
sensors

Article

Online Sensor Drift Compensation for E-Nose
Systems Using Domain Adaptation and Extreme
Learning Machine

Zhiyuan Ma 1 ID , Guangchun Luo 1,*, Ke Qin 1, Nan Wang 2 and Weina Niu 1,3

1 School of Computer Science and Engineering, University of Electronics and Technology of China,
Chengdu 611731, China; yuliar3514@gmail.com (Z.M.); qinke@uestc.edu.cn (K.Q.);
niuweina1@126.com (W.N.)

2 School of Information Science and Engineering, East China University of Science and Technology,
Shanghai 200237, China; wangnan@ecust.edu.cn

3 School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China
* Correspondence: gcluo.uestc@gmail.com; Tel.: +86-028-61830137

Received: 31 January 2018; Accepted: 26 February 2018; Published: 1 March 2018

Abstract: Sensor drift is a common issue in E-Nose systems and various drift compensation methods
have received fruitful results in recent years. Although the accuracy for recognizing diverse gases
under drift conditions has been largely enhanced, few of these methods considered online processing
scenarios. In this paper, we focus on building online drift compensation model by transforming
two domain adaptation based methods into their online learning versions, which allow the recognition
models to adapt to the changes of sensor responses in a time-efficient manner without losing the
high accuracy. Experimental results using three different settings confirm that the proposed methods
save large processing time when compared with their offline versions, and outperform other drift
compensation methods in recognition accuracy.

Keywords: gas sensor; drift compensation; domain adaptation; online learning; extreme learning machine

1. Introduction

Sensor technologies aim at providing a convenient and intelligent life for human beings and
have been largely enhanced in recent years. For example, wearable sensors make health monitoring
and early disease classification with minimum discomfort possible [1,2], optical sensors used in
clinical diagnosis have made the detection of specific compound such as calcium more easy-to-use [3],
and motion sensors have made smart phones not only tools for communications, but also means to
provide personalized services [4].

By using specific sensors, identification of chemical gases becomes possible. Electronic-Nose
(E-Nose) systems, also known as machine olfaction, is one of such units. Combining with pattern
recognition techniques, E-nose systems can classify multiple gases mixed together in different
concentrations [5], which leads to a wide application in airport and train station checkpoints [6],
food security [7], environmental monitoring [8], clinical diagnosis [9] and so on. Despite the fascinating
applications that make our daily lives more intelligent, there has been a major problem in E-Nose
systems that makes the recognition capability of sensors degrade after some time. In E-Nose systems,
the readings X rely on the chemical reactions between gas compounds and the sensor materials,
together with some recognition mechanism such as machine learning to create connections between
diverse gas types and their corresponding readings. Mathematically, we can use a function y = f (X)

to denote such connections. Given a proper trained f (X), the outputs should match all designated gas
compounds. However, in practice, when a f (X) is trained on the collected data perfectly, the outputs
gradually fail to match the right gases, and the phenomenon is called sensor drift.

Sensors 2018, 18, 742; doi:10.3390/s18030742 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2153-5824
http://dx.doi.org/10.3390/s18030742
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 742 2 of 29

Currently, it is commonly accepted that the drift problem in sensors is due to two causes. One is
the chemical process that happens between sensor materials and the environment, also called the
first-order drift, and the other is the system noise, namely the second-order drift [10–12]. Researchers
have been trying to solve the problem in material science, sensor selection strategies and post
processing mechanisms. In material science, durable materials were invented to prolong the life
of sensors [13–16]. Meanwhile, proper selection of more resilient sensors to drift is another way to
achieve the goal [17,18]. In the perspective of post-processing, the drift problem can be taken as the
changes of distributions of gas labels over time. To maintain the stable recognition capability of the
sensors, classifier ensemble techniques have relived the problem to some extent [19–21]. However,
the learning process of the methods is supervised and requires human effort to label the training set
beforehand. Furthermore, the methods assume that the data distributions remain the same for different
gases, which is not always true. Component Correction (CC)-based methods [22–24] and Sequential
Minimal Optimization (SMO)-based [25,26] are the most effective supervised ways to adjust the model
to the drift. Nevertheless, CC-based methods assume the drift acts in the same way for diverse gases,
which is sometimes not the case, and SMO-based methods sometimes update the model by following
the wrong reference label. Another effective and promising approach is to use the transfer learning
technique, namely domain adaptation. Zhang et al. [27] achieved one of the highest accuracies using
semi-supervised methods, but the learning mechanism follows an offline training scheme, which
makes the data generated in real time hard to be processed in time. Together with the fast development
in big data, an enormous amount of sensor data are generated per second, which has made timely
processing a great challenge.

To effectively discover information collected from the data, an online learning mechanism that
can train and update the model in a time-efficient manner without losing the classification accuracy is
required. An online learning method in machine learning uses the current model and newly received
data to update the analytical model. In this way, the updates of the model do not require training
from scratch and the capability of drift compensation can keep up with the data generated in massive
amounts. In this paper, we combine the theory of online sequential extreme learning machine and
Domain Adapation Extreme Learning Machine (DAELM) [27] for it has appealing performance and
has achieved almost 100% for specific datasets. We wish to transform the offline learning version
in the work into an online learning version without losing the performance for drift compensation.
The contributions are three-fold:

• The selection of representative samples plays an essential part in semi-supervised methods
such as DAELM-S and DAELM-T in [27]. Therefore, we analyzed the characteristics of sample
selection and provided two online sampling strategies regarding whether testing error can be
used as feedback.

• To preserve the high accuracies of domain adaptation-based methods and save time for updates,
we combined the theory of online sequential extreme learning machine to propose Online Source
Domain Adaptation Extreme Learning Machine (ODAELM-S). In ODAELM-S, only the source
domain and few labeled samples contribute to the model. When new labeled data are identified,
ODAELM-S can update the model in a time efficient manner.

• To leverage between the effects of labeled and unlabeled samples, we transformed DAELM-T
into its online learning version and proposed Online Target Domain Adaptation Extreme
Learning Machine (ODAELM-T). Unlike ODAELM-S, which only relies on the source domain
and the labeled set, ODAELM-T leverages the effects of labeled and unlabeled set to the
model. Based on the changes of the two sets, the update phase is divided into three learning
process, namely unlabeled incremental learning, unlabeled decremental learning and labeled
incremental learning.

The remainder of the paper is organized as follows. Section 2 introduces some preliminaries on
online processing in sensors, domain adaptation and extreme learning machine to help understand



Sensors 2018, 18, 742 3 of 29

the methods in the paper. Methodologies of ODAELM-S and ODAELM-T are detailed in Section 3.
Section 4 describes the dataset used in the experiments and the experimental set-up, followed by
a detailed analysis on the results. Conclusions are drawn in Section 5. For illustration purposes,
abbreviations of the frequently used terms are listed after Section 5.

2. Preliminaries

2.1. Online Processing in Sensors

In 2013, Paniagua et al. focused on delivering time efficient drift countermeasures using pattern
recognition methods, which is one of the earliest research articles in online drift compensation [28].
However, the methods used in the paper were limited and not much work was done to change the
algorithms into online learning versions. Ghafarinia et al. combined pattern recognition with the
transient features of Capillary-attached Gas Sensor and proposed an online gas diagnosis algorithm
that could determine unknown gases and their concentrations [29]. Nevertheless, the neural network
model used in their paper was simple, which consisted of less than 10 nodes, and the features are no
more than 40. Moreover, the method was designed for gas diagnosis, instead of drift compensation.
With the developments in machine learning, new models and theories have been used for drift problem.
However, most of the methods focus on an offline learning manner which leaves online detection and
recognition a void. Due to the learning mechanism, some of the methods cannot be simply applied to
the scenario. Meanwhile, the time cost for training the model is not trivial due to the growing number
of data.

As early as in 2004, Ma et al. introduced the challenges and problems in building online
recognition model, although the discussion focused more on the nature of the data rather than the
learning algorithms and specific problem domain as sensor drift [30]. In recent years, online processing
have been a common issue in sensor related domains. In 2012, Munir et al. proposed an online
optimization method to help sensor parameter adjust to the environment changes [31]. In 2013,
Zhang et al. proposed online detection for outliers in wireless sensor network to ensure the high quality
of the data [32]. Between 2015 to 2017, researches related to online processing in sensors has expanded
from decentralized model for resource limited environment [33] and time-efficient monitoring and
detection [34,35] to more complicated tasks such as gesture recognition [36], source location [37] and
fault diagnosis [38] in specific applications. Therefore, it is also imperative to combine advanced
algorithms with online processing for gas sensor drift compensation.

2.2. Domain Adaptation

In domain adaptation, the distributions of samples in the data are referred to as domains [39].
In practice, a pre-trained model on a given training set (source domain) usually fails to perform
well in testing sets (target domains), due to the distribution differences between training and testing
sets. The phenomenon is called domain shift. To deal with the problem, some related approaches
include transfer learning, semi-supervised learning, self-taught learning and multiview analysis. In the
applications such as computer vision, sentimental analysis, natural language processing, video concept
and wifi location detections, domain adaptation techniques have received fruitful results [40–42].

In the perspective of transfer learning, domain adaptation is also taken as a special case, in which
labeled samples are only available in source domain and both target and source domains share the
same single task [43]. Currently, there are four types of methods in domain adaptation, namely instance
weighting, self labeling, feature representation and latent feature learning. Due to the expensive efforts
for manually labeling the samples in the target domain, feasible and common approach is to perform
semi-supervised learning which leverages the effects of limited labeled and unlabeled samples [39,43].



Sensors 2018, 18, 742 4 of 29

2.3. Extreme Learning Machine

As a special type of random neural network, Extreme Learning Machine (ELM) can be represented
by a three layer feed forward neural network whose parameters between input and hidden layers are
randomized [44]:

fL(X) =
L

∑
i=1

βigi(X) =
L

∑
i=1

βig(ai, bi, X). (1)

Specifically, ELM can be written as Equation (1), where β1, β2, . . . , βL are the output weights
between the hidden layer with L neurons and the output layer, and gi is a nonlinear piecewise
continuous function, namely activation function [45]. The output weights of ELM can be acquired by
minimizing the approximation error, i.e., Equation (2), where H, denoted by Equation (3), is the output
of hidden layer with L neurons, n is the number of neurons in the output layer, and T is the target
vector of training data:

min
β∈RL×n

‖Hβ− T‖2. (2)

Unlike other neural network approaches, ELM directly calculates the output weight matrix β

using Equation (4), where H† is the Moore–Penrose pseudoinverse of H:

H =


g(a1, b1, x1) · · · g(al , bL, x1)

g(a1, b1, x2) · · · g(al , bL, x2)
...

...
...

g(a1, b1, xn) · · · g(al , bL, xn)

 , (3)

β = H†T. (4)

The learning mechanism of classic ELM is tagged as batch learning, which requires a full set of
training data. In contrast to batch training, Online Sequential Extreme Learning Machine (OSELM)
was proposed to learn from data in a one-by-one or block-by-block way [46]. Instead of using all the
samples in the training stage, which is also known as offline learning, OSELM sequentially learns from
the data to capture the varying patterns hidden beneath them. In OSELM, the calculation of output
weight matrix, denoted by βk+1, relies only on the new sample xk+1 and the previous output weight
matrix βk:

βk+1 = βk + Pk+1HT
k+1(Tk+1 − Hk+1βk). (5)

The training process can be formulated as Equation (5), where Pk+1 = Pk − Pk HT
k+1(I +

Hk+1Pk HT
k+1)

−1Hk+1Pk, Hk+1 is the hidden layer output corresponded to the new sample xk+1,
and Tk+1 is the corresponding target vector.

