after the tag confirms the reader, tag
updates its own data and sends Kn ⊕ Gn+1, Kn+1 ⊕ Gn+2 to the reader. Then, attacker modifies
Kn+1 ⊕ Gn+2 of the information sent to the reader, such as modifying into ( Kn+1 ⊕ Gn+2 ⊕ r1),

which is finally sent to the reader. After reader receives Kn ⊕ Gn+1, Kn+1 ⊕ Gn+2 ⊕ r1, reader
judges whether Kn ⊕ Gn+1 = F( Gn) ⊕ Gn+1 or not to verify the tag. Because the attacker does not
modify Kn ⊕ Gn+1, reader successfully verifies the tag. After this, reader uses Kn+1 ⊕ Gn+2 ⊕ r1 to
execute the following operations as usual.

1© Calculating Gn+2:
Kn+1 ⊕ Gn+2 ⊕ r1 ⊕ F(F( Gn))

Now, Gn+2 is updated by Gn+2 = Gn+2 ⊕ r1.
2© Using Gn+2 to update reader information:

IDS = F(IDS ⊕ Gn), Gn = Gn+1, Gn+1 = Gn+2 ⊕ r1

This causes the desynchronization between tag data and database. In the following verification,
due to the difference between Gn+1 of the database and Gn+1 of the tag, verification for the tag
is failed.

3. Proposed Protocol

Due to the shortcoming of Kulseng’s lightweight mutual verification protocol that is based on the
PUF, we will introduce our proposed protocol in this section. Some definitions of proposed protocol
are shown in Table 1 at the previous section.

In this protocol, RFID tag is embedded with the PUF module, which makes each RFID tag
to produce a unique secret key based on its own circuit, so as to defend against the clone attack.
Initially, each RFID tag stores three values: 1© Pn = PUF(challenge), 2©FID and 3© Kn. The first
value is the dedicated secret value of the tag; the second value is the IDS used during the mutual
verification between the tag and the host computer; the third one is the shared secret key by the
reader and the tag. After each verification, the secret key Pn, shared secret key Kn and FID would
be updated. For each tag, the database stores two set of values:

{
FIDold, Pold

n , Pold
n+1, ID, Kold

n

}
and{

FIDnew, Pnew
n , Pnew

n+1, Knew
n
}

. The later value set is the current tag value, and the prior value set is the
tag value of the last communication. This verification protocol contains three parts: tag recognition,
mutual verification and update. Tag recognition is to verify the tag’s authenticity; mutual verification
is to use the verified tag to verify reader’s authenticity; update is to store the latest secret key for the
following verification. Figure 4 shows the certification process of proposed protocol.

In this paper, the backstage database cannot meet the requirements because it should store all the
tag information resulting in a very large amount of data. In order to solve the above problems,
the HBase of big data technology is used to store the data. HBase which is a distributed and
column-oriented is an open source database. A table in HBase can have hundreds of millions of
rows and millions of columns, and the data in each unit can have multiple versions for backup.
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Figure 4. Single tag certification process.

3.1. Tag Verification

In the tag verification process, reader firstly sends a search request to tag, after receiving the
request, tag produces a random number r1, and sends r1 with FID to the reader. After receiving the
random number r1 and FID, reader uses FID to search data in the host database. If FID = FIDnew, it
means that the database contains this FID, and this tag can be verified without being attacked
previously. In addition, the reader uses

{
FIDnew, Pnew

n , Pnew
n+1, Knew

n
}

to execute mutual verification
with the tag. However, in the previous verification, tag might be intercepted, resulting in the update of
the database, while the tag data is not updated. In this case, reader uses

{
FIDold, Pold

n , Pold
n+1, ID, Kold

n

}
to execute the mutual verification with this tag. If both of the new and old FID cannot match with the
FID of the reader, this protocol stops.
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3.2. Mutual Verification

The purposes of Mutual verification is to verify the identity of both tag and reader. Reader firstly
produces a random number r2, combining FID, secret key Pn+1, shared key Kn and random number r1

according to the Equations (1) and (2) to calculate A and B. Then, reader sends A||B to the RFID tag.

A = FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2 (1)

B = (r1 < < < 8) & ( r2 < < < 1) ⊕ ( Pn+1 < < < 2) (2)

After receiving A||B, tag calculates D and E by Equations (3) and (4), Equation (5) deduces the
random number r′2 of the reader and further uses r′2 to obtain B′ by Equation (6).

D = PUF(Pn) (3)

E = PUF(D) (4)

r′2 = A ⊕ FID ⊕ D ⊕ Kn ⊕ r1 (5)

B′ = (r1 < < < 8) &
(
r′2 < < < 1

)
⊕ (D < < < 2) (6)

Then, tag compares whether B and B′ are equal or not. If not, the reader is fake, and verification
terminates; otherwise, the reader passes the verification, and the protocol goes on for the next step.
At the same time, with previously calculated D, E and deduced random number r′2, by Equation (7) F is
calculated, which is also used to deduce the random number r′2, F and FID of the tag. By Equation (8).
H is calculated and F||H is sent to reader.

F = D ⊕ E⊕ r′2 (7)

H = (FID < < < 8) & (F < < < 1) ⊕
(
r′2 < < < 2

)
(8)

After receiving F||H, by Equation (9), reader deduces secret key E′ of the tag, and this deduced
key is used to obtain E′ random number r2 and secret key Pn+1. With Equation (10), F′ is calculated.
Then, using the FID of this tag, F′, random number r2, by Equation (11). H′ is calculated.

E′ = F ⊕ r2 ⊕ Pn+1 (9)

F′ = E′ ⊕ r2 ⊕ Pn+1 (10)

H′ = (FID < < < 8) &
(

F′ < < < 1
)
⊕ (r2 < < < 2) (11)

At this moment, reader compares whether H and H′ are equal or not. If it is equal, the tag has been
verified before and the mutual verification terminates. If not, this tag is fake, and the verification stops.

3.3. Update Process

After verifying the tag, update starts. During this process, firstly, the host database updates, then
the tag updates. The process of updating the database is classified into two cases. In the tag update, if
the database uses FIDoid and FID to match, the host database does not need to update; if the database
uses FIDnew and FID of the tag to match, the database should be updated in following way:

Pnew
n = Pnew

n+1, Pnew
n+1 = E′

Knew
n = (Knew

n < < < 8) &
(
r′2 < < < 1

)
⊕ (r1 < < < 2)

FIDnew = (FIDnew < < < 8) &
(
r′2 < < < 1

)
⊕ (r1 < < < 2)

FIDold = FIDnew, Pold
n = Pnew

n , Pold
n+1 = Pnew

n+1, Kold
n = Knew

n



Sensors 2018, 18, 760 9 of 20

If reader sends success command to the tag, and the processing time of the reader is within the
acceptable range, the tag would be updated in the following ways, which is shown in Figure 5.

Pn = D

FID = (FID < < < 8) &
(
r′2 < < < 1

)
⊕ (r1 < < < 2)

Kn = (Kn < < < 8) &
(
r′2 < < < 1

)
⊕ (r1 < < < 2)

Figure 5. Time sequence diagram of single tag authentication.
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4. Proof of Security

In this section, we use GNY logic [29] to prove our protocol. The GNY logic was proposed by
Gong, Needham and Yahalom in 1990. It is a logic that analyzes the authentication protocol. The GNY
logic uses a completely different state search tool, which includes a collection of beliefs maintained by
each subject and a collection of inference rules that get new beliefs from the old beliefs. BAN logic
has a very simple, intuitive set of rules, so it is easy to use. As it is pointed out in the reference [29],
GNY logic can be used to find serious errors in the protocol, which has attracted widely attention by
security researchers. The application of GNY logic has epoch-making significance. It greatly promoted
the development of formal verification of security protocols, and inspired many methods of formal
verification of security protocols.

