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Abstract: This paper proposes an ontology-based fault diagnosis method which overcomes the
difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal
approach for fault diagnosis of all loaders. This method contains the following components: (1) An
ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of
fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is
introduced to realize effective and accurate fault diagnoses following four steps (feature selection,
case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the
CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put
forward through building SWRL (Semantic Web Rule Language) rules. An application program is
also developed to implement the above methods to assist in finding the fault causes, fault locations
and maintenance measures of loaders. In addition, the program is validated through analyzing a
case study.
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1. Introduction

With the development of industry and technology, the modern engineering mechanisms, e.g.,
loaders, which are becoming increasingly complex in structural systems, hydraulic systems and
electrical systems, have higher failure rates. Moreover, because of bad working circumstances, such as
forest areas with slippery terrain, hilly areas and mine areas with rough terrain, etc., loaders have to
confront different kinds of faults frequently, which make it difficult to find faults and diagnose faults in
time [1]. In this context, it is urgent to study the loaders fault diagnosis method. Over the past decade,
many methods have been developed in the fault diagnosis domain, for example, methods based on
signal analysis, information knowledge-based methods, and model-based methods [2]. In particular,
the model based on fault diagnosis is nowadays accepted as a powerful tool to solve fault detection
problems in technical processes [3].

The model-based fault diagnosis method was originally developed by Beard, in 1971, to replace
hardware redundancy by analytical redundancy [4], which has been developed for linear or linearized
models. For example, Steven X. Ding et al. [5] proposed a data-driven framework for the design of
observer-based fault detection and control systems. The linear model represents the system behavior
only near one operating point. Indeed, when faults occur, the operating point changes; therefore,
a linear model is not representative [6]. Thus, to consider an operating range of nonlinear systems, the
Takagi-Sugeno (T-S) fuzzy model has been applied in the diagnosis of complex nonlinear systems [7].
The fault estimation observer was developed in [3] for discrete-time T-S fuzzy systems based on
piecewise Lyapunov functions. The unknown inputs of observers are designed in a finite frequency
domain for T-S fuzzy fault detection [8]. T. Youssef et al. [6] used a Proportional Integral observer
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design for actuator and sensor faults estimations based on the T-S fuzzy model. Although the fault
diagnosis methods mentioned above can diagnose loaders’ faults by using a small amount of real-time
data, they require an explicit model representing the input–output relationship; the fault diagnosis
performance of loaders relies on this model’s accuracy [9]. Moreover, using the above methods, it is
hard to present a universal approach for the fault diagnosis of all loaders. Different kinds of loaders
have different components and design principles, resulting in various diagnostic methods. Even for
the same type of loader, components might be quite different due to various factors, such as repair,
customization or update. To solve these problems, case-based reasoning (CBR) is exploited, as does
not need an explicit and accurate model. CBR is an important method used in learning and solving
problems in artificial intelligence [10], which obtains the solution of the target case by visiting a source
case that is similar to the target case in its case library based on past practical experiences [11,12].
In this context, the faults of all loaders can be diagnosed based on past experiences. What is more, its
problem-solving ability increases with the accumulation of experience. One disadvantage of CBR is
that the fault diagnosis will be invalid when there is no corresponding case. Therefore, the rule-based
reasoning (RBR) method is proposed for diagnosing loaders’ faults once CBR fails.

CBR and RBR fault diagnosis methods have the following shortcomings in the knowledge
management of fault diagnosis.

(1) It is difficult for computers to understand and integrate fault diagnosis knowledge of loaders,
especially when there are heterogeneous knowledge types, wide knowledge sources and different
storage types of knowledge.

(2) It is difficult to reuse the existing loaders fault diagnosis model. Numerous scholars have to
reestablish models and methods during the study of loaders fault diagnosis, resulting in the
waste of research energy.

To overcome the two defects mentioned above, the concept of ontology was proposed, which is a
mechanism that describes concepts and their systems’ relationships [13,14]. As the basis of semantic
knowledge, ontology can make concepts, vocabularies, attributes and other knowledge of the domain
semantically, which enables the computer to easily understand and integrate the knowledge, thus
sharing and reusing knowledge [15,16]. Hence, in this paper, we will exploit the ontology concept in
our method.

In this paper, we combine ontology, CBR and RBR to realize the fault diagnosis of loaders, which
assists users in finding the fault causes, fault locations and maintenance measures of loaders.

The rest of this paper is organized as follows: Section 2 briefly introduces the background and
related works; Section 3 explains the overall structure of the fault diagnosis system; Section 4 focuses
on the construction of the fault diagnosis ontology model; Section 5 describes the ontology-based CBR
fault diagnosis method; Section 6 describes the ontology-based RBR fault diagnosis method; Section 7
describes the system implementation and validation; The final section contains the study’s conclusions
and suggestions for further work.

2. Background and Related Works

Previous research regarding loaders fault diagnosis methods mainly covers ontology and
CBR/RBR methods. The following is the background and literature review of related works.

2.1. Ontology

Ontology has been applied in fault diagnosis, decision analysis, prediction and early warning
in recent years. The ontology model is described as O = <C, OP, DP, I> [17,18], where C is the set of
classes; OP is the set of object properties; DP is the set of data properties; and I is the set of instances.