3. Online Domain Adaptation Extreme Learning Machines

To achieve timely processing without losing the recognition accuracies for sensor drift, we intend
to transform current state-of-art batch learning methods into their corresponding online versions.
Domain adaptation-based drift compensation has been proved to possess high accuracies in [27].
The two algorithms, namely DAELM-S and DAELM-T, are based on batch learning and require
selecting a group of representative samples beforehand. The selection algorithm is based on the
distribution of the entire dataset. However, in an online processing scenario, samples in the target
domains arrive in sequence as a data flow. Therefore, the original sample selection method is not
applicable. Supposing we can determine when to select the representative samples, there is another
problem of how much time and human effort it costs. Additionally, the batch learning mechanisms of
DAELM-S and DAELM-T require calculating the classifier based on the full dataset. Since the data
arrives in sequence, there is no doubt that the data used in the next update will overlap with the



Sensors 2018, 18, 742 5 of 29

ones in previous updates. In this case, there will be repeated calculation of the same data over time,
which costs more time and resources as the size of target domain increases.

In an online learning model using either DAELM-S and DAELM-T, we wish to maintain the
performances of the two methods while solving the obstacles described in the previous paragraph.
Figure 1 shows the sample changes in a target domain when a new sample Xi arrives. The labeled
set refers to the manually labeled samples and the unlabeled set is the rest of the samples in a target
domain. When Xi arrives in the target domain, it triggers two possible cases regarding whether to
select and label a group of samples in the unlabeled set. When no selection and labeling happens,
Xi is added to the unlabeled set and the labeled set remains unchanged. In this case, the changes of
samples, denoted by δSet, has only one sample, namely Xi. When the selection and labeling happens,
the situation is more complicated. Given some sample selection algorithm, a group of representative
samples, denoted by SSet, is selected from the target samples received to date. Note that, in this case,
the unlabeled set includes the new sample Xi. Considering the fact that the selected samples may
overlap with current labeled ones, δSet is the difference set between SSet and LSetk−1, where LSetk−1
is the latest selected sample set. The blue dashed circle in the figure represents the δSet. When labeling
happens, δSet is removed from USet and added into LSet. The Xk in δSet refers to any possible samples
selected, including the new sample Xi.

Unlabeled Set (USet) Labeled Set (LSet)

Xk Xk

Labeling

Target Domain

1

1

1

;

;

.

k

k k

k k

Set SSet LSet

USet USet Set

LSet LSet Set













 

 

 

Set Set

Target 
Sample

Xi

Xi+1

Xi-1

…
…

Unlabeled Set (USet) Labeled Set (LSet)

Xi

Target Domain

1

1

;

;

.

i

k k

k k

Set X

USet USet Set

LSet LSet










 



Set
No labeling
required

labeling 
required

A
rrival Seq

u
en

ce

Figure 1. Demonstration of sample changes in the target domain during online processing. SSet is
the selected sample in the target domain received to date based on some sample selection algorithm,
and δSet is the incremental (decremental) set in labeled (unlabeled) set. For arrival sample Xi, two cases
regarding whether to perform selection and labeling is given in the figure.

In classic ELM, a variant called OSELM can be applied to reduce the calculation when new sample
arrives in sequence. The similar process can be applied to both DAELM-S and DAELM-T by using
incremental learning. The idea is to transform original batch learning process into a recursive process.
Taking the arrival sequence in Figure 1, for example, when Xi−1 arrives, the classifier trained on current
received data is written as f (βk−1

T ), where βk−1
T is the parameter or parameter vector that requires

training. The output of f can be the gas labels or the probabilities of the sample belonging to certain
gases. In incremental learning, we wish to derive a recursive form of the training process where βk

T
can be written as a new formula denoted as g(βk−1

T , K), where K is some intermediate results. In this
way, instead of training the new βT with all the data received to date, we can use only the previous
result and the current increment for updates. By doing so, we can save the repeated calculation and
achieve a time-efficient algorithm for generating new classifiers. In OSELM, the parameter Pk+1 in
Equation (5) is the intermediate result. In DAELM-S and DAELM-T, we can find similar terms to



Sensors 2018, 18, 742 6 of 29

achieve the goal. Once the update algorithm is produced, the only challenge becomes selecting the
representative samples in an online manner.

In the following part of the section, we first analyze the sampling strategies regarding online
learning. Then, corresponding online learning versions of DAELM-S and DAELM-T are described
in detail.

3.1. Online Sampling Strategies

Assuming we can determine the time for updates, the only problem is to determine δSet. We view
the classification model as an intelligent agent and the arrival sequence of the target samples like
perceptions of the environment. Similar to the description on intelligent agents by Stuart and Peter
in [47], the actions of the model, including whether to select and label samples, depend on the
entire sequence of samples received to date, not on anything that has not yet appeared. Therefore,
we can apply Kennard–Stone (KS) algorithm [48,49] on the current received samples to determine δSet.
Ideally, if we can perform KS whenever the distribution changes, the problem is solved. However,
the changes in distribution may be a slow process, which brings another problem of defining the
changes of distribution. Even though a periodical collection of the samples may be a trade-off
plan, the circle for collection may vary, which brings up another problem of how to decide the
circle beforehand.

Normally, we wish to label enough samples so that the model can be more precise. However,
manually labeling in semi-supervised methods is time-consuming and labeling more samples
contradicts with our goal of saving time. Eventually, the problem becomes a trade-off between
high classification accuracy and low human efforts.

Selecting and labeling samples in a predefined circle is the easiest to apply, although not very
applicable since proper circles for different datasets may vary. The reason for labeling more samples is
to provide more information to track the changes of data. In this sense, the labeling should be more
likely to happen when the performance degrades and vice versa. In this case, we consider the labeling
process as a probability event, which possesses the following characteristics:

• The chance of labeling is inversely proportional to number of labeled samples;
• The chance of labeling is proportional to number of samples in total;
• The chance of labeling is proportional to the classification error.

The performance of the model is based on the classification accuracy of current model. In this case,
the system would require receiving the accuracy. When the performance of the classification model
is assumed to degrade, the labeling should be more frequent, and vice versa. Meanwhile, when the
number of labeled samples is small, the labeling should happen more frequently, and vice versa.
However, when the accuracy is not accessible, the system would have no idea whether it performs
well or not. In this case, the system can only decide for selection and labeling based on the number of
samples received so far.

Ideally, if we can determine the representative samples for each target domain as [27] does,
we can achieve equivalent high classification accuracies in an online manner. However, the method
used to determine the representative samples in [27] is based on the distribution of the entire target
domain, which is unable to be acquired in an online scenario. A more feasible way is to label more
samples instead of labeling specific ones. Therefore, we use Equation (6) to depict the probability of
labeling where ε is current classification error, and y and x are the numbers of labeled samples and
entire samples, respectively. In the experiments, the equation managed to possess the aforementioned
features while maintaining the number of the labeled samples in a relatively small value. Note that



Sensors 2018, 18, 742 7 of 29

Equation (6) is an attempt to depict the probabilities instead of ideal calculation of the probability.
Therefore, more sophisticated methods can be used to replace it:

P =

{
(1− y

x )
yε, ε is accessible,

(1− y
x )

y, ε is not accessible.
(6)

In the experiments, the equation is not good enough. Another possible issue may be that the
labeled samples keep growing even when the accuracy is high, say over 90%. In an online learning
scenario, if the manually labeling process labels too many samples, the method is not applicable since
too much resource time would be spent in the process. Therefore, we set another criteria for the
process, namely the minimum accepted accuracy. In practice, when the accuracy is stable and very
high, it does not require extra labeling. In this paper, the maximum number of KS is set to 50 so as to
limit the growth of labeled samples. The minimum accepted accuracy is set to 90%. When the residual
error is larger than 10%, the labeled process happens.

3.2. Online Source Domain Adaptation Extreme Learning Machine

Similar to OSELM, which uses incoming data to update the model in an online manner,
we transformed the training of DAELM-S into an incremental learning procedure and proposed
Online Source Domain Adaptive Extreme Learning Machine (ODAELM-S).

Figure 2 shows the framework of ODAELM-S. In DAELM-S, the learning only involves the source
domain and the labeled samples from target domain. Since the source domain remains unchanged
during the learning phase, the update of the model only happens when new samples are labeled.
Initially, the target classifier is the source classifier for there is no labeled sample in the target domain.
After the classifier is initialized using source domain samples, it can receive and learn the patterns from
target domain in an online manner. The left rectangle in the figure represents the arrival sequence of
the samples in the target domain. Let Xi be the current arrival sample that belongs to either unlabeled
or labeled samples. If no selection happens, Xi is added into the set of unlabeled samples and there
is no update in the classifier. When the online sample selection happens, the sample(s) for labeling
can only be chosen from the unlabeled samples and Xi. Note that Xi may not be chosen when the
selection happens at the arrival of the sample, but it may be selected later by another selection process.
Whenever labeled samples are selected, the target classifier updates itself based on an online learning
mechanism described in the following paragraphs.

Source 
Domain

Labeled

Unlabeled

Target

Xi

Xi+1

Xi-1

…
…

…

……

S
 -1K

Update

X
iis lab

eled

Xi is selected and labeled

Xi is unlabeled

Target classifier

Initialize

A
rrival Se

q
u

en
ce

Figure 2. Online updating framework of ODAELM-S.

In DAELM-S, the model is taken as an extension of the classifier trained on the source domain.
The objective function is written as Equation (7) where εS = HSβS − TS, εT = HT βS − TT . HS and HT



Sensors 2018, 18, 742 8 of 29

are the corresponding hidden layer outputs of source domain and labeled samples from target domain,
respectively. To obtain an proper value of βS, it requires minimizing the objective function:

L =
1
2
‖βS‖2 +

CS
2
‖εS‖2 +

CT
2
‖εT‖2. (7)

By calculating the gradient of L with respect to βS as Equation (8), we can calculate the optimal
value of βS by setting the gradient to 0:

∂L
∂βS

= (I + CSHT
S HS + CT HT

T HT)βS − (CSHT
S TS + CT HT

T TT). (8)

Note that, regarding whether there are more rows or columns in HS, solving βS can be either an
overdetermined or under-determined problem. When it is an overdetermined problem, we assume βS
is a linear combination of the columns of HS, i.e., βS = HT

S α. Therefore, by setting Equation (8) to 0,
the hidden layer output βS can be formulated as Equation (9), where P = HS HT

S and Q = HSHT
T :

βS =

{
(I + CS HT

S HS + CT HT
T HT)

−1(CS HT
S TS + CT HT

T TT), HS has more rows,

HT
S (I + CSP + CT P−1QQT)−1(CSTS + CT P−1QTT) HS has more columns.