4.1. GNY Logic Expression

A|≡B: A trusts message B.
A|∇B: A receives message B.
A|~B: A sends message B.
A3B: A has message B.
(B, C): connecting message B and message C.
#(B): message B is the latest, which means that message B has never been sent before.
{B}k: message B is encrypted by secret key k.

A k↔ D: A and D share secret key k to communicate, which means only A and D or the trusted
third party know the secret key k.

4.2. Principle of the GNY Deduction

Principle 1: A|≡#(B)
A|≡#(B,C),A|≡#(F(B))

Principle 1 indicates: if A trusts that message B is the latest, then it can be deduced that A also
trusts the connection between B and C is the latest, and the mapping is trusted as the latest by A whose
image is B.

Principle 2: A3B,A3C
A3(B,C),A3(F(B,C))

Principle 2 indicates: If A has message B and C, then it can be deduced that A not only has the
connection between B and C, but also the mapping whose image is message B and message C.

Principle 3: A3B,A|≡#(B)
A|≡#{H(B)}

Principle 3 indicates: If A not only has message B, but also trusts that B is the latest message, then,
it can be deduced that A also trusts that the equation containing B is the latest.

Principle 4: A|∇(B)
A3B

Principle 4 indicates: If A received message B, then A has message B can be deduced.

Principle 5: A|≡D k↔A, A|∇H(B,〈K〉) , A3(B,K), A|≡#(B,K)
A|≡D| ∼ (B,〈K〉),A|≡D| ∼H(B,〈K〉)

Principle 5 indicates: A trusts that the secret key K is shared by A and D, and A previously
received encrypted B by secret key K. A has the connection between message B and secret key K.
A trusts that the connection between message B and secret key K is the latest, then, A trusts that D
previously sent the connection between message B and the secret key K, and A also trusts that D used
to send encrypted B by K.

4.3. Protocol Process

Protocol (1): R→T: request
Protocol (2): T→R: FID
Protocol (3): R→T:FID ⊕ Pn+1 ⊕ Kn ⊕ r1⊕ r2||((r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2))
Protocol (4): T→R: (PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2, (FID < < < 8) & ( PUF(Pn) ⊕

PUF(PUF(Pn))⊕ r′2 < < < 1) ⊕ (r′2 < < < 2))
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Protocol (5): R→T: success/failure

4.4. Specifically Describe the Protocol above by Using the GNY Logic Language

Protocol (1): T|∇ request
Protocol (2): R|∇ FID
Protocol (3): T|∇FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2||((r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2))
Protocol (4): R|∇(PUF(Pn) ⊕ PUF(PUF(Pn)) ⊕ r′2, (FID < < < 8) & ( PUF(Pn) ⊕

PUF(PUF(Pn))⊕ r′ < < < 1) ⊕ (r′2 < < < 2))
Protocol (5): T|∇ success/failure

4.5. Assumption

(1) T 3 (FID, Pn, Kn, ID)

(2) R 3
(

FIDnew, Pnew
n , Pnew

n+1, Knew
n , FIDold, Pold

n , Pold
n+1, ID, Kold

n

)
(3) T 3 (r1)

(4) T| ≡ #(r1)

(5) R 3 (r2)

(6) R| ≡ #(r2)

(7) T| ≡ R
Pn, Kn, Pn+1←−−−−−→T

(8) R| ≡ T
Pn, Kn, Pn+1←−−−−−→R

4.6. Target Formulas to Be Proven

(1) T|≡ R| ∼ #{FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2, (r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2)}
(2) R|≡ T| ∼ #{PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2, (FID < < < 8) & (PUF(Pn) ⊕

PUF(PUF(Pn))⊕ r′2 < < < 1) ⊕ (r′2 < < < 2)}

(1) Prove T|≡ R| ∼ #{FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2, (r1 < < < 8) & (r2 < < < 1)⊕ ( Pn+1 < < < 2)}
S1: by principle: A|≡#(B)

A|≡#(B,C),A|≡#(F(B)) and assumption (4) T| ≡ #(r1), we can deduce:

T| ≡ #{FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2}

T| ≡ #{(r1) & (r2) ⊕ ( Pn+1)}

S2: by principle: A3B,A3C
A3(B,C),A3(F(B,C))

and assumption (3) T 3 (r1), we can deduce:

T 3 {(r1) & (r2) ⊕ ( Pn+1)}

S3: by principle: A3B,A|≡#(B)
A|≡#{H(B)} and the above corollary, we can deduce:

T| ≡ #{(r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2)}

S4: by principle: A|∇(B)
A3B and protocol (3), we can deduce:

T 3 {FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2}

T 3 {(r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2)}

S5: by principle: A|≡D k↔A, A|∇H(B,〈K〉) , A3(B,K), A|≡#(B,K)
A|≡D| ∼ (B,〈K〉),A|≡D| ∼H(B,〈K〉) and assumption (7) and (8), we

can deduce:
T|≡ R| ∼ {FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2}
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T|≡ R| ∼ {(r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2)}

S6: then, there is:
T|≡ R| ∼ #{FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2}

T|≡ R| ∼ #{(r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2)}

S7: by the definition, we can also deduce:

T|≡ R| ∼ #{FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2, (r1 < < < 8) & (r2 < < < 1) ⊕ ( Pn+1 < < < 2)}

(2) prove
R|≡ T| ∼ #{PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2, (FID < < < 8) & (PUF(Pn) ⊕

PUF(PUF(Pn))⊕ r′2 < < < 1) ⊕ (r′2 < < < 2)}
S1: by principle: A|≡#(B)

A|≡#(B,C),A|≡#(F(B)) and assumption (6) R| ≡ #(r2), there is:

R| ≡ #
{

PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2
}

R| ≡ #
{
(FID) &

(
PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2

)
⊕
(
r′2
)}

S2: by principle: A3B,A3C
A|3(B,C),A|3(F(B,C))

and assumption (5) R 3 (r2), there is:

R 3
{
(FID) &

(
PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2

)
⊕
(
r′2
)}

S3: by principle: A3B,A|≡#(B)
A|≡#{H(B)} and the corollary above, there is:

R| ≡ #
{
(FID < < < 8) &

(
PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2 < < < 1

)
⊕
(
r′2 < < < 2

)}
S4: by principle: A|∇(B)

A3B and protocol (4), there is:

R 3
{

PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2
}

R 3
{
(FID < < < 8) &

(
PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2 < < < 1

)
⊕
(
r′2 < < < 2

)}
S5: by principle: A|≡D k↔A, A|∇H(B,〈K〉) , A3(B,K), A|≡#(B,K)

A|≡D| ∼ (B,〈K〉),A|≡D| ∼H(B,〈K〉) and assumption (7) and (8), we
can deduce:

R|≡ T| ∼
{

PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2
}

R|≡ T| ∼
{
(FID < < < 8) &

(
PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2 < < < 1

)
⊕
(
r′2 < < < 2

)}
S6: according to the definition, we can deduce:

R|≡ T| ∼ #
{

PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2
}

R|≡ T| ∼ #
{
(FID < < < 8) &

(
PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2 < < < 1

)
⊕
(
r′2 < < < 2

)}
S7: by definition, there is:

R|≡ T| ∼ #{PUF(Pn) ⊕ PUF(PUF(Pn))⊕ r′2, (FID < < < 8) & (PUF(Pn) ⊕ PUF(PUF(Pn))⊕
r′2 < < < 1) ⊕ (r′2 < < < 2)}

5. Security Analysis

This section analyses the possible attacks and the security of this protocol.
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5.1. Mutual Verification

Mutual verification: Reader verifies the tag, and tag reversely verifies the reader. For some
verification protocols, they just verify the tag, without the verification of the reader, which results in
a security issue. If attacker uses a reader which is not been verified by a tag, the RFID system data
would be leaked, or even the system would be damaged irreparably, such as desynchronization attack
and DDos attack.