OWL (Web Ontology Language) is an ontology description language, recommended by W3C
(World Wide Web Consortium) international standards, which has a strong semantic ability to describe
classes and attributes [19]. OWL1 is used to describe the ontology model in this paper, which consists
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of OWL Lite, OWL DL and OWL Full sublanguages. OWL DL is selected as the description language
because it can incorporate description and reasoning. Sparql (Simple Protocol and RDF Query
Language) is a language that enables query information in the OWL model [20]. The Jena inference
engine can parse and reason ontology model. The combination of OWL, Jena inference engine and
Sparql is the hot direction of knowledge representation [21]. Yu-Jun Wang et al. [22] described food
cold chain quality ontology by using OWL and the Jena inference engine. The threshold of logistics
parameters was queried, to obtain parameters’ statuses based on Sparql. Xiao-Ci Huang et al. [23,24]
described a water quality monitoring ontology model based on OWL and used the Jena inference
machine to analyze the ontology model. Then, Sparql was used to query the threshold of water quality
related parameters, so as to get the statuses of parameters.

With the rapid development of knowledge technology, ontology has been applied in areas
like fault diagnosis. Rong Chen et al. [25] put forward an ontology-based knowledge modeling
approach for fault diagnosis for rotating machinery. The ontology model was built to integrate fault
diagnosis knowledge of rotating machinery. Furthermore, rules were added to allow the reasoning
of fault diagnosis knowledge. However, this research did not deduce root causes for faults but
described the reasons for general fault causes. In addition, the defined rules were relatively simple.
Haizai Peng et al. [26] proposed a fault diagnosis method for conveyor-based ontology which was
used to construct a knowledge basis for conveyor fault diagnosis. This study established the mapping
relationships between fault phenomenon ontology, fault cause ontology and fault solution ontology,
which have given us the guidance to manage knowledge representation well and independently
through constructing sub-ontologies. G. Medina-Oliva et al. [27] proposed a fleet-wide approach based
on ontologies in order to capitalize on knowledge and data to help decision makers to identify the
causes of abnormal operations. The ontology modelling process in G. Medina-Oliva’s research was
similar to this paper, which used Protégé to construct ontology coded in OWL, and built Semantic
Web Rule Language (SWRL) rules to diagnose faults. Alfonso Castro et al. [28] designed a multimedia
service and resource management architecture for fault diagnosis. This architecture includes three types
of automatic reasoning: heterogeneous, ontology-based and Bayesian reasoning. The combination of
Bayesian reasoning and ontology-based reasoning performed better on incomplete datasets and in the
presence of uncertainty, which could avoid the data loss problem caused by data acquisition devices
in this paper. FD Samirmi et al. [29] aimed to develop an improved ontology model for transformer
fault diagnosis by applying the fuzzy ontology. Similar to this paper, Protégé software and OWL DL
were applied to build the ontology model. Based on ontology, fuzzy theory was introduced to solve
uncertainty or imprecision problems for fault diagnosis.

2.2. CBR/RBR Method

In recent years, CBR and RBR have received more and more attention and have been applied
for fault diagnosis as two main techniques in artificial intelligence and expert systems. Tomas,
Gang Ma et al. [30] put forward an intelligent fault diagnosis method for power equipment by
retrieving historical cases based on CBR. Olsson, T. et al. [31] classified the fault diagnoses and
deduced the fault probabilities regarding CBR. Dong-yang Dou et al. [32] proposed an RBR method
to achieve fault diagnosis for rotating machines. Xiao-Wen Deng et al. [33] designed an RBR based
fault diagnosis expert system for wind turbines. Olsson, E. et al. [34] combined the acoustic signal and
CBR to obtain the fault diagnosis of industrial robots. Dinh PhuocVo et al. [35] presented a hybrid
knowledge-based system which proposed to a diagnosis approach for test engineers based on the
combination of CBR and RBR to be used when an incident occurs.
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However, the ability to understand knowledge semantically based on CBR and RBR is very
poor [36,37]. As we all know, fault diagnosis based on CBR and RBR is usually a high intelligence
activity, and experts often begin their diagnosis by observing, querying and interpreting faults
diagnosis experience knowledge. In this way, experts form vocabularies of semantic expressions,
but semantic ambiguity often occurs in experience observations and queries when experts do not know
the exact expressions or the related concepts—though they may have some professional knowledge [36].
Hence, ontology is exploited to improve the ability to understand knowledge semantically based on
CBR and RBR. Nadjette Dendani-Hadiby et al. [38,39] established an ontology model to obtain the
semantics of knowledge, and then integrated CBR with ontology to develop a fault diagnosis system
for steam turbines. An-mei Zhou et al. [40] combined an ontology model and the RBR method to
obtain intelligent fault diagnosis for wind turbines, and the feasibility of the method was analyzed
with practical cases. Based on an ontology model, Xiao-ci Huang et al. [41] designed custom rules
to determine intelligent fault diagnoses for off-line Electronic Control Unit (ECU). Tung et al. [42]
developed a solution retrieval system based on ontology, CBR and RBR. The experimental results show
that this method can improve the accuracy of retrieval cases and reduce retrieval time prominently.
Shao-li Chen et al. [37] built the disassembly knowledge model based on ontology, and then used CBR
and RBR to obtain automated decision-making for the disassembly of mechanical products. Combining
ontology and RBR, Zhou Qiang et al. [43] presented an intelligent fault diagnosis method for machine
tools, and validation occurred by studying cases. D. Wang et al. [44] presented a new approach to the
fault diagnosis of power transformers based on ontology and RBR. Based on the ontology and fault
tree analysis methods, Wu Chun-yin [45] established a fault diagnosis knowledge model, and the CBR
method was proposed to diagnose the faults of a tractor.