(9)

Let the case where HS has more rows be case 1 and the other be case 2. When new samples

are labeled, the hidden layer output becomes Hk+1
T =

[
Hk

T
δh

]
where δh is the corresponding hidden

layer output of the newly labeled samples. In order to save the calculation, ODAELM-S uses some
intermediate result as K−1 where K is defined as I + CSHT

S HS + CT HT
T HT for case 1 and I + CSP +

CT P−1QQT for case 2.
For case 1, Kk+1 can be defined as Equation (10):

Kk+1 = Kk + CTδhTδh. (10)

Hence, K−1
k+1 can be updated using Equation (11):

K−1
k+1 = K−1

k − CTK−1
k δhT(I + CTδhK−1

k δh)−1δhK−1
k . (11)

Subsequently, βS can be updated using Equation (12):

βk+1
S = K−1

k+1(Rightk + CTδhTδt) = βk
S − CTK−1

k+1δhT(δhβk
S − δt). (12)

For case 2, let Kk+1 be defined as Equation (13):

Kk+1 = Kk + CT P−1HSδhTδhHT
S . (13)

Similarly, the update of the intermediate result and output weight can be written as Equations (14)
and (15), respectively, where δk = δhHT

S :

K−1
k+1 = K−1

k − K−1
k CT P−1(I + δkTδkK−1

k CT P−1)−1δkTδkK−1
k , (14)

βk+1
S = HT

S K−1
k+1Rightk+1 = βk

S − CT HSK−1
k+1P−1HSδhT(δhβk

S − δt). (15)

The pseudo code for ODAELM-S is shown in Algorithm 1. Before the updates begin,
ODAELM-S first initializes a base classifier using source domain data (lines 1–3). When a base
classifier has been created, the classification of gases can be available. When a new sample in the target
domain arrives, ODAELM-S calculates the possibility for samples in the target domain to be selected
and labeled (lines 5–6). When the process is determined (line 7), a group of unlabeled sample will be



Sensors 2018, 18, 742 9 of 29

selected as δSet (lines 8–9). Based on whether HS has more rows or columns, ODAELM-S updates the
corresponding hidden layer output and some intermediate result (lines 10–16). The process continues
when no more samples arrive.

Algorithm 1 Pseudo Code for ODAELM-S.

Input:
L := the number of hidden layer neurons;
Act := the activation function type;
SD := the source domain data;

1: Initialize two empty sets, i.e., LSet and USet, as labeled and unlabeled sets, respectively;
2: Set activation function as Act and initialize an ELM with L hidden nodes with SD;
3: Let Hs be defined as in Equation (9);
4: while new sample x in the target domain arrives do

5: Calculate the probability P for labeling;
6: Generate random value between 0 and 1 as p;
7: if p < P then

8: Add x to USet;
9: Select a group of samples from USet as δSet for labeling;

10: if HS has more rows then

11: Update the classifier using Equations (11) and (12);
12: else

13: Update the classifier using Equation (14) and (15);
14: end if
15: Set LSet = LSet− δSet and USet = USet− δSet;
16: else

17: Add x to USet;
18: end if
19: end while

3.3. Online Target Domain Adpatation Extreme Learning Machine

To transform DAELM-T into its online learning version, we proposed Online Target Domain
Adaptation Extreme Learning Machine (ODAELM-T). Different from ODAELM-S, ODAELM-T
leverages both labeled and unlabeled samples in the target domain by using Equation (16), in which
βT is the output weight matrix, CT , HT , tT are the same as in DAELM-S, and CTu and HTu are the
corresponding regularization parameter and the hidden layer output of the unlabeled samples in the
target domain. Obviously, the update of the model is more complicated than ODAELM-S:

min
βT

1
2
‖βT‖2 +

CT
2
‖tT − HT βT‖2 +

CTu
2
‖HTuβS − HTuβT‖2. (16)

Figure 3 shows the procedure of ODAELM-T. Initially, a source classifier is trained on a source
domain. Unlike ODAELM-S in which the classifier is built upon both source domain and labeled
samples in the target domain, in DAELM-T, only the output weight matrix βS contributes to the
initialization and updates of the target classifier. In ODAELM-T, solving Equation (16) results in
two different cases depending on the numbers of rows and columns. In [27], when the number of
rows in HT is smaller than that of columns, the Lagrange multiplier method was applied by using
βT = HT

T αT + HT
TuαTu. It is equal to assuming that the output weight is a linear combination of HT

and HTu. However, due to the fact that the two cases are based on the rows and columns of HT ,



Sensors 2018, 18, 742 10 of 29

it is reasonable to just assume βT = HT
T αT . Therefore, we can rewrite the output weight matrix of

DAELM-T as Equation (17), where P = HT HT
T and Q = HT HT

Tu.

βT =

{
(I + CT HT

T HT + CTu HT
TuHTu)

−1(CT HT
T TT + CTuHT

TuHTuβS), HT has more rows,

HT
T (I + CT P + CTuP−1QQT)−1(CTTT + CTuP−1QHTuβS), HT has more columns.

(17)

…

……Source 
Domain

Labeled

Unlabeled

Target

Xi

Xi+1

Xi-1

…
…

…

……

T


S


-1K

Update
X

iis lab
e

led

Xi is selected and labeled

Xi is unlabeled

Source classifier

Target classifier

A
rrival Seq

u
en

ce

Figure 3. Online updating of ODAELM-T regarding different cases.

Based on the appendix of [50], we know that the Gaussian kernel is of full rank in any case.
In ELM, HHT and HT H are ”ELM kernel” matrices [51]. Noting that Gaussian kernel is a special
Radial Basis Function (RBF) kernel, we can ensure that HT HT

T and HT
T HT is of full rank if we use

Gaussian function as the activation function. Moreover, we can further induce that Lemma A1 stands
(see Appendix A), so Equation (17) can be transformed into online learning versions.

When new sample Xi arrives, the algorithm determines whether to select and label a group of
samples in the target domain. When no such process happens, Xi is added into the unlabeled set.
However, when the process takes place, δSet, which is described earlier, may consist of one or more
samples and Xi may or may not be in it. Due to the fact that manually labeling is time consuming,
when Xi arrives at first, it will be put into an unlabeled set. When δSet is determined, ODAELM-S will
first take out the effects of these samples by using decremental learning in unlabeled sets. Subsequently,
when the labeling is finished, ODAELM-T will perform incremental learning in the target domain.
Therefore, there are three different learning mechanisms in ODAELM-T, which ensure the classifier is
up-to-date during its lifetime.

The pseudo code for ODAELM-T is described as Algorithm 2. Initially, ODAELM-T generates
a source classifier as ODAELM-S does (lines 2–3) and sets the labeled and unlabeled sets as LSet
and USet, respectively. When new sample x in the target domain arrives, ODAELM-T calculates the
probability of selecting and labeling samples in the target domain as ODAELM-S does (lines 5–6).
When the selection and labeling happens, ODAELM-T firstly adds x into USet and selects the group
of samples from target domain for labeling (lines 8–9). Note that, initially, there is no target classifier.
Therefore, ODAELM-T will initialize an ELM with L hidden nodes when the first group of samples
are labeled (lines 11–12). Once the target classifier is initialized, the target classifier will update itself
based on the changes between LSet and USet. When x is added into USet, ODAELM-T follows
unlabeled incremental learning. After a group of samples, i.e., δSet, are chosen, ODAELM-T will
perform unlabeled decremental learning (lines 15–16). Subsequently, when δSet was manually labeled,



Sensors 2018, 18, 742 11 of 29

ODAELM-T will perform incremental learning (lines 17–18). In the circumstance that no labeling
happens, there is only unlabeled incremental learning (lines 21–22).

Algorithm 2 Pseudo Code for ODAELM-T.

Input:
L := the number of hidden layer neurons;
Act := the activation function type;
SD := the source domain data;

1: Initialize labeled and unlabeled set as LSet and USet, respectively.
2: Initialize the source classifier of L hidden nodes using ActType with SD;
3: Let HS and βS be defined as Equation (17);
4: while new sample x in the target domain arrives do

5: Calculate the probability P for labeling;
6: Generate random value between 0 and 1 as p;
7: if p < P then

8: Add x into USet;
9: Select a group of samples as δSet in the target domain for labeling;

10: if LSet is empty then

11: LSet = δSet;
12: Initialize a target classifier of L hidden nodes using Equation (17);
13: else

14: perform unlabeled incremental learning where increment is x;
15: USet = USet− δSet;
16: perform unlabeled decremental learning where decrement is δSet;
17: when the labeling process completes, LSet = LSet + δSet;
18: perform labeled incremental learning where increment is δSet;
19: end if
20: else

21: Add x into USet;
22: perform unlabeled incremental learning where the increment is x;
23: end if
24: end while

3.3.1. Unlabeled Incremental Learning

As shown in Figure 4, only the unlabeled set changes by adding Xi when a new sample arrives
in an unlabeled incremental learning phase. The target classifier is calculated based on both of the
samples in labeled and unlabeled sets. To provide efficient updates without repeatedly calculating
the unchanged set, we can choose some intermediate result to compute the current output weight of
the classifier.

For simple illustration purposes, we divided Equation (17) into two parts and let Right =

CT HT
T TT + CTuHT

TuHTuβS. Let the intermediate result for current ELM be Kk, and the output weight
matrix be βk

T = K−1
k Rightk. When new sample Xi arrives, the corresponding hidden layer output of

the target classifier can be computed as δh. Similar to OSELM, we can use the intermediate result K−1
k+1

for (k + 1)th update, where Kk+1 is defined as Equation (18):

Kk+1 = I + CT HT
T HT + CTu(HT

Tu HTu + δhTδh) = Kk + CTuδhTδh. (18)

Subsequently, Rightk+1 becomes Equation (19):

Rightk+1 = Rightk + CTuδhTδhβS. (19)



Sensors 2018, 18, 742 12 of 29

Target

Xi

Xi+1

Xi-1

…
…

Unlabeled Set

Labeled Set

Xi

…

……

T


Update

A
rrival Seq

u
en

ce

Figure 4. Unlabeled incremental learning.

Based on the Sherman–Morrison–Woodbury formula, the inverse of Kk+1 can be obtained as
Equation (20):

K−1
k+1 = (Kk + CTuδhTδh)−1 = K−1

k − CTuK−1
k δhT(I + CTuδhK−1

k δhT)−1δhK−1
k . (20)

Note that βk+1
T = K−1

k+1Rightk+1. By multiplying KkK−1
k before Rightk in Equation (19), we can

obtain the formula for βk+1
T as Equation (21):

βk+1
T = K−1

k+1(KkK−1
k Rightk + CTuδhTδhβS)

= K−1
k+1(Kkβk

T + CTuδhTδhβS)

= K−1
k+1((Kk+1 − CTuδhTδh)βk

T + CTuδhTδhβS)

= βk
T − K−1

k+1CTuδhTδh(βk
T − βS).