(1) Reader forgery

The third step of the proposed protocol is to send message A||B to RFID tag, according to the
Equations (3) and (4), tag calculates the values of D and E, and tag deduces the random number
r′2 of the reader with Equation (5), where deduced r′2 is also used to generate B′ by Equation (6).
Then, B′and B of the reader are compared to verify the reader, in which value of A and value of
B are calculated by the random number r1 of the tag, random number r2 of the reader, FID of the
tag and the shared secret key Pn+1 and secret key Kn. These values would be updated after each
round to prepare for the next round, and this is because the original values should be secreted so
that the attacker cannot produce a fake reader.

(2) Tag forgery

The fourth step of our protocol is to send message F||H to the reader, reader deduces the secret
key of the tag by Equation (9), and uses deduced secret key E′, its random number r2, secret key
Pn+1 and Equation (10) to calculate F′. Then reader uses FID of the tag, F′, and random number
r′2 to produce H′ by Equation (9), by which reader compares H and the calculated H′ to complete
the verification of the reader. In this process, F and H are calculated by the deduced random
number r2 by the tag, the secret key produced by PUF and the tag signature FID. After each
round verification, these values would be updated for the following verification. As long as the
initial values are in secret, attacker cannot produce a fake tag.

Above all, this protocol can guarantee the mutual verification between reader and tag.

5.2. Data Confidentiality and Tag Anonymity

During the verification process, the internal data of either tag or reader should be transferred in
cipher text, and the data about tag identity should also be cipher text in transition. Although attacker
has intercepted some data of the tag or the reader, attacker is not allowed to deduce any message about
the identity of reader and tag.

The critical steps of our protocol are the second, third and fourth step. In the second step, tag
sends its FID to the reader, which is just alias and has no relation with the real identity of the tag, and
it would be updated after each verification round. Although attacker intercepts this alias, it cannot
obtain any effective identity message of the tag. The third and the fourth steps send the A||B of the
reader to the tag, and send F||H of the tag to the reader respectively. The previous mutual verification
has analyzed the random number r1 of the tag, random number r2 of the reader, FID of the tag and the
shared secret key Pn+1 and secret key Kn obtained by calculation. As long as the initialization is in
secret, attacker cannot calculate those values. Although attacker can intercept them, those intercepted
values cannot be used to deduce the secret key and deduce the tag identity.

Above all, this protocol guarantees the data confidentiality and the integrity of the whole
RFID system.

5.3. Steal Attack

Attacker steals the data of the reader and the tag to make the data cannot be received by either
tag or reader, as a way to damage the RFID system.

Assume that attacker steals the last message (failure/success) from reader to the tag, and promotes
reader to update the secret key of the database except for the secret key of the tag. In this way, the data
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of tag and the database are not synchronous. Our protocol solves this problem by maintaining the FID
and secret key Pn and Kn of the last verification. Even the tag cannot update its secret key value, the
database can find its FID.

In summary, this protocol can defend against steal attack.

5.4. Replay Attack

Attacker iteratively sends the message that has been received by the reader to cheat reader, which
would make reader to response so that the RFID system is damaged.

Assume the attacker intercepts the message during a mutual verification: 1©FID, r1; 2©A||B;
3©F||H. Then, attacker intercepts the last message from reader to the tag (failure/success), and the

reader updates the secret value of the database as a result, except for the secret key of tag. In the next
verification round, attacker firstly sends FID, r1 that are intercepted previously to the reader. After
receiving those message, reader searches this FID and finds that it matches to a FIDold . Later, reader
generates the random number r2 and produce A||B by equation. If attacker can send the previously
obtained F||H to activate a forgery verification, however, during this verification, the random number
generated by the reader is different from the random number produced in the last round, which results
in the difference between H and H′, so that the tag verification will fail. Above all, this protocol
defends against replay attack.

5.5. Backtracking Attack

When a RFID tag is deciphered, attacker cannot deduce previous verification information by this
current verification.