Inspired by previous work, as a novel attempt, ontology, CBR and RBR are applied into the field
of loaders fault diagnosis in this paper.

3. The Overall Structure of Fault Diagnosis System

The main purpose of this paper is to design a loaders fault diagnosis system to help users find
the fault causes, fault locations and fault maintenance measures of loaders in adequate time, based
on ontology, CBR and RBR. Figure 1 shows the overall framework of the fault diagnosis system. The
running parameters of the loaders are integrated in the data merging layer through data acquisition
and transmission, based on sensor and embedded technologies, and then running parameters, the
ontology model, the fault diagnosis case base and the fault diagnosis rule base are gathered in the
data merging layer. Following this, fault diagnosis is achieved in combination with CBR and RBR;
finally, fault diagnosis results are displayed on a user interface. As can be seen from Figure 1, the data
collected by the sensor is the database of the whole fault diagnosis system. On one hand, in the CBR
module, the collected data is used as one feature index of case-retrieval to match a suitable case in the
case base. On the other hand, in the RBR module, the collected data is compared with data threshold
values to judge instances of the Parameters class of ontology model, and then fault diagnosis is realized
by combining ontology and defined rules. The function of each layer is described in detail.

• Data acquisition layer. Firstly, the sensors collect data (such as engine speed, oil pressure of engine,
hydraulic oil temperature etc.) every 2 s. Secondly, the collected data is encapsulated by three
ECU controllers, including engine ECU, gearbox ECU and hydraulic system ECU. Thirdly, the
data acquisition device gathers and processes all data from the three ECU controllers according
to the Controller Area Network (CAN) protocol every five minutes. On one hand, within 5 min,
the data acquisition device processes 150 data from each parameter to obtain an average value
for each parameter. In this way, the average values of running parameters for fault diagnosis are
more useful and effective. On the other hand, data is transferred to the data merging layer every
5 min, with the aim of reducing the frequency of data transmission so as to decrease the data
processing pressure on the data acquisition device and data merging layer. This data acquisition
device is developed by embedded technology, and it is composed of an Microcontroller Unit
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(MCU), a power module, an Liquid Crystal Display (LCD) module, a CAN module and a 3G
module. MCU selects the stm32f103 microprocessor as the main control unit, which is responsible
for receiving data, analyzing data and sending data. The power module mainly provides the
power supply for the data acquisition device to ensure normal operation. The LCD module is
used to display the operating data. The CAN module is used to receive data from three ECU
controllers. The 3G module is responsible for sending data to the data merging layer. At last, the
processed data is transferred to the data merging layer via the Internet in the form of Transmission
Control Protocol/Internet Protocol (TCP/IP). The collected data lays the data foundation for the
fault diagnosis layer to diagnose loaders’ faults. The data package from each ECU controller
has 29 bytes, and then the data merging layer transferred from the data acquisition device has
29 × 3 = 87 bytes. Given that the loader works 8 h per day, and the historical data can be saved for
three months, the memory size for collected data is 87 × 8 × 60/5 × 30 = 250,560 bytes = 245 MB.
Currently, there is one diagnosed loader; the memory size for collected data is 245 MB. Supposing
that the ontology-based fault diagnosis system will diagnose 1000 loaders in the future, then the
memory size for collected data is 245 MB × 1000/1024 = 239 GB.

• Data merging layer. The data merging layer is used to integrate collected data, the ontology model,
the fault diagnosis case base, and the fault diagnosis rule base. The data collected by sensors is
transferred to the data merging layer through the data acquisition device. The fault diagnosis
ontology model semantically handles the relevant information of loaders fault diagnoses, so
that the information can be stored and expressed. The case base summarizes previous diagnosis
experience and provides case support for CBR. The rule base, which is defined by experts and
expressed in the form of SWRL, provides rule support for RBR. The data merging layer is
responsible for laying the foundation for the fault diagnosis layer, which is of great significance.
Moreover, the ontology model, rule base and case base can be updated and improved continually.
With the increase in data in the data merging layer, it will be able to diagnose more faults and can
diagnose more accurately.

• Fault diagnosis layer. This layer is the core part for diagnosing loaders’ faults. Based on the
fault diagnosis ontology model, the CBR module is used for fault diagnosis following four steps:
feature selection, case-retrieval, case-matching and case-updating. The CBR module is able to
obtain accurate fault diagnoses because it exploits historical cases which have actually happened.
Once the CBR module fails, due to the lack of corresponding cases, the RBR module will be
executed. The RBR module is used to deduce fault causes, fault locations and maintenance
measures based on defined SWRL rules which make up the fault diagnosis rule base. By making
full use of the advantages of the ontology model in knowledge management, CBR and RBR can
obtain accurate and effective fault diagnoses of loaders.