(21)

For the case where HT has more columns than rows, Kk+1 can be written as Equation (22).
Let Qk+1QT

k+1 and Rightk+1 be Equations (23) and (24), respectively:

Kk+1 = (I + CT P + CTuP−1QkQT
k + CTuP−1HTδhTδhHT

T ) = Kk + CTuP−1HTδhTδhHT
T , (22)

Qk+1QT
k+1 = HT

[
HT

Tu δhT ,
] [HTu

δh

]
HT

T = QkQT
k + HTδhTδhHT

T (23)

Rightk+1 = CTTT + CTuP−1HT(HT
TuHTu + δhTδh)βS = Rightk + CTuP−1HTδhTδhβS. (24)

For illustration purposes, let δ k = δhHT
T . Similarly, K−1

k+1 can be derived as Equation (25) based
on the Sherman-Morrison-Woodbury formula:

K−1
k+1 = K−1

k − K−1
k CTuP−1(I + δkTδkK−1

k CTuP−1)−1δkTδkK−1
k . (25)

Consequently, the output weight βk+1
T can be derived as Equation (26):

βk+1
T = HT

T K−1
k+1Rightk+1

= HT
T K−1

k+1(Rightk + CTuP−1HTδhTδhβS)

= HT
T K−1

k+1(KkK−1
k Rightk + CTuP−1HTδhTδhβS)

= βk
T − CTu HT

T K−1
k+1P−1HTδhTδh(βk

T − βS).

(26)

3.3.2. Unlabeled Decremental Learning

When a group of samples (δSet) are selected for labeling, ODAELM-T updates the model first
by eliminating the effects of samples in δSet. The process is called unlabeled decremental learning.



Sensors 2018, 18, 742 13 of 29

As shown in Figure 5, Xk is selected from an unlabeled set for labeling process. Note that k can be any
arbitrary index from 1 to i, and there can be more than one sample for labeling.

Labeling

Unlabeled Set

Labeled Set

Xi

…

……

T


UpdateXk

Figure 5. Unlabeled decremental learning.

Let the corresponding hidden layer output of δSet be δh. For the case where there are more rows
than columns, let K and Right be written as Equation (27):

K = I + CT HT
T + CTuHTuHTu,

Right = CT HT
T HT + CTuHT

TuHTuβS.
(27)

For current update procedure, the intermediate result K−1
k+1 can be formulated as Equation (28):

Kk+1 = Kk − CTuδhTδh,

K−1
k+1 = K−1

k + CTuK−1
k δhT(I − CTuδhK−1

k δhT)−1δhK−1
k .

(28)

Correspondingly, the output weight βk+1
T can be formulated as Equation (29):

βk+1
T = K−1

k+1Rightk+1 = βk + CTuδhTδh(βk
T − βS). (29)

For the case where there are more columns than rows, let P = HT HT
T and Q = HT HT

Tu. Since HTu
has changed, the corresponding results regarding P and Q can be written as Equation (30):

(Hk+1
Tu )T Hk+1

Tu = HT
Tu HTu − δhTδh,

Qk+1QT
k+1 = QkQT

k − HTδhTδhHT
T ,

Qk+tHk+1
Tu = HT(HT

TuHTu − δhTδh).

(30)

Note that Kk+1 and Rightk+1 can be written as Equation (31):

Kk+1 = Kk − CTuP−1HTδhTδhHT
T ,

Rightk+1 = Rightk − CTuP−1HTδhTδhβS.
(31)

Subsequently, we can write the intermediate result and the output weight matrix as Equations (32)
and (33), respectively, where δk is defined as δk = δhHT

T :

K−1
k+1 = K−1

k + CTuK−1
k P−1(I − CTuδkTδkK−1

k P−1)−1δkTδkK−1
k , (32)

βk+1
T = HT

T K−1
k+1Rightk+1 = βk

T + CTuHT
T K−1

k+1P−1HTδhTδh(βk
T − βS). (33)



Sensors 2018, 18, 742 14 of 29

3.3.3. Labeled Incremental Learning

After new samples are manually labeled, the incremental learning ensures that the model does not
need to be recomputed from scratch. As shown in Figure 6, the unlabeled samples remain unchanged
in this case. Therefore, the changes happens in HT . The decremental part Xk in this process is added
into a labeled set. Note that Xk in the figure is just an example and there can be more than one sample
added into the labeled set.

Labeling

Ulabeled Set

Labeled Set

Xi
…

……

T


UpdateXk

Xk

Figure 6. Labeled incremental learning.

Let the increment part be δSet with its label be δt, and the corresponding hidden layer output be
δh. For the case where HT has more rows, let the current intermediate result Kk be Equation (34):

Kk = I + CT HT
T HT + CTuHT

TuHTu. (34)

When increment δSet arrives, the hidden layer output becomes Hk+1
T =

[
HT
δh

]
and the

intermediate results can be derived as Equation (35):

Kk+1 = (I + CT(Hk+1
T )T Hk+1

T + CTuHT
Tu HTu) = Kk + CTδhTδh. (35)

By using Woodbury formula, the inverse of Kk+1 can be formulated as Equation (36):

K−1
k+1 = K−1

k − CTK−1
k δhT(I + CTδhK−1

k δhT)−1δhK−1
k . (36)

Let Right be CT HT
T TT + CTuHT

TuHTuβS, and then Rightk+1 can be formulated as Equation (37):

Rightk+1 = Rightk + CTδhTδt. (37)

Substitute Equations (36) and (37) into Equation (17), and the current output weight can be
formulated as Equation (38):

βk+1
T = K−1

k+1Rightk+1 = K−1
k+1(Kkβk+1

T + CTδhTδt) = βk
T − CTK−1

k+1δhT(δhβk
T − δt). (38)

For the case where HT has more columns, let Kk be Equation (39), where Pk = HT HT
T and

Qk = HT HT
Tu:

Kk = I + CT Pk + CTuP−1
k QkQT

k . (39)



Sensors 2018, 18, 742 15 of 29

The inverse of Kk+1 involves updates of Pk+1 and P−1
k+1Qk+1QT

k+1. Meanwhile, the inverse of
current Pk+1 becomes Equation (40) where C = HTδhT , d = δhδhT and F2 = (d− CP−1

k C)−1:

P−1
k+1 =

[
Pk HTδhT

δhHT
T δhδhT

]−1

=

[
P−1

k (I + CF2CT P−1
k ) −P−1

k CF2

−F2CT P−1
k F2

]
=

[
P11 P12

P21 P22

]
. (40)

Note that Qk+1QT
k+1 and P−1

k+1Qk+1QT
k+1 can be formulated as Equations (41) and (42), respectively:

Qk+1QT
k+1 =

[
HT
δh

]
HTu HT

Tu

[
HT
δh

]T

=

[
HT HT

TuHTuHT
T HT HT

TuHTuδhT

δhHT
Tu HTuHT

T δhHT
TuHTuδhT

]
=

[
QQ11 QQ12

QQ21 QQ22

]
,

(41)

P−1
k+1Qk+1QT

k+1 =

[
PQQ11 PQQ12

PQQ21 PQQ22

]
. (42)

To further compute the result, the formula becomes too complex, which increases the computation
cost. Therefore, in this case, we simply update the output weight matrix betak+1 based on the batch
learning version. However, in order for the two cases to combine together, we still use Equation (43)
where Rightk+1 is formulated as Equation (44):

βk+1 =

[
HT
δh

]
K−1

k+1Rightk+1, (43)

Rightk+1 = CT

[
TT
δt

]
+ CTuP−1

k+1Qk+1HTuβS. (44)

Considering that HT changes with the arrival of Xi, the relation between the numbers of rows and
columns in HT may not be static over time. To be specific, transitions may happen when the numbers
of rows and columns are the same. Initially, the labeled set has few samples and increases as the
labeling happens. Given enough time and samples, eventually, the size of the labeled set will match
the size of the hidden neurons, i.e., the numbers of rows and columns in HT are the same. At this time
stamp, case 1 and 2 coincide with each other. In order to continue performing incremental learning,
the transition between the intermediate results of the two cases happens.

For the case where there are more rows than columns, βT = K−1
1 Right1 where K1 and Right1 can

be formulated as Equation (45), respectively:

K1 = I + CT HT
T HT + CTu HT

Tu HTu,

Right1 = CT HT
T TT

T + CTu HT
Tu HTuβS.

(45)

For the case where there are more columns than rows, βT = K−1
2 Right2 where K2 and Right2 can

be formulated as Equation (46):

K2 = I + CT P + CTuP−1QQT ,

Right2 = CTTT + CTuP−1QHTuβS.
(46)

When the rows are equal to the columns, the two expressions should be equal. In this case,
both HT HT

T and HT
T HT are invertible. Hence, HT

T P−1HT = (HT
T HT)

−1HT
T HT HT

T P−1HT = I. Therefore,
intermediate results for transition between the two cases follow Equations (47) and (48):

HT
T Right2 = CT HT

T TT + CTuHT
T (HT HT

T )
−1HT HT

TuHTuβS = Right1, (47)

HT
T K−1

2 HT P−1 = K−1
1 . (48)



Sensors 2018, 18, 742 16 of 29

4. Experiments

4.1. Experimental Data Description

In order to verify the effectiveness of the proposed methods, the chemical gas sensor dataset
published on University of California Irvine (UCI) machine learning repository was used in the paper.
Table 1 shows the details of the dataset. The data comprise readings from a sensor array of 16 metal
gas sensors for continuous 36 months and one label field. For each gas sensor, the reading contains
two steady status and six dynamic measurements. For details of the dataset, see [52].

Table 1. Dataset of sensor drift in E-Nose systems [52].

Batch No. Months
Number of Samples

Ethanol Ethylene Ammonia Acetaldehyde Acetone Toluene

1 1, 2 83 30 70 98 90 74
2 3, 4, 8, 9, 10 100 109 532 334 164 5
3 11, 12, 13 216 240 275 490 365 0
4 14, 15 12 30 12 43 64 0
5 16 20 46 63 40 28 0
6 17, 18, 19, 20 110 29 606 574 514 467
7 21 360 744 630 662 649 568
8 22, 23 40 33 143 30 30 18
9 24, 30 100 75 78 55 61 101

10 36 600 600 600 600 600 600

4.2. Experimental Setup

All experiments in this paper were conducted in Matlab (2015b, MathWorks, Natick, MA, USA)
on a Linux Workstation (Shanghai, China) with an E5 2.6-GHz CPU and 32 GB RAM. The settings
for ELM network followed the work in [27], which used up to 1000 hidden layer nodes with RBF
activation function. The parameters, tagged Cs, CT and CTu, have the same meaning and value as
in [27].

The batches are organized in sequence based on their batch number. The current batch was used
as a target domain, in which the samples were randomized and organized in sequence to simulate the
arrival of samples in online scenarios. Meanwhile, the previous batch was used as the source domain.
The performance of the target classifier was recoded at each arrival of samples and formulated as
Equation (49), in which Num+ was the number of correctly classified sample and Total referred to the
number of the samples received so far:

Accuracy =
Num+

Total
. (49)

To show the effectiveness of the proposed methods, we compared them with original batch
learning versions, i.e., DAELM-T and DAELM-S. In addition, we chose an additional four commonly
used machine learning-based methods. Firstly, ELM, SVM and Random Forest (RF) are chosen for
their frequent uses in constructing classifiers, among which ELM shares a similar structure with the
proposed methods while SVM and RF are two commonly used methods in classification. Secondly,
ensemble based methods have been widely used in gas sensor domains. Hence, we also included
Ensemble-SVM and Ensemble-ELM in which the sub-classifiers were built based on SVM and ELM,
respectively. To sum up, we compared both ODAELM-S and ODAELM-T with seven machine
learning-based methods. In the experiments, we did not use models such as Recurrent Neural
Network (RNN) to learn the temporal behavior of the sensor errors. One reason is that the dataset we
have at hand has been preprocessed by the publishers. The temporal information has been transformed
into a steady and dynamic state of Exponential Moving Average (EMA) model, which does not include
time information any more. Additionally, RNN and similar models such as Long Short-Term Memory



Sensors 2018, 18, 742 17 of 29

(LSTM) are trained using Backpropagation through time (BPTT) or its variants. If the models are
unfolded over time, they each can be viewed as a deep neural network. Training such deep neural
networks can be very time-consuming, and so is updated. Hence, we do not compare the proposed
methods with these models for the training time does not fit for online scenario. Accelerating the
learning process of RNN or LSTM is another research area that is outside the scope of this paper.