Assume that an attacker cracks the current verification process, and obtains the FID of the
tag and the secret value (Pn, Kn). However, attacker cannot deduce previous secret key values in
verification because these secret key values are updated with the random number r1, r2 after each
verification round.

Therefore, this protocol guarantees the safety against the backtracking.

5.6. Clone Attack

Attacker copies the legal tag to obtain a clone tag, which contains all information of the copied
tag, including the unique ID, data and algorithms stored in tag. In other words, when reader sends
a random number and a request to the tag, clone tag can response to the reader in a same way as
the legal tag. Thus, simple encryption algorithms and increase of the complexity of the verification
algorithms cannot prevent against clone attack.

Our protocol is based on PUF technique to achieve the mutual verification. In the previous
introduction of the PUF technique, we have analyzed its safety. Although attacker launches attack on
reader or tag, and obtains the secret key of the tag: {Pn, FID, Kn}, attacker cannot produce a clone tag
with these values. This is because PUF technique is by deriving the difference among chips during
manufacture, which causes the different outputs. In this way, clone attack can be prevented against by
our protocol.

5.7. Desynchronization Attack

Attacker triggers the update of tag by some means except for the update of the reader or vice-versa.
As a result, the desynchronization between the data of the database and the tag data exists, and tag
cannot be verified by the reader in following verification.

Attack one: Modifying message A or message B
Assume attacker is intercepting a verification process, until the reader sending A||B to the tag,

attacker modifies this message into A”||B”, and then sends it the tag. After receiving A”||B”, tag firstly
deduces the random number r2 of the reader by A”, by which tag calculates B′. Then, tag judges
if B′ = B” as a way to verify reader. Because attacker modifies message B into B”, reader cannot be
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successfully verified, which defends against the desynchronization caused by modifying message A or
message B.

Attack two: Modifying message F or message H.
Assume attacker is intercepting a verification process, until confirmation of the identity of the

reader, tag calculates message F||H and sends it to reader to verify. At this moment, attacker
modifies this message into F”||H”, and sends the modified message to reader. After receiving F”||H”,
reader firstly deduces the secret key E′ by F”, then reader calculates H′. After this, reader judges if
H′ = H” or not to verify the tag. Because attacker modifies message H into H”, reader cannot verify
tag successfully, so that both tag and reader cannot update their own data, which thus solves the
problem of desynchronization caused by modifying F or modifying H.

Compared with previous Kulseng’s lightweight mutual verification protocol, Table 2 shows the
advantages of our protocol.

Table 2. Comparison of security analysis between the proposed protocol and Kulseng’s lightweight
mutual verification protocol.

Types of Attack Proposed Protocol K Protocol

Mutual verification
√ √

Data confidentiality and Tag anonymity
√

×
Steal attack

√
×

Replay attack
√ √

Backtracking attack
√

×
Clone attack

√ √

Desynchronization attack
√

×

6. Experiments

This section shows the secure tag verification in a RFID system according to our protocol.
We simulate to construct a vehicle cargo invading detection system, and all vehicles of this system
carry RFID tags. With ultrahigh frequency RFID reader, the tag of a vehicle would be recorded, which
information is recorded by the database and operating platform executes the secure verification via
our protocol.

Ultrahigh frequency reader: Impinj R420. Air interface protocol: EPC global UHF Class 1 Gen
2/ISO 18000-6C, using Autopilot technique of the Speedway Revolution, which is able to automatically
optimize the performance of the reader in any environment to maintain the best performance. Autopilot
technique has following features:

1. Automatically setting—Optimize the deployment of reader to achieve the best performance.
2. Low load circulation—Reduce radio-frequency interference, power dissipation, energy cost.
3. Dynamic antennae switch—Increase handling capacity, enhance the reader to more effective work.

Speedway Revolution RFID reader also supports power over Ethernet (PoE), increases the
flexibility of its application, so that the deployment is simplified and does not need AC power
supply. As a result, the cost is dramatically reduced. Reader is equipped with the capability of the best
flexibility in receiving, anti-interference and product and carrier offset capability.