• UI (user interface). The UI was mainly developed for users, experts and administrators. Users
(including drivers, operators and manufacturers) can obtain fault diagnosis results of loaders
through UI. Experts are responsible for constructing and managing the case library and the rule
library. Administrators mainly design and supervise the fault diagnosis ontology model. The
results, including fault causes, fault locations and maintenance measures, can be obtained through
UI. The UI application program was developed with the Visual Studio2017 software platform and
C# language under the Windows 7 system.
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Figure 1. Overall structure of loaders fault diagnosis system. CBR, case-based reasoning; RBR,
rule-based reasoning; UI, user interface; CAN, Controller Area Network; ECU, Electronic Control Unit.

4. Construction of the Fault Diagnosis Ontology Model

This section mainly introduces the fault diagnosis ontology model including ontology parsing
and querying to lay the foundation for CBR/RBR.

4.1. Construction of the Ontology Model

Protégé [46] software was selected for building the fault diagnosis ontology model because of
its user-friendly interface, powerful tools and data checking feature [47]. The ontology proposed in
this paper is mainly used in the field of loaders fault diagnosis; thus, it can be classified as a highly
specialized domain ontology. Currently, there are many kinds of approaches for constructing domain
ontologies, i.e., METHONTOLOGY, SENSUS, TOVE, IDEF5 and the Seven-Step Method. Toshihiro
Uchibayashi et al. [48] proposed a domain specific sub-ontology derivation end-user tool for the
semantic grid, where ontology is built through extracting the sub-ontologies. This method is suitable for
large-scale ontology domains and will be applied in this paper, when fault diagnosis ontology increases
gradually. Hu qingxi et al. [49] built an ontology for representing the production process knowledge of
workshops based on the IDEF5 method which has disadvantages in technical support. Zhou Yong [50]
constructed an improved ontology model based on machine learning (BP neural network) which
changed the mode of multi strategy merging in ontology mapping. S. Chaware et al. [51] integrated
METHONTOLOGY and SENSUS to construct an ontology model for the shopping mall domain, where
ontology can be prepared to get more correct information at a faster rate. However, this integrated
method does not consider the collaborative and distributed construction of ontologies. The Seven-Step
Method is among the top choices for building a domain ontology [22]. In addition, it not only enjoys
detailed technical support and advantages in model creation, but also has advantages in the detailed
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modelling process [22]. Hence, this paper chose the Seven-Step Method, developed by the Medical
Information Center of Stanford University [52], to construct the ontology model in the fault diagnosis
domain, and it is shown in Figure 2. Next, the ontology modeling steps of the Seven-Step Method are
described in detail.
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• Determine the domain and scope

The research described in this paper is in the field of loaders fault diagnosis.

• Consider the reuse of existing ontologies

There is no suitable ontology that can be reused directly.

• List important terms in the ontology

The keywords of loaders fault diagnosis are engine, gearbox, oil temperature, gear pump, main
valve, etc.

• Define classes and class hierarchy

The components of the loaders can be divided into four levels, from top to bottom, which are
the device level, system level, assembly level, and part level. When the loader fails, a single fault can
be aroused by various fault causes rather than one fault cause. Faults in low level components affect
not only faults at same level, but also faults in higher levels. Thus, the causes of loaders’ faults are
very complex.

In order to handle the complexity of faults, the fault diagnosis ontology model has five defined
classes: FaultMode, FaultEquipment, FaultMaintenance, Parameters and FaultPhenomenon, as shown
in Figure 3. The FaultMode is composed of two subclasses: FaultCause and FaultEffect [40]. The
FaultEquipment indicates the location of faults [43]. The parameters class expresses running data
collected by sensors. The FaultPhenomenon indicates the phenomena when a failure occurs. The
FaultMaintenance means that faults can be repaired by some measure.
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• Define object properties of classes

As shown in Table 1, each object property has its corresponding domains and ranges. If an object
property has an inverse property, then the inverse property has inverse domains and ranges.

(1) Property 1 indicates the change in operating parameters caused by the fault mode.
(2) Property 2 shows the relationship between the fault mode and the fault causes.
(3) Property 3 indicates the relationship between the fault components and their sub-components.
(4) Property 4 shows the relationship between the fault mode and fault effects. Property 5 and 6 are

sub-properties of property 4, and property 5 indicates the relationship fault mode and its same
level effects, and property 6 indicates the relationship fault mode and its higher level effects.

(5) Property 7 indicates that fault locations provide information support for maintenance methods.
(6) Property 8 indicates that the fault mode is able to be repaired through using maintenance methods.
(7) Property 9 shows that the fault mode happens in components of loaders.
(8) Property 10 indicates that the fault mode is accompanied by phenomena.
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Table 1. Object properties in the fault diagnosis ontology.