In the experiments, we used the following experimental settings to evaluate the performances of
the proposed methods regarding both classification accuracy and processing time.

• Setting 1: The labeled sets were selected from each target domain beforehand using the KS
algorithm. In the arrival of the target samples, the methods treated the sample as labeled if it
was in the pre-selected labeled sets, and vice versa. In this way, all the methods used in the
experiment shared the same sample labeling process in the same arrival sequence of samples in
the target domain. Although this setting does not work in practice, it can quantitatively evaluate
the performance between offline and online learning, especially in processing time.

• Setting 2: The samples in the target domain was treated as a data flow and fed to the classification
model in a one-by-one manner. The labeling process was treated as a random event in which
the probability of labeling was related to current received and labeled samples only. To stop the
the number of labeled samples from becoming too many, we set a threshold as 0.9. When the
classification rate reaches the threshold, the probability of labeling is set to 0. This setting
stimulates real application scenarios to provide qualitative comparisons for the proposed methods.

• Setting 3: The samples in the target domain was treated in the same way as setting 2. However,
in this setting, we assume the testing accuracies on target domain would act as feedback and
the probability of labeling was related to it as well. This setting stimulates another application
scenario to show the effectiveness of the proposed methods.

4.3. Performance Evaluation

4.3.1. Results Using Setting 1

To model the sequence of the sample, we randomized the data and used KS on them to select
50 representative samples for every target domain. Both recognition accuracies and the processing
time were recorded each time when a new sample arrived.

Note that DAELM-S and DAELM-T do not work in online learning scenarios directly. In order
to show the improvements of online learning versions, we used DAELM-S and DAELM-T to update
the model and recorded the classification errors and processing time whenever a new sample arrived.
As shown in Figure 7, the errors of four methods decrease as the number of samples increases.
Meanwhile, the offline learning versions (DAELM-S and DAELM-T) have slightly better performances
than their online learning versions (ODAELM-S and ODAELM-T), respectively. It is due to the
computation errors accumulated whenever the updating happens. However, the difference between
DAELM-S and ODAELM-S is minor and the same observation can be obtained between DAELM-T and
ODAELM-T. In the meantime, the difference between DAELM-S and DAELM-T is notable. When the
number of samples are limited, the error of DAELM-T increases by more than 10% when compared
with DAELM-S, and similar results can be seen between ODAELM-T and ODAELM-S. When the
number of samples increases, the performances of DAELM-S and DAELM-T draw close to each other
and the difference is not large for observation except in the target domain 6 where ODAELM-T has
around 10% less accuracy than ODAELM-S is. The same results apply to ODAELM-S and ODAELM-T.
To sum up, the online learning versions have approximately equivalent performance compared with
their offline learning versions regarding classification accuracy. In addition, ODAELM-S can work
with limited samples while ODAELM-T reaches its maximum performance when the number is large.



Sensors 2018, 18, 742 18 of 29

0 200 400 600 800 1000 1250
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(a) Target domain 1 (batch 2).

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(b) Target domain 2 (batch 3).

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(c) Target domain 3 (batch 4).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(d) Target domain 4 (batch 5).

0 500 1000 1500 2000 2300
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(e) Target domain 5 (batch 6).

0 500 1000 1500 2000 2500 3000 3700
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(f) Target domain 6 (batch 7).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(g) Target domain 7 (batch 8).

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(h) Target domain 8 (batch 9).

0 500 1000 1500 2000 2500 3000 3700
0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(i) Target domain 9 (batch 10).

Figure 7. Classification errors on nine target domains using setting 1. The y-axis represents the error
rate, in which 1 equals 100%. The x-axis is the number of samples arrived. The proposed methods and
their batch learning versions are plotted in different colors.

To quantitatively show their computing complexities, the processing time of DAELM-S, DAELM-T,
ODAELM-S and ODAELM-T were recorded and shown in Figure 8. In Figure 8a, the processing time
of DAELM-T is remarkably larger than the other three methods. The reason is due to the fact that it
updates whenever a new sample arrives regardless of labeling or not. Note that it follows a batch
learning mechanism, which means that the computing complexity increases as the size of data increases.
DAELM-S is also a batch learning method. The difference is that the updates of DAELM-S happen
when a sample in the target domain is labeled. Therefore, much fewer updates happen compared
with DAELM-T in general. In the experiment, there are 50 updates in total for DAELM-S. In fact,
when the samples in the target domain are limited, such as target domains 7 and 8, the performance
between DAELM-S and DAELM-T is almost indifferent. However, unlike DAELM-T whose computing
complexity is closely tied to the size of target domain, the processing time of DAELM-S owes largely
to the source domain, which is used to train the classifier. For example, in target domain 7, when the
source domain has over 3000 samples, the processing time is almost two to three times that of target
domain 8, which only uses less than 1000 samples as the source domain for training. As for ODAELM-S
and ODAELM-T, it can be noted that both of the methods are, in general, less time-consuming than
their batch learning versions. In some batches, the differences between ODAELM-S and DAELM-S
are not large because the updates only happens 50 times. Nevertheless, for those target domain
whose source domain is large, for example target domain 7, the difference between ODAELM-S and
DAELM-S is obvious. As for ODAELM-T, it saves an enormous amount of time due to the online
learning mechanism. Specifically, both ODAELM-T and DAELM-T have updates when a new sample



Sensors 2018, 18, 742 19 of 29

arrives. However, ODAELM-T maintained the time for updates at a certain level regardless of the size
of target domain while the updates of DAELM-T increase as the size of the received samples grows.

To better show the performance of the proposed methods, the average accuracies of the
aforementioned methods and other commonly used classification algorithms are listed in Table 2 in
which the letter D in the header represents the target domain. In the table, ELM, SVM and RF all include
current labeled samples in the training process, i.e., the training set includes both source domain
and the labeled sample in the target domain. En-ELM and En-SVM use the previous batches to train
sub-classifiers and combine them together using their training accuracies as the weight. For example, in
the target domain 3 (batch 4), batches 1 to 3 are used to train three sub-classifiers separately. As shown
in the table, domain adaptation based methods are more accurate for all target domains in general.
ELM, SVM and RF have over 90% and only DAELM-S and ODAELM-S exceed them by around 1%.
However, ELM and SVM have relatively low accuracies in other target domains—for example in D8.
RF has the second average accuracy, which is only less than 2% lower that of DAELM-S. However, the
training part is even more time-consuming than DAELM-T. For example, in target domains 6 and 8,
it took over 6000 s in total. For ensemble-based methods, i.e., En-ELM and En-SVM, their accuracies
tend to be better than ELM and SVM when the target domain number is large. This is partly due
to the fact that large target domain number means more source domains to generate sub-classifiers.
In target domains 4, 5, 8 and 9, the ensemble-based methods outperform ELM and SVM. Between the
online learning version, i.e., ODAELM-S and ODAELM-T, the performance of ODAELM-S is almost
the same as DAELM-S, which has the highest average accuracy. ODAELM-T is around 8% lower that
of DAELM-S and ODAELM-S in this setting. Considering the fact that, in setting 1, 50 representative
samples are scattered in the arrival sequence, the reason for low accuracy may be the lack of enough
labeled samples for DAELM-T and ODAELM-T.

1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

P
ro

c
e

s
s
in

g
 T

im
e

DAELM-S DAELM-T ODAELM-S ODAELM-T

(a)
1 2 3 4 5 6 7 8 9

0

50

100

150

P
ro

c
e
s
s
in

g
 T

im
e

DAELM-S DAELM-T ODAELM-S ODAELM-T

(b)

Figure 8. Processing time of DAELM-S, DAELM-T, ODAELM-S and ODAELM-T. The four methods are
colored as the legend shows. (a) demonstrates the overall processing time for all nine target domains.
Because DAELM-T is more time-consuming than the others; (b) is presented to help observe the
differences of the other three methods.

Table 2. Comparisons of average accuracies using setting 1.

Methods
Average Accuracy (%)

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 Average

ELM 63.6 52.5 69.9 64.1 64.2 70.7 91.9 49.7 25.2 61.3
SVM 80.8 84.2 88.9 86.8 66.6 76.6 95.3 69.9 34.2 75.9
RF 82.4 89.2 97.2 97.6 83.7 72.6 95.5 92.5 43.9 83.8

En-ELM 76.9 74.0 67.4 97.7 72.2 69.9 84.1 41.1 46.6 70.0
En-SVM 76.8 74.2 82.6 68.0 66.5 66.1 53.7 59.0 48.6 66.2

DAELM-S 88.2 81.7 94.1 96.5 90.9 79.5 97.9 92.5 45.9 85.2
DAELM-T 79.7 80.9 89.9 90.8 89.5 64.5 83.0 79.0 42.6 77.8

ODAELM-S 81.3 87.8 94.0 90.2 85.8 81.2 96.9 89.1 45.6 83.5
ODAELM-T 75.5 79.9 84.0 85.3 83.3 62.0 78.6 77.6 40.8 74.1



Sensors 2018, 18, 742 20 of 29

As shown in Table 2, all methods experienced a large decrease of accuracy in D 9, given the fact
that the data in all target domains except the 9th are collected in continuous months. For example,
the data in the 1st target domain are collected from the 3rd to 10th months while the ones in the
2nd target domain are gathered from 11th to 13th. However, between target domains 8 and 9, there is
a five-month vacuum. The limited number of samples in source domain may be another factor
affecting the performance. However, given the classification accuracy in Figure 7, target domain 5,
which has limited source domain samples, does not have such degradation in accuracy as target
domain 9 does. Therefore, the number of samples in the target domain is not the reason, which leaves
the long delay between target domains 8 and 9 being the main factor. Similar results can also be found
in Tables 3–6. The time of delay may have caused large distribution changes between target domains 8
and 9, which directly leads to the degradation of accuracies. However, we cannot be certain unless we
can retrieve the data of the missing months.

Table 3. Comparisons of average classification accuracies using setting 2.