RFID tag: Impinj H47, which supports air interface protocol EPC Class 1 Gen 2/ISO18000-6C;
working frequency: 860~960 MHz, read distance is decided by the reader emit power. The tag can be
fixed on the object in a sticker manner, and is easy to be read for obtaining information.

Platform construction tools: Java development platform.
Operating system: Windows 10.
In this section, we mainly discuss the RFID readers of what frequency we choose. Different

frequency readers are limited by different distance when readers read tags’ information. If the distance
is too long, the reader cannot read the information of the tag, which will lead to the occurrence of
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missed reading. The counterfeiters can mix the real and fake tags together and put the fake tags out
of the range to allow them to cheat the reader. Therefore, it is important to discuss how to use this
protocol in terms of different frequencies and ranges of RFID readers.

In the experiments, to verify the impact of using high frequency reader and the ultrahigh frequency
reader on the system alarm’s success rate, in the cases with different distance between the tag and the
reader, through experiencing 100 times experimental result analysis, the results are shown by Figure 6,
we can conclude: within 10 cm from high frequency RFID reader, the number of successfully finding
the clone tag are: 100, 100, 100, 99, 99, 100, 98, 97, 94. The distance between the reader and tag is over
the best reading distance 8 cm, because the Mifare card data cannot be effectively read and the success
rate dramatically decreases.Sensors 2018, 18, x FOR PEER REVIEW  16 of 20 
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This experiment indicates when the high frequency reader is located over the nominal reading range,
which is more than 8 cm, the performance dramatically falls, the rate of invading tag dramatically reduces.
With our experimental sample, comprehensive success rate is 91.90%; while the ultrahigh frequency
reader’s performance slightly reduces when the distance is over the nominal reading distance, when
the distance is over 90 cm, the performance of the reader begins to reduce. In comparison, ultrahigh
frequency RFID reader of the original system performs better in detecting fake tag.

7. Performance Analysis

By calculating the costs of time and storage space for a complete certification process of backstage
database, reader and tag are used to judge the performance of the proposed protocol. In this section, the
reader and the backend database are viewed as a whole for the convenience of analysis, which is called
the reader side. For the protocol presented in this paper, the data stored in the tag, reader, and back-end
database is a unit of 96 bits, let L substitute for 96 bits. TP defines as the number of PUF function
operations. TR defines as the number of times when a random number is generated. TXOR defines as
the number of XOR operation. TLEFT defines as the number of times of the loop left movement, TOR

defines as the number of join operation, TAND defines as the number of AND operation, and TF defines
as the number of F function operation. Then the complete certification process will be analyzed in the
term of its complexity.

Firstly, we analyze the time complexity.
For the RFID tag, in tag verification phase, a random number of r1 is generated in the tag

recognition phase, so the time complexity of the tag is TR; in the process of authenticating the reader of
Mutual Verification phase, there are four operations by a tag, such as D = PUF(Pn), E = PUF(D), r′2 =

A ⊕ FID ⊕ D ⊕ Kn ⊕ r1, B′ = (r1 < < < 8) & (r′2 < < < 1) ⊕ (D < < < 2). So in the process
of authenticating the reader of Mutual Verification phase, the time complexity of the tag is (2TP +

5TXOR + 3TLEFT + TAND). In the process of authenticating the tag of Mutual Verification phase, there
are three operations by a tag, such as F = D ⊕ E ⊕ r′2, H = (FID < < < 8) & (F < < < 1) ⊕
(r′2 < < < 2)and F||H. So in the process of authenticating the tag of Mutual Verification phase, the
time complexity of the tag is (3TXOR + 3TLEFT + TAND + TOR). In the whole Mutual Verification
phase, the time complexity of the tag is (2TP + 8TXOR + 6TLEFT + 2TAND + TOR). In the update phase,
there are two operations by a tag, such as FID = (FID < < < 8) & (r′2 < < < 1) ⊕ (r1 < < < 2) and
Kn = (Kn < < < 8) & (r′2 < < < 1) ⊕ (r1 < < < 2). Thus, the time complexity of the tag is (2TXOR +