No Object Property Domains Ranges Inverse Property

1 stemFrom FaultMode Parameters leadTo
2 causeIs FaultMode FaultMode N/A
3 belongTo FaultEquipment FaultEquipment N/A
4 toEffect FaultMode FaultMode N/A
5 toSameLevelEffect FaultMode FaultMode N/A
6 toHighLevelEffect FaultMode FaultMode N/A
7 offerInformation FaultEquipment FaultMaintenance N/A
8 toMaintenance FaultMaintenance FaultMode maintenanceBy
9 happenAt FaultMode FaultEquipment hasFault
10 hasPhenomenon FaultMode FaultPhenomenon originateFrom

• Define data properties of classes

As shown in Table 2, each data property, similar to the object properties, also has its own domains
and ranges.

Table 2. Data properties in the fault diagnosis ontology.

No Data Property Domains Ranges Description

1 hasNumber FaultEquipment string To record types of components
2 madeFactory FaultEquipment string To indicate the manufacturer that produces the components
3 madeTime FaultEquipment datetime To indicate the production time of components
4 hasMaxValue Parameters float To indicate the maximum value in the normal range of parameters
5 hasMinValue Parameters float To indicate the minimum value in the normal range of parameters
6 monitoringTime Parameters datetime To record the monitoring time of parameters

7 memoryValue FaultMode float To record the memory value of a fault in case library, also used for
case-updatingSensors 2018, 18, x FOR PEER REVIEW  10 of 22 
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4.2. Parsing and Querying of the Ontology Model 

After the fault diagnosis ontology model was constructed by Protégé software and described by 
OWL language, it needed to be parsed and queried to apply ontology model into the CBR/RBR 
method. As introduced in the second section, the Jena inference engine was used to parsethe ontology 
model in this paper, and the SELECT mode of the Sparql was selected to query the properties of the 
ontology model. 

5. CBR for Loaders Fault Diagnosis 

CBR, proposed by Schank (1983) [53], can simulates human cognitive processes and integrates 
empirical knowledge of different fields into a unified format [54]. CBR can achieve effective and 
accurate fault diagnosis of loaders. This is because that CBR can obtain causes of failure, fault 
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After the former six steps, the structure of the fault diagnosis ontology model is built, as shown in
Figure 4.

• Create instances and check exceptions

Instances of fault diagnosis ontology model are divided into two parts. For the first part, instances
of the parameters’ classes and their related properties are filled up by data from the loader’s data
acquisition device. For the second part, system administrators and experts are responsible for
instantiating other classes and properties according to the actual condition of the loaders. So far,
the loaders fault diagnosis ontology model has been established after the instantiation. A pellet is used
for checking exceptions, to verify the correctness of ontology model [22].

4.2. Parsing and Querying of the Ontology Model

After the fault diagnosis ontology model was constructed by Protégé software and described
by OWL language, it needed to be parsed and queried to apply ontology model into the CBR/RBR
method. As introduced in the second section, the Jena inference engine was used to parsethe ontology
model in this paper, and the SELECT mode of the Sparql was selected to query the properties of the
ontology model.

5. CBR for Loaders Fault Diagnosis

CBR, proposed by Schank (1983) [53], can simulates human cognitive processes and integrates
empirical knowledge of different fields into a unified format [54]. CBR can achieve effective and
accurate fault diagnosis of loaders. This is because that CBR can obtain causes of failure, fault locations
and maintenance methods, as long as cases are able to be matched successfully in the case library.
On the other hand, CBR can exploit historical cases which have actually happened and have been
solved, to guarantee accuracy.Sensors 2018, 18, x FOR PEER REVIEW  11 of 22 
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The process of CBR based loaders fault diagnosis is shown in Figure 5. Loader type, fault
phenomena and parameters are selected as the feature indexes for calculating case similarities in the
case library. When the similarity value is greater than or equal to the set value, it indicates that the
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case-matching has been successful, and the fault diagnosis results of the matched case are displayed
directly; Then case-updating is evaluated, and the case library will be updated if the evaluation is
satisfactory, or else the CBR method will end. When the similarity value is less than the set value, the
CBR based fault diagnosis will fail and the diagnosis process will end. The fault diagnostic process is
described in detail below.

5.1. Feature Selection and Case-Retrieval

Although there are a large number of loader types, repair methods are often similar for similar
faults of the same loader type; therefore, the loader type is selected as an essential feature index.
The maintenance methods used in the same fault phenomena can also be used as guidance to the
maintenance person; thus, the fault phenomena index is another alternative. In addition, parameters
obtained directly from the data acquisition device will change when faults occur, therefore, meeting
the needs of the feature index. Hence, the three feature indexes are loader type, fault phenomena and
operating parameters.

Case-retrieval refers to searching the fault diagnosis case library based on the above three feature
indexes. Hence, the construction of the case library is of great significance. As shown in Figure 6,
experts select the classes and properties of fault diagnosis ontology manually, and the corresponding
data is filed manually regarding historical cases and events, and then fault diagnosis cases are built
and stored in the case library. At this point, the case library is constructed. Moreover, the established
ontology model with its semantic description can be retrieved with cases that are also built semantically
in the above process of constructing the case base.
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5.2. Case-Matching

The established ontology model with its semantic description can be retrieved with cases which
are also built semantically, as mentioned above. Hence, case matching can be realized by matching
instances of hasNumber, FaultPhenomenon, Parameters corresponding to three feature indexes between
ontology models and cases. Similarity values are used to judge the similarity between to-be-diagnosed
faults and the cases in the case library. The nearest neighbor algorithm [55] was used to calculate the
similarity value in this paper, and its formula is shown in Equation (1).