Methods
Average Accuracy (%)

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 Average

ELM 84.5 64.3 47.7 87.4 91.5 78.5 88.8 89.7 71.4 78.2
SVM 78.6 87.7 64.9 57.8 85.8 81.7 55.3 87.0 61.4 73.4
RF 61.4 64.9 67.7 62.9 53.5 65.9 94.2 39.3 21.4 59.0

En-ELM 76.9 74.0 67.4 97.7 72.2 69.9 84.1 41.1 46.6 70.0
En-SVM 76.8 74.2 82.6 68.0 66.5 66.1 53.7 59.0 48.6 66.2

DAELM-S 91.7 95.7 88.9 95.1 91.5 91.4 93.2 92.2 71.9 90.2
DAELM-T 91.2 91.9 85.1 89.7 92.6 92.9 82.2 96.2 79.0 89.0

ODAELM-S 84.0 90.0 85.7 89.2 87.5 90.6 94.9 80.6 68.5 85.7
ODAELM-T 91.5 90.2 87.5 90.3 92.5 85.3 81.2 89.2 58.6 85.4

Table 4. Comparisons of final classification accuracies using setting 2.

Methods
Final Accuracy (%)

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 Average

ELM 90.4 71.4 57.8 93.4 93.6 84.2 88.3 90.4 77.6 83.0
SVM 87.8 90.5 65.8 86.3 95.0 90.1 58.8 97.0 73.3 82.7
RF 63.3 64.8 66.5 58.9 51.5 66.0 92.5 39.6 21.8 58.4

En-ELM 76.9 82.5 74.5 97.5 72.3 69.5 85.4 46.0 52.9 73.0
En-SVM 73.2 74.8 86.9 70.1 65.6 65.5 54.4 62.3 48.6 60.2

DAELM-S 91.3 96.5 93.8 97.5 91.5 92.7 93.9 93.2 85.0 92.8
DAELM-T 90.6 91.3 94.4 94.4 92.9 93.9 92.2 98.7 79.8 92.0

ODAELM-S 87.7 90.8 87.0 91.9 91.1 92.1 93.5 97.9 69.9 89.1
ODAELM-T 92.2 90.7 98.8 94.9 94.0 84.4 95.9 92.3 63.7 89.7

Table 5. Comparisons of average classification accuracies using setting 3.

Methods
Average Accuracy (%)

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 Average

ELM 75.3 60.4 45.5 91.6 90.7 73.6 85.6 84.3 66.8 74.9
SVM 78.6 88.6 64.5 61.4 85.7 81.5 55.3 85.1 61.2 73.5
RF 61.4 64.9 67.7 62.9 53.5 65.9 94.2 39.3 21.4 58.4

En-ELM 76.9 74.0 67.4 97.7 72.2 69.9 84.1 41.1 46.6 70.0
En-SVM 76.8 74.2 82.6 68.0 66.5 66.1 53.7 59.0 48.6 66.2

DAELM-S 90.3 93.4 90.6 90.2 91.2 82.8 91.4 90.9 74.5 88.4
DAELM-T 91.2 92.0 84.9 85.0 91.9 85.5 80.0 94.8 80.0 87.3

ODAELM-S 83.0 89.5 83.6 78.3 86.4 90.0 93.9 79.5 64.1 83.1
ODAELM-T 90.5 93.5 76.9 87.4 94.0 85.8 84.3 90.3 71.7 86.0



Sensors 2018, 18, 742 21 of 29

Table 6. Comparisons of final classification accuracies using setting 3.

Methods
Final Accuracy (%)

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 Average

ELM 81.1 63.6 51.6 96.4 95.6 78.5 90.5 94.0 70.4 80.2
SVM 87.8 93.6 65.8 85.8 94.8 90.1 58.8 94.0 73.6 82.1
RF 63.3 64.8 66.5 58.9 51.5 66.0 92.5 39.6 21.8 58.4

En-ELM 76.9 82.5 74.5 97.5 72.3 69.5 85.4 46.0 52.9 73.0
En-SVM 73.2 74.8 86.9 70.1 65.6 65.5 54.4 62.3 48.6 60.2

DAELM-S 92.2 93.5 90.1 91.9 91.7 86.5 92.5 93.2 78.3 89.9
DAELM-T 90.6 91.4 94.4 91.9 92.1 94.7 91.5 97.0 80.7 91.6

ODAELM-S 86.8 90.7 80.0 81.2 90.5 90.8 92.9 97.2 68.7 86.5
ODAELM-T 91.7 95.4 83.2 94.4 95.6 87.9 90.8 94.0 69.1 89.1

4.3.2. Results Using Setting 2

Note that, in practice, setting 1 does not exist since we cannot select the representative samples
based on the distribution of the target domain beforehand. Therefore, to prove the effectiveness
of the proposed methods, we use settings 2 and 3 to demonstrate possible labeling strategies in
application scenarios.

0 200 400 600 800 1000 1250
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(a) Target domain 1 (batch 2).

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(b) Target domain 2 (batch 3).

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(c) Target domain 3 (batch 4).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(d) Target domain 4 (batch 5).

0 500 1000 1500 2000 2300
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(e) Target domain 5 (batch 6).

0 500 1000 1500 2000 2500 3000 3700
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(f) Target domain 6 (batch 7).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(g) Target domain 7 (batch 8).

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(h) Target domain 8 (batch 9).

0 500 1000 1500 2000 2500 3000 3700
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(i) Target domain 9 (batch 10).

Figure 9. Classification errors on nine target domains using setting 2. The x- and y-axes are the same
as Figure 7.

In setting 2, we choose the time of labeling and the number of labels based on the numbers of
the current arrival and selected samples so far. Figure 9 shows the classification errors of nine target
domains. As shown in the figure, all domain adaptation based methods quickly reach minimum errors
for all target domains except for target domains 7 and 9. In target domain 7, both DAELM-T and
ODAELM-T experience high classification errors before 1/3 of the samples arrives. This is partly due



Sensors 2018, 18, 742 22 of 29

to the fact the number of the samples in this domain is less than that of other batches. Similar to the
results in setting 1, ODAELM-S tends to work under limited labeled samples. In some circumstances,
such as Figure 9h, patterns in the labeled set may contradict that in the source domain, which causes
the error to increase between 150 to 400. Meanwhile, ODAELM-T does not have the problem and its
errors keep decreasing as the number of labeled samples increases.

Figure 10 shows the corresponding numbers of labeled samples in nine target domains. As shown
in the figure, the numbers of labeled samples for both offline and online learning methods are
maintained in less than 65 except target domains 7 and 9 in which the total numbers of samples
are over 3000. The reason is that the classification accuracy does not quickly reach the threshold.
Hence, although the strategy ensures that the chance of labeling decreases as the number of labeled
samples increases, the chance of labeling still exists and the value increases when new samples keep
arriving and no labeling happens. However, even in these two domains, the labeled samples is less
than 1/20 of the total samples.

0 200 400 600 800 1000 1250
0

20

40

60
65

DAELM-S DAELM-T ODAELM-S ODAELM-T

(a) Target domain 1 (batch 2).

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

DAELM-S DAELM-T ODAELM-S ODAELM-T

(b) Target domain 2 (batch 3).

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

DAELM-S DAELM-T ODAELM-S ODAELM-T

(c) Target domain 3 (batch 4).

0 50 100 150 200
0

5

10

15

20

25

DAELM-S DAELM-T ODAELM-S ODAELM-T

(d) Target domain 4 (batch 5).

0 500 1000 1500 2000 2300
0

10

20

30

40

50

DAELM-S DAELM-T ODAELM-S ODAELM-T

(e) Target domain 5 (batch 6).

0 500 1000 1500 2000 2500 3000 3700
0

50

100

150

DAELM-S DAELM-T ODAELM-S ODAELM-T

(f) Target domain 6 (batch 7).

0 50 100 150 200 250 300
0

10

20

30

40

50
DAELM-S
DAELM-T
ODAELM-S
ODAELM-T

(g) Target domain 7 (batch 8).

0 100 200 300 400 500
0

10

20

35

DAELM-S DAELM-T ODAELM-S ODAELM-T

(h) Target domain 8 (batch 9).

0 500 1000 1500 2000 2500 3000 3700
0

50

100

150
170

DAELM-S DAELM-T ODAELM-S ODAELM-T

(i) Target domain 9 (batch 10).

Figure 10. Numbers of labeled samples in nine target domains using setting 2. The y-axis is the number
of labeled samples and the x-axis is the index of samples.

Similar to setting 1, we further compared the performance of nine methods. Table 3 shows the
average classification accuracies. Note that, unlike that in Table 2, RF in Table 3 is a batch learning
that is trained like En-ELM and En-SVM. Even though the processing time can be omitted since RF
is trained on a source domain, it cannot reach as high an accuracy as in setting 1. This is due to the
drift phenomenon between domains. ODAELM-S and ODAELM-T in setting 2 have approximately
the same performance on average. However, they are 3 to 4% less accurate than their batch learning
versions. This is due to the accumulated computing errors over time. For specific batches, such as D2
and D3, the difference is around 0.2% to 0.8%. Note that, in setting 2, both DAELM-S and DAELM-T
label more than 50 samples, which may cause even more time for updates. Considering the processing



Sensors 2018, 18, 742 23 of 29

time saved by ODAELM-S and ODAELM-T, the drops in accuracies for the proposed online learning
methods are still acceptable.

In Table 4, we further recorded the final classification error. Note that both ELM and SVM have
large increments on average. This indicates that, although ELM and SVM reach their maximum
classification accuracy, which is around 83%, the performance of the two methods over time is inferior
to domain adaptation based methods. It can also be noted that the difference between offline and
online learning versions of domain adaptation based methods are reduced to 2% to 3%. It indicates
that the final classification accuracies between offline and online learning methods are close to each
other when compared with the results in Table 3.

4.3.3. Results Using Setting 3

In setting 3, the online sampling strategy uses the testing accuracies of the recognition model to
help tune the selection of samples. To be more specific, the strategy tends to reduce the number of
selected samples when the accuracy is maintained at a certain level.

Figure 11 shows the performances of DAELM-S, DAELM-T, ODAELM-S and ODAELM-T in nine
target domains. Similar to Figure 9, the accuracies of all four methods increase as the number of arrival
sample increases. For most of the target domains, the four methods acted in a similar way as in setting
2, and reached their minimum error after around 1/3 of the samples arrived, which indicates that the
two labeling strategies are both suitable for online learning. Compared with Figure 9, the accuracies of
the proposed methods are maintained, which indicates that the online sampling strategy in setting
3 ensures the performance of ODAELM-S and ODAELM-T.

200 400 600 800 1000 1250
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(a) Target domain 1 (batch 2).

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(b) Target domain 2 (batch 3).

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(c) Target domain 3 (batch 4).

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(d) Target domain 4 (batch 5).

0 500 1000 1500 2000 2300
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(e) Target domain 5 (batch 6).

0 500 1000 1500 2000 2500 3000 3700
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(f) Target domain 6 (batch 7).

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(g) Target domain 7 (batch 8).

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(h) Target domain 8 (batch 9).

0 1000 2000 3000 3700
0

0.2

0.4

0.6

0.8

1
DAELM-S DAELM-T ODAELM-S ODAELM-T

(i) Target domain 9 (batch 10).

Figure 11. Classification errors on nine target domains using setting 3. The x- and y-axes are the same
as Figure 7.