6TLEFT + 2TAND) in the update phase.
For the reader side, in the process of authenticating the reader of Mutual Verification phase,

there are three operations by the reader side, such as A = FID ⊕ Pn+1 ⊕ Kn ⊕ r1 ⊕ r2, B =

(r1 < < < 8) & ( r2 < < < 1) ⊕ ( Pn+1 < < < 2) and A||B. So in the process of authenticating
the reader of Mutual Verification phase, the time complexity of the reader side is (TR + 5TXOR +

3TLEFT + TAND + TOR). In the process of authenticating the tag of Mutual Verification phase, there
are three operations by the reader side, such as E′ = F ⊕ r2 ⊕ Pn+1, F′ = E′ ⊕ r2 ⊕ Pn+1, H′ =
(FID < < < 8) &

(
F′ < < < 1

)
⊕ (r2 < < < 2). So in the process of authenticating the tag of Mutual

Verification phase, the time complexity of the reader side is (5TXOR + 3TLEFT + TAND). So in the
whole Mutual Verification phase, the time complexity of the reader side is (TR + 10TXOR + 6TLEFT +

2TAND + TOR). In the update phase, there are two operations by the reader side, such as Knew
n =

(Knew
n < < < 8) & (r′2 < < < 1) ⊕ (r1 < < < 2) and FIDnew = (FIDnew < < < 8) & (r′2 < < < 1) ⊕

(r1 < < < 2). So in the update phase, the time complexity of the reader side is (2TXOR + 6TLEFT +

2TAND). Tables 3 and 4 give the results of the time cost analysis of our protocol and the K protocol.
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Table 3. Results of the time cost analysis of K protocol.

Device Tag Verification Phase Mutual Verification Phase Update Phase

Tag - 2TP + 3TXOR + 2TF TXOR + TF
Reader - 2TXOR + 2TF TXOR + TF

Table 4. Results of the time cost analysis of the proposed protocol.

Device Tag Verification Phase Mutual Verification Phase Update Phase

Tag TR 2TP + 8TXOR + 6TLEFT + 2TAND + TOR 2TXOR + 6TLEFT + 2TAND
Reader - TR + 10TXOR + 6TLEFT + 2TAND + TOR 2TXOR + 6TLEFT + 2TAND

Secondly, we analyze the space complexity.
For the RFID tag, there are some data in a tag, such as Pn, FID, Kn. Thus, the space complexity of

a tag is 3L.
For the reader side, there are some data in the reader side, such as

FIDold, Pold
n , Pold

n+1, ID, Kold
n , FIDnew, Pnew

n , Pnew
n+1, Knew

n . So the space complexity of the reader
side is 9 L. The comparison results are shown in the Table 5.

Table 5. Results of space cost analysis between the proposed protocol and K protocol.

Protocol Tag Reader

K protocol 3 L 4 L
Our protocol 3 L 9 L

In our protocol, it only uses some simple operations, such as XOR operation, the loop left
movement operation, JOIN operation, and AND operation. In addition to PUF circuit by the arbiter
judged by two signal circuit who arrives firstly, the amount of calculation is very small. So our protocol
meets the requirements of low cost in computational overhead. To sum up, although the protocol
proposed in this paper is more complex than the K protocol, its security is much higher than that of K
protocol. Therefore, this protocol has found a good balance between performance and security.

8. Conclusions

In this paper, a lightweight RFID security protocol based on the Physical Unclonable Function
(PUF) is proposed to achieve efficient verification of a single tag. The protocol includes three process:
Tag recognition, mutual verification and update. The tag recognition is that the reader recognizes the
tag; mutual verification is that the reader and tag mutually verify the authenticity of each other; update
is supposed to maintain the latest secret key for the following verification. The results of security
show that the presented protocol is efficient to protect RFID systems. Implementation of the presented
protocol in real RFID systems are our future work.
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