Sim(Ci) =
m

∑
j=1

(wj ∗ Sim(Cij)) (1)
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where I is the sequence number of the case in the case library. Sim(Ci) is the similarity value between
to-be-diagnosed faults and the ith case. J is the sequence number of the feature index. m represents the
numbers of all feature indexes. wj is the weight of the jth feature index. Sim(Cij) is the similarity value
between the jth feature of the ith case and the to-be-diagnosed faults.

The threshold of Sim(Ci) is set as Sim(C), which means that the case-matching is invalid when
Sim(Ci) < Sim(C); otherwise case-matching is successful. The value, wj, is directly defined by system
experts to simplify the designing of this value. Sim(Cij) is determined as follows in this paper:

(1) If the loader type is the same as the case in the case library, then Sim(Ci1) equals 1, or else Sim(Ci1)

equals 0.
(2) If fault phenomena are identical to a case in the case base, then Sim(Ci2) equals 1, or else Sim(Ci2)

equals 0.
(3) Operating parameters collected by sensors are calculated with Equation (2).

Sim(Ci3) =
N

∑
j=1

(mk ∗ Sim( fk)) (2)

where mk represents the weight of the jth operating parameter, which is determined directly
by system experts, N stands for the number of operating parameter, Sim( fk) is calculated
by Equation (3), which represents the jth operating parameter similarity value between
to-be-diagnosed faults and the case, pk denotes the kth operating parameter value of
to-be-diagnosed faults, and lk represents the kth operating parameter value of the case.

Sim( fk) = 1− pk − lk
pk

(3)

5.3. Case-Updating

When case-matching is achieved successfully, the actual fault diagnosis results can be saved into
the case library. However, too many similar cases will waste the storage resource and decrease the
efficiency of case-retrieval and case-matching. Therefore, it is necessary to develop case-updating
strategy to eliminate redundancy in the case library. Derbinsky et al. [56] proposed a case update
method which forgets outdated cases and reinforces the memory of frequent cases. Based on this
principle, the memory value (M) of each case has the following relationship:

M =
π

2
− arctan∆T, ∆T ≥ 0 (4)

where M stands for the value of the memoryValue data property in the fault diagnosis ontology, ∆T
indicates the existence time of the case in the case base, and its initial value is set as “0”.

When cases are successfully matched, one of these cases is randomly retained, and its ∆T is set as
“0”; then, the other cases are discarded. If we set the threshold of M to Mt, then the case is outdated
and will be abandoned when M < Mt. By controlling suitable values of Mt, we can ensure that the
case base does not become too narrowed down, oversized or skewed. In this way, a suitable number
of cases can be saved in the case library. Additionally, cases in the case base can also be improved by
different experts at any time to improve the effectiveness of case management. ∆T of the modified
case will be reinitialized to “0”.

6. RBR for Loaders Fault Diagnosis

Based on the fault diagnosis ontology model, RBR was used to process the loaders fault diagnosis
when the CBR method failed due to the lack of proper cases.
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6.1. Fault Diagnosis Rules

The standard SWRL language is used to express the fault diagnosis rules. Based on the analysis
of classes and properties in the fault diagnosis ontology model, as shown in Table 3, the constructed
SWRL rules are represented in this paper, and these rules are the basis of the ontology-based RBR
method. To understand SWRL easily, two basic elements of syntax are introduced, as follows [57]:

(1) C (?x): If x is an instance of the class C or the value of its data property, then C (?x) is established;
(2) P (?x, y): If x and y are associated with the property, P, then P (?x, y) is valid.

Table 3. Fault diagnosis rules.

No Rules

Rule 1 FaultMode(?x) ˆFaultPhenomenon(?y) ˆ hasPhenomenon(?x, ?y)→ FaultEquipment(?z) ˆ
happenAt(?x,?z)

Rule 2 FaultMode(?x) ˆ Parameters(?y) ˆ stemFrom(?x, ?y) ˆ Device(?a) ˆ happenAt(?x, ?a) ˆ
FaultMode(?z) ˆ toHighLevelEffect(?z, ?x)→ causeIs(?x, ?z) ˆ SystemCause(?x)

Rule 3 FaultMode(?x) ˆ Parameters(?y) ˆ stemFrom(?x, ?y) ˆ System(?a) ˆ happenAt(?x, ?a) ˆ
FaultMode(?z) ˆ toHighLevelEffect(?z, ?x)→ causeIs(?x,?z) ˆ AsseamblyCause(?x)

Rule 4 FaultMode(?x) ˆ Parameters(?y) ˆ stemFrom(?x, ?y) ˆAsseambly(?a) ˆ happenAt(?x, ?a) ˆ
FaultMode(?z) ˆ toHighLevelEffect(?z, ?x)→ causeIs(?x, ?z) ˆ PartCause(?x)