Sensors 2018, 18, 742 24 of 29

To compare the number of selected samples in setting 3, we recorded the value in each update.
Figure 12 shows the numbers of labeled samples. It can be noted that, compared with setting 2,
all four methods use less samples in each target domain in general. The final numbers decrease by
more than 10. In practice, the labeling costs not only time but also amount of human effort. With the
testing error feedback, although the exact labels of the samples are still unknown, the four domain
adaptation methods can save time by using less labeled sets. Between ODAELM-S and ODAELM-T,
it can be seen that the former works with fewer selected samples while the other requires over
30 selected samples in general. If human resources for labeling the samples are limited, it is reasonable
to choose ODAELM-S to work in practice. Nevertheless, there is still a chance that the increase of
the labeled samples may decrease the accuracies of ODAELM-S, such as in Figure 11h. Therefore,
ODAELM-T may be more suitable when there is a large number of samples labeled.

Table 5 shows the average classification accuracies in nine batches. Similar to setting 2,
we compared the proposed methods with seven other algorithms. The ensemble-based methods and RF
share the same procedure as in setting 2. Therefore, the results are the same. It can be noted that, in this
setting, online learning versions still performed well and the classification accuracies were around 3%
lower than their batch learning versions, which is the same as in setting 2. However, the differences
are also acceptable considering the fact that online learning versions is less time-consuming.

0 200 400 600 800 1000 1250
0

10

20

30

40

50

DAELM-S DAELM-T ODAELM-S ODAELM-T

(a) Target domain 1 (batch 2).

0 200 400 600 800 1000 1200 1400 1600
0

10

20

30

40

50

DAELM-S DAELM-T ODAELM-S ODAELM-T

(b) Target domain 2 (batch 3).

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

DAELM-S DAELM-T ODAELM-S ODAELM-T

(c) Target domain 3 (batch 4).

0 50 100 150 200
0

5

10

15

20

DAELM-S DAELM-T ODAELM-S ODAELM-T

(d) Target domain 4 (batch 5).

0 500 1000 1500 2000 2300
0

10

20

30

40

50

DAELM-S DAELM-T ODAELM-S ODAELM-T

(e) Target domain 5 (batch 6).

0 500 1000 1500 2000 2500 3000 3700
0

50

100

150
170

DAELM-S DAELM-T ODAELM-S ODAELM-T

(f) Target domain 6 (batch 7).

0 50 100 150 200 250 300
0

10

20

30

40
DAELM-S
DAELM-T
ODAELM-S
ODAELM-T

(g) Target domain 7 (batch 8).

0 100 200 300 400 500
0

10

20

30

DAELM-S DAELM-T ODAELM-S ODAELM-T

(h) Target domain 8 (batch 9).

0 500 1000 1500 2000 2500 3000 3700
0

40

80

120

160

DAELM-S DAELM-T ODAELM-S ODAELM-T

(i) Target domain 9 (batch 10).

Figure 12. Numbers of labeled samples in nine target domains using setting 3. The x- and y-axes are
the same as Figure 10.

The final accuracies shown in Table 6 also confirm the results in Table 5. Even though for some
batches such as target domain 8 where DAELM-T labeled less samples than ODAELM-T, the difference
value is not large, e.g., in the target domain 8 ODAELM-T labeled only eight more samples than
DAELM-T. Even for target domain 5 where ODAELM-T labeled around 20 more samples, ODAELM-T



Sensors 2018, 18, 742 25 of 29

is still more time-saving considering that the computing complexity of DAELM-T increases drastically
as the size of the arrival sample increases.

5. Conclusions

In this paper, we proposed ODAELM-S and ODAELM-T for online sensor drift compensation
in E-Nose systems. The proposed methods can update the model as new samples arrive, which is
more time-saving compared with their batch learning versions. Meanwhile, we proposed two online
labeling strategies to couple with the proposed methods.

Experiments on sensor drift dataset of six diverse compounds from 36 months demonstrate
the effectiveness of the proposed methods regarding both classification accuracy and processing
time. The results show that, under the same sampling and arrival sequences of the target domain,
the proposed methods save more time than their batch learning versions do without losing the
classification accuracy. In the meantime, the results under two online sampling strategies confirm
the effectiveness of the proposed methods, which outperform the other classification algorithms.
Between the two proposed methods, their capacities of identifying diverse gases draw close to
each other eventually. However, ODAELM-S is more suitable to apply when the target domain
is small and limit samples are labeled. ODAELM-T achieves its maximum capacity when the number
of labeled samples is large, and outperforms ODAELM-S in specific target domains. In general,
ODAELM-S is more feasible when the labeled samples are limited, while ODAELM-T can be used to
replace ODAELM-S for better accuracies when the number of sample increases.

The online sampling strategies including the formula to calculate the probabilities of selecting
and labeling samples in the target domain are the only two cases used in the paper. More sophisticated
and accurate sampling models may be considered to improve the selection of representative samples.
Meanwhile, human labor is a key factor in semi-supervised methods and the selection of representative
samples may also be constrained by the factor, which is not included in the discussion of the paper.
Future works may be extended to improve the sampling strategies under more restricted scenarios
and parallel computing may be included to further reduce the processing time.

Acknowledgments: The work of this paper is supported by the Science and Technology Department of
Sichuan Province under Grant No. 2017JY0027 and 2016FZ0108. The authors would like to thank the editor
and anonymous reviewers for their suggestions and comments. The work of Nan Wang was supported by the
National Natural Science Foundation of China (NSFC) under Grant 61604054. Zhiyuan Ma would like to thank Pei
Yang from South China University of Technology for his suggestions on refining the ideas in the paper. Additionally,
the authors would like to thank Lei Zhang from Chongqing University for his instructions on implementing DAELM.

Author Contributions: Zhiyuan Ma is the leader and was in charge of forming the idea of the article, deriving the
formulas and designing the experiments. Guangchun Luo and Ke Qin were in charge of reviewing and revising
the paper. Nan Wang was responsible for providing the experimental environment and conducting experiments.
Weina Niu was responsible for gathering the materials and preparing the dataset.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are frequently used in this manuscript:

KS Kennard-Stone algorithm
RF Random Forest
ELM Extreme Learning Machine
SVM Support Vector Machine
En-ELM Ensemble based on ELM
En-SVM Ensemble based on SVM
DAELM Domain Adaptation Extreme Learning Machine
DAELM-S Source Domain Adaptation Extreme Learning Machine
DAELM-T Target Domain Adaptation Extreme Learning Machine
ODAELM-S Online Source Domain Adaptation Extreme Learning Machine
ODAELM-T Online Target Domain Adaptation Extreme Learning Machine



Sensors 2018, 18, 742 26 of 29

Appendix A

Lemma A1. If CT , CTu > 0, HT ∈ Rn1∗l and HTu ∈ Rn2∗l are any arbitrary matrices defined in the paper,
then I + CT P + CTuP−1HT HT

TuHTuHT
T has an inverse where P = HT HT

T .

Proof. Let A be defined as A = I + CT P + CTuP−1HT HT
TuHTuHT

T . Consider a sequence of rank-one
updates of A as Ak = I + CT P + CTuP−1HT(∑k

i=0 hT
i hi)HT

T , where hi ∈ R1∗l is the ith row of HTu. If we
can prove Ak has inverse for any arbitrary column vector hi, Lemma A1 is proved.

Let Ak be written as Equation (A1). Let ck = CTuP−1HThi and dT
k = hi HT

T . Based on generalized
inverse theory [53], the generalized inverse of Ak has a unique form as Equation (A2) if Ak−1 has
inverse and Equation (A3) satisfies. It is easy to verify that, in this case, the generalized inverse of Ak−1
is the inverse:

Ak = Ak−1 + CTuP−1HThT
i hi HT

T , (A1)

A†
k = A−1

k−1 −
A−1

k−1ckdT
k A−1

k−1

1 + dT
k Ak−1ck

, (A2)

1 + dT
k A−1

k−1ck 6= 0. (A3)

Therefore, the problem becomes proving that Ak−1 has inverse and Equation (A3) stands.
To achieve the goal, we can prove a stronger case as Equation (A4):

dT
k A−1

k−1ck ≥ 0 i f A−1
k−1 exist. (A4)

Let A0 = I + CT HT HT
T and h be an arbitrary row of HTu. Note that CT > 0, so A0 has an inverse.

Based on Woodbury’s formula, we can write A−1
0 as Equation (A5):

A−1
0 = I − CT HT(I + CT HT

T HT)
−1HT

T . (A5)

Let A1 = A0 + c1dT
1 , where c1 = CTuP−1HThT and dT

1 = hHT
T . Subsequently, we can write

dT
1 A−1

0 c1 as Equation (A6) by using Woodbury’s formula. Note that CT HT
T HT is a positive semi-definite,

so it is unitarily similar to a diagonal matrix, i.e., HT
T HT = Udiag(ε1, ε2, ..., εy)UT , where ε1 > ε2 >

... > εy > 0. Similarly, I + CT HT HT
T is unitarily similar to a diagonal matrix, i.e., I + CT HT HT

T =

Udiag(1 + CTε1, 1 + CTε2, ..., 1 + CTεy)UT . Note that they share the same U; therefore, dT
1 A−1

0 c1 ≥ 0
stands. Consequently, A1 has an inverse:

dT
1 A−1

0 c1 = hHT
T A−1

0 CTuP−1HThT

= CTuhHT
T (I − CT HT(I + CT HT

T HT)
−1HT

T )P−1HThT

= CTuh(I − CT HT
T HT(I + CT HT

T HT)
−1)HT

T P−1HThT

= CTuh(I − CT HT
T HT)

−1HT
T P−1HThT

= CTuh(I − CT HT
T (I + CT HT HT

T )
−1HT)HT

T P−1HTh

= CTuhHT
T (P−1 − CT(I + CT HT HT

T )
−1)HThT

= CTuhHT
T P−1(I + CT HT HT

T )
−1HThT

= CTuhHT
T P−1 A−1

0 HThT .

(A6)

Based on Equation (A6), we can further define Equation (A7), which is inversible:

B0 = A−1
0 P−1. (A7)



Sensors 2018, 18, 742 27 of 29

Assume Ak has an inverse. By using Woodbury’s formula, we can write A−1
k as Equation (A8):

A−1
k = (A0 + CTuP−1HT HT

TuHTuHT)
−1

= A−1
0 − CTu A−1

0 P−1HT HT
Tu(I + CTu HTuB0HT

Tu)
−1HTu HT

T A−1
0 .

(A8)

For the case of Ak+1 = Ak +CTuP−1HThThHT
T where h is an arbitrary row of HTu, we can combine

Equations (A7) and (A8) to write dT
k+1 A−1

k ck+1 as Equation (A9), where ck+1 = CTuP−1HThT ∈ Rn1∗1

and dT
k+1 = hHT

T ∈ R1∗n1 . Note that h is an arbitrary row of HTu. Similarly, we have dT
k+1 A−1

k ck+1 ≥
0 stands:

dT
k+1 A−1

k ck+1 = CTuhHT
T (B0 − CTuB0HT

Tu(I + CTuHTuB0HT
Tu)
−1HTuB0)HThT

= CTuh(B−1
0 + CTuHT

TuHTu)
−1hT .

(A9)

By using mathematical induction, we can prove that dT
k A−1

k−1ck ≥ 0 stands for any k. Subsequently,
Ak has inverse for any k. To sum up, Lemma A1 has been proved.

References

1. Özdemir, A.T.; Barshan, B. Detecting falls with wearable sensors using machine learning techniques. Sensors
2014, 14, 10691–10708.

2. Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A.M. A machine learning framework for gait classification
using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients. Sensors 2016,
16, 134, doi:10.3390/s16010134.

3. Moirangthem, M.; Arts, R.; Merkx, M.; Schenning, A.P. An optical sensor based on a photonic polymer film
to detect calcium in serum. Adv. Funct. Mater. 2016, 26, 1154–1160.

4. Susi, M.; Renaudin, V.; Lachapelle, G. Motion mode recognition and step detection algorithms for mobile
phone users. Sensors 2013, 13, 1539–1562.

5. Szulczyński, B.; Namieśnik, J.; Gębicki, J. Determination of Odour Interactions of Three-Component Gas
Mixtures Using an Electronic Nose. Sensors 2017, 17, 2380, doi:10.3390/s17102380.

6. Giannoukos, S.; Agapiou, A.; Taylor, S. Advances in chemical sensing technologies for VOCs in breath
for security/threat assessment, illicit drug detection, and human trafficking activity. J. Breath Res. 2018,
12, 027106.

7. Chilo, J.; Pelegri-Sebastia, J.; Cupane, M.; Sogorb, T. E-nose application to food industry production.
IEEE Instrum. Meas. Mag. 2016, 19, 27–33.

8. Deshmukh, S.; Bandyopadhyay, R.; Bhattacharyya, N.; Pandey, R.; Jana, A. Application of electronic nose
for industrial odors and gaseous emissions measurement and monitoring—An overview. Talanta 2015, 144,
329–340.

9. Fitzgerald, J.E.; Bui, E.T.; Simon, N.M.; Fenniri, H. Artificial nose technology: Status and prospects in
diagnostics. Trends Biotechnol. 2017, 35, 33–42.

10. Holmberg, M.; Artursson, T. Drift Compensation, Standards, and Calibration Methods, 1st ed.; WILEY-VCH:
Weinheim, Germany, 2004; pp. 125–151.

11. Hierlemann, A.; Gutierrezosuna, R. Higher-order chemical sensing. Chem. Rev. 2008, 108, 563–613.
12. Rodriguez-Lujan, I.; Fonollosa, J.; Vergara, A.; Homer, M.; Huerta, R. On the calibration of sensor arrays for

pattern recognition using the minimal number of experiments. Chemom. Intell. Lab. Syst. 2014, 130, 123–134.
13. Moseley, P.T. Materials selection for semiconductor gas sensors. Sens. Actuators B Chem. 1992, 6, 149–156.
14. Serban, B.C.; Brezeanu, M.; Cobianu, C.; Costea, S.; Buiu, O.; Stratulat, A.; Varachiu, N. Materials selection

for gas sensing. An HSAB perspective. In Proceedings of the Semiconductor Conference, Sinaia, Romania,
13–15 October 2014; pp. 21–30.

15. Marikutsa, A.; Rumyantseva, M.; Baranchikov, A.; Gaskov, A. Nanocrystalline BaSnO3 as an alternative gas
sensor material: Surface reactivity and high sensitivity to SO2. Materials 2015, 8, 6437–6454.

16. Ponzoni, A.; Baratto, C.; Cattabiani, N.; Falasconi, M.; Galstyan, V.; Nunez-Carmona, E.; Rigoni, F.;
Sberveglieri, V.; Zambotti, G.; Zappa, D. Metal oxide gas sensors, a survey of selectivity issues addressed at
the SENSOR Lab, Brescia (Italy). Sensors 2017, 17, 714, doi:10.3390/s17040714.



Sensors 2018, 18, 742 28 of 29

17. Dorren, H.J.S.; Snieder, R.K. Methodology for the selection of suitable sensors for incorporation into a gas
sensor array. Anal. Chim. Acta 1991, 242, 31–36.

18. Sunil, T.T.; Chaudhuri, S.; Mishra, V. Optimal selection of SAW sensors for E-Nose applications.
Sens. Actuators B Chem. 2015, 219, 238–244.

19. Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift
compensation using classifier ensembles. Sens. Actuators B Chem. 2012, 166, 320–329.

20. Liu, H.; Tang, Z. Metal oxide gas sensor drift compensation using a dynamic classifier ensemble based on
fitting. Sensors 2013, 13, 9160–9173.

21. Liu, H.; Chu, R.; Tang, Z. Metal oxide gas sensor drift compensation using a two-dimensional classifier
ensemble. Sensors 2015, 15, 10180–10193.

22. Ziyatdinov, A.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Common principal component analysis for
drift compensation of gas sensor array data. Aip Conf. Proc. 2009, 1137, 566–569.

23. Padilla, M.; Perera, A.; Montoliu, I.; Chaudry, A.; Persaud, K.; Marco, S. Drift compensation of gas sensor
array data by orthogonal signal correction. Chemom. Intell. Lab. Syst. 2010, 99, 28–35.

24. Artursson, T.; Eklöv, T.; Lundström, I.; Mårtensson, P.; Sjöström, M.; Holmberg, M. Drift correction for gas
sensors using multivariate methods. J. Chemom. 2015, 14, 711–723.

25. Gong, J.W.; Chen, Q.F.; Lian, M.R.; Liu, N.C.; Daoust, C. Temperature feedback control for improving the
stability of a semiconductor-metal-oxide (SMO) gas sensor. IEEE Sens. J. 2006, 6, 139–145.

26. Rebholz, J.; Weimar, U.; Barsan, N. Influence of conduction mechanism changes on the sensor performance
of SMOX based gas sensors. Procedia Eng. 2014, 87, 20–23.

27. Zhang, L.; Zhang, D. Domain adaptation extreme learning machines for drift compensation in E-Nose
systems. IEEE Trans. Instrum. Meas. 2015, 64, 1790–1801.

28. Paniagua, M.; Llobet, E.; Brezmes, J.; Vilanova, X.; Correig, X.; Hines, E.L. Online drift counteraction for
metal oxide gas sensor arrays. Electron. Lett. 2003, 39, 40–42.

29. Ghafarinia, V.; Hossein-Babaei, F. Online gas diagnosis by a capillary-attached gas sensor coupled to a pattern
recognition system. In Proceedings of the 5th IEEE Conference on Sensors, Daegu, Korea, 22–25 October
2006; pp. 85–88.

30. Ma, X.; Yang, D.; Tang, S.; Luo, Q.; Zhang, D.; Li, S. Online mining in sensor networks. In Proceedings of
the IFIP International Conference on Network and Parallel Computing, Wuhan, China, 18–20 October 2004;
pp. 544–550.

31. Munir, A.; Gordon-Ross, A.; Lysecky, S.; Lysecky, R. Online algorithms for wireless sensor networks dynamic
optimization. In Proceedings of the 2012 IEEE Consumer Communications and Networking Conference,
Las Vegas, NV, USA, 14–17 January 2012; pp. 2450–2457.

32. Zhang, Y.; Meratnia, N.; Havinga, P.J.M. Distributed online outlier detection in wireless sensor networks
using ellipsoidal support vector machine. Ad Hoc Netw. 2013, 11, 1062–1074.

33. Eberle, J.; Wijaya, T.K.; Aberer, K. Online unsupervised state recognition in sensor data. In Proceedings
of the IEEE International Conference on Pervasive Computing and Communications, St. Louis, MO, USA,
23–27 March 2015; pp. 29–36.

34. Wang, L.; Wu, L.; Yong, G.; Wang, G. Online sensor fault detection based on an improved strong tracking
filter. Sensors 2015, 15, 4578–4591.

35. Folea, S.C.; Mois, G. A low-power wireless sensor for online ambient monitoring. IEEE Sens. J. 2015, 15,
742–749.

36. Grützmacher, F.; Wolff, J.P.; Haubelt, C. Sensor-based online hand gesture recognition on multi-core
DSPs. In Proceedings of the Signal and Information Processing, Orlando, FL, USA, 14–16 December 2016;
pp. 898–902.

37. Spinelli, B.; Celis, L.E.; Thiran, P. Back to the source: An online approach for sensor placement and
source localization. In Proceedings of the International Conference on World Wide Web, Perth, Australia,
3–7 April 2017; pp. 1151–1160.

38. Lu, J.; Huang, J.; Lu, F. Sensor fault diagnosis for aero engine based on online sequential extreme learning
machine with memory principle. Energies 2017, 10, 39, doi:10.3390/en10010039.

39. Patel, V.M.; Gopalan, R.; Li, R.; Chellappa, R. Visual domain adaptation: A survey of recent advances.
IEEE Signal Process. Mag. 2015, 32, 53–69.



Sensors 2018, 18, 742 29 of 29

40. Bungum, L.; Gambäck, B. A survey of domain adaptation in machine translation: Towards a refinement
of domain space. In Proceedings of the India-Norway Workshop on Web Concepts and Technologies,
Trondheim, Norway, 3 October 2011.

41. Sun, S.; Shi, H.; Wu, Y. A survey of multi-source domain adaptation. Inf. Fusion 2015, 24, 84–92.
42. Pan, J.; Hu, X.; Li, P.; Li, H.; He, W.; Lin, Y.; Lin, Y. Domain adaptation via multi-layer transfer learning.

Neurocomputing 2016, 190, 10–24.
43. Csurka, G. Domain adaptation for visual applications: A comprehensive survey. arXiv 2017, arXiv:1702.05374.
44. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward

neural networks. In Proceedings of the IEEE International Joint Conference on Neural Networks, Budapest,
Hungary, 25–29 July 2004; pp. 985–990.

45. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501.

46. Huang, G.B.; Liang, N.Y.; Rong, H.J.; Saratchandran, P.; Sundararajan, N. On-line sequential extreme learning
machine. In Proceedings of the Iasted International Conference on Computational Intelligence, Calgary, AB,
Canada, 4–6 July 2005; pp. 232–237.

47. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Upper Saddle River,
NJ, USA, 2010.

48. Saptoro, A.; Tadé, M.O.; Vuthaluru, H. A modified Kennard–Stone algorithm for optimal division of data for
developing artificial neural network models. Chem. Prod. Process Model. 2012, 7, doi:10.1515/1934-2659.1645.

49. Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148.
50. Deng, W.Y.; Ong, Y.S.; Zheng, Q.H. A fast reduced kernel extreme learning machine. Neural Netw. 2016,

76, 29–38.
51. Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015,

61, 32–48.
52. Fonollosa, J.; Rodríguezluján, I.; Huerta, R. Chemical gas sensor array dataset. Data Br. 2015, 3, 85–89.
53. Campbell, S.; Meyer, C. Generalized Inverses of Linear Transformations; Society for Industrial and Applied

Mathematics: Philadelphia, PA, USA, 2009; pp. 46–48.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Online Processing in Sensors
	Domain Adaptation
	Extreme Learning Machine

	Online Domain Adaptation Extreme Learning Machines
	Online Sampling Strategies
	Online Source Domain Adaptation Extreme Learning Machine
	Online Target Domain Adpatation Extreme Learning Machine
	Unlabeled Incremental Learning
	Unlabeled Decremental Learning
	Labeled Incremental Learning


	Experiments
	Experimental Data Description
	Experimental Setup
	Performance Evaluation
	Results Using Setting 1
	Results Using Setting 2
	Results Using Setting 3


	Conclusions
	