Rule 5 FaultMode(?x) ˆ Parameters(?y) ˆ stemFrom(?x, ?y) ˆ System(?a) ˆ happenAt(?x, ?a) ˆ
FaultMode(?z) ˆ toSameLevelEffect(?z, ?x)→ causeIs(?x, ?z) ˆ SystemCause(?x)

Rule 6 FaultMode(?x) ˆ Parameters(?y) ˆ stemFrom(?x, ?y) ˆ Asseambly (?a) ˆ happenAt(?x, ?a) ˆ
FaultMode(?z) ˆ toSameLevelEffect(?z, ?x)→ causeIs(?x, ?z) ˆ Asseambly Cause(?x)

Rule 7 FaultMode(?x) ˆ Parameters(?y) ˆ stemFrom(?x, ?y) ˆPart(?a) ˆ happenAt(?x, ?a) ˆ FaultMode(?z)
ˆ toSameLevelEffect(?z, ?x)→ causeIs(?x, ?z) ˆ PartCause(?x)

Rule 8 FaultMode(?x) ˆ FaultEquipment(?y) ˆ happenAt(?x,?y) ˆ PartCause(?x)→ Part(?y)

Rule 9 FaultMode(?x) ˆ FaultEquipment(?y) happenAt (?x,?y) ˆ AsseamblyCause(?x)→ Asseambly(?y)

Rule 10 FaultMode(?x) ˆ FaultEquipment(?y) ˆ happenAt(?x,?y) ˆ SystemCause(?x)→ System(?y)

Rule 11 FaultMode(?x) ˆ FaultEquipment(?y) ˆ happenAt(?x,?y) ˆ FaultMaintenance(?z) ˆ
offInformation(?y,?z)→ toMaintenance(?z, ?x)

In order to simplify the discussion here, we will only explain the following representative rules.

• Rule 1: If fault mode x occurs with the occurrence of fault phenomena y, then the direct fault
locations of fault mode x are z.

• Rule 2: If fault mode x’s change derives from parameter y, and x happens at device component a,
and fault mode z affects x at the same level, then the cause of x is fault mode z, and x has fault
causes at the system level.

• Rule 5: If fault mode x’s change derives from parameter y, and x happens at system component a,
and fault mode z affects x at a higher level, then the cause of x is fault mode z, and x has fault
causes at the system level.

• Rule 8: If fault mode x happens at equipment y, and the reasons for the components’ faults are x,
then the fault locations are y.

• Rule 11: If the fault mode x happens at equipment y, and the fault locations provide the method
for troubleshooting z, then failure maintenance z can repair fault mode x.

6.2. RBR for the Loaders Fault Diagnosis Process

The process of loaders fault diagnosis based on RBR is shown in Figure 7. Firstly, the direct fault
locations are deduced based on Rule 1 and the FaultPhenomenon property of fault diagnosis ontology.
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Secondly, Rules 2~7 are triggered to determine all probable fault causes by combining stemFrom,
happenAt and toEffect from high to low levels. Rule 2 and Rule 5 are responsible for reasoning fault
causes at the system level. Rule 3 and Rule 6 are triggered to determine fault causes at the assembly
level. Rule 4 and Rule 7 are triggered to reason fault causes at the part level.
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Thirdly, Rules 8~10 are triggered to deduce all possible fault locations based on the happenAt object
property. Finally, in accordance with Rule 11, maintenance methods can be obtained by integrating the
offerInformation and happenAt object properties.

Overall, combining fault diagnosis ontology and custom rules defined in Table 3, fault diagnosis
results, including fault causes, all probable fault locations and fault maintenance methods, can be
deduced to users.

7. System Implementation and Validation

7.1. System Implementation

This section, describes the implementation of the loaders fault diagnosis system, in accordance
with the aforementioned proposed methods. As shown in Figure 8, the system is divided into three
parts: the development of the data acquisition device, the construction of the ontology model and
the development of the application program. Sensors collect the running parameters, and then data
is collected and packed by the data acquisition device. At last, data is transmitted to the remote
Visual Studio2017 software development platform through the 3G communication module. The data
collected by sensors is of great significance. In the CBR process, the collected data is used to calculate
Equation (2). In the RBR module, the collected data is compared with data threshold values to judge
instances of the Parameters class.
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The fault diagnosis ontology model is instantiated by the actual loaders and collected parameters,
and then it is built by Protégé software and described by OWL language.

The application program is developed by the Visual Studio2017 software platform and C#
language under the Windows 7 system. The socket communication and multithreading technology are
used to receive data from the data acquisition device. Jena packages and Java packages are imported
into the application program, and then the Jena engineering is used for parsingthe fault diagnosis
ontology. The SELECT mode of Sparql is responsible for querying the ontology model to read all
properties. CBR and RBR are carried out according to the fifth and sixth chapters in this paper. So far,
the loaders fault diagnosis system has been developed.

7.2. System Validation

This section uses the FW50GL wheel loader as an example to verify the validation of the system.
As shown in Figure 9, the FW50GL wheel loader is divided into actual components to instantiate
the device, system, assembly and part four subclasses in the ontology model, based on layered
method mentioned in Section 4.1. Since there are so many components, we mainly describe the major
components of the loaders.

Firstly, as shown in Figure 10, the data acquisition device installed in the cab of the FW50GL
wheel loader mainly encapsulates the operating data collected by the sensors. As shown in Table 4,
the operating parameters’ names and threshold values of their states are translated into the ontology
instances and their data properties, hasMaxValue and hasMinValue. Every parameter has three
instances, for example, instances of engine oil temperature include engine_oil_temperature_lower_state,
engine_oil_temperature_noraml_state, and engine_oil_temperature_higher_state. Three instances of each
parameter are judged by comparing the data collected by sensors with data threshold values shown in
Table 4. For example, when the engine oil temperature collected by a temperature sensor is 60 ◦C, then
the instance of the class, engine oil temperature, is engine_oil_temperature_normal_state, according to the
data threshold values (normal state: 40–120 ◦C) shown in Table 4.
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Secondly, Protégé software is used to build the fault diagnosis ontology model, as shown in
Figure 11. Classes, instances and properties are listed in order from left to right in Figure 11. Thirdly,
the data merging layer is constructed through integrating collected operating parameters data, the
built fault diagnosis ontology model, the fault diagnosis rule base and the fault diagnosis case base.

At last, an application program is developed in this paper to verify the CBR and RBR loaders fault
diagnosis methods. The CBR loaders fault diagnosis results are shown in Figure 12. The similarity of
case matching is calculated to be 0.8 according to the fault phenomena, loader type and parameters’
feature indexes. This shows that the case matching is successful, and the fault diagnosis results of
the matched case are displayed in the application program directly. The RBR loaders fault diagnosis
results are shown in Figure 13. This shows that there is no suitable case in the case base when the
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similarity of case matching is 0.2. The RBR method is carried out to diagnose faults based on defined
SWRL rules. Compared with actual failures and diagnostic results in the application program, it is
demonstrated that the ontology-based loaders fault diagnosis method is reasonable and effective, and
the developed fault diagnosis system can operate correctly.

Table 4. Operating parameters and threshold values of their states.

No Parameters Abnormal State 1
below Normal Value Normal State Abnormal State 2

above Normal Value

1 Engine speed ≤680 r/min 680–2400 r/min ≥2400 r/min
2 Engine oil pressure ≤0.07 Mpa 0.07–0.4 Mpa ≥0.4 Mpa
3 Engine coolant temperature ≤0 ◦C 0–110 ◦C ≥110 ◦C
4 Engine oil temperature ≤40 ◦C 40–120 ◦C ≥120 ◦C
5 Engine fuel level ≤6.25 L 6.25–50 L ≥50 L
6 Transmission oil temperature ≤0 ◦C 0–127 ◦C ≥127 ◦C
7 Transmission oil pressure ≤0.36 Mpa 0.36–2.24 Mpa ≥2.24 Mpa
8 Filter blocking alarm >0 ≤0 (0:normal 1:alarming) >0
9 Movable arm lifting alarm >0 ≤0 (0:normal 1:alarming) >0

10 Hydraulic oil temperature ≤0 ◦C 0–95 ◦C ≥95 ◦C
11 Mean pressure of variable pump inlet ≤0 Mpa 0–3 Mpa ≥3 Mpa
12 Mean pressure of steering gear ≤18 Mpa 18–21 Mpa ≥21 Mpa
13 Mean pressure of priority valve ≤22 Mpa 22–24 Mpa ≥24 Mpa
14 Mean pressure of bucket cylinder ≤22 Mpa 22–24 Mpa ≥24 Mpa
15 Mean boom pressure of main valve ≤22 Mpa 22–24 Mpa ≥24 Mpa
16 Mean pressure of main valve LS port ≤22 Mpa 22–24 Mpa ≥24 Mpa
17 Mean pressure of foot valve ≤6 Mpa 6–7 Mpa ≥7 Mpa
18 Mean pressure of brake pump inlet ≤0 Mpa 0–1 Mpa ≥1 Mpa
19 Mean pressure of charging valve ≤15 Mpa 15–18 Mpa ≥18 Mpa
20 Mean pressure of return inlet ≤0 Mpa 0–1 Mpa ≥1 Mpa
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Figure 11. Fault diagnosis ontology model in the Protégé software.
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8. Conclusions and Future Work

This paper proposes an ontology-based method for the fault diagnosis of loaders. In this method,
an ontology-based fault diagnosis model was introduced to achieve the integrating, sharing and
reusing of fault diagnosis knowledge for loaders. Through the integration of CBR and RBR, a universal
approach for effective and accurate fault diagnosis of all loaders was realized, with diagnostic results
that can be displayed to users more directly in the developed application program. In addition, the
program was validated through analyzing a case study.

In particular, in this highly expansible ontology model, the classes, properties and individuals
in the fault diagnosis ontology model can be further updated and enhanced. Moreover, the fault
diagnosis case base and fault diagnosis rule base are able to be improved and increased continually.
Therefore, the fault diagnosis method presented in this paper is highly expansible, which gives it
great potential to be applied to all construction machineries and even, hopefully, extended to decision
analysis, automatic disassembly, intelligent early warning and other fields.

However, there are still some drawbacks in this method which need to be further strengthened in
the future.

(1) The ontology model represented in this paper is relatively simple because the study of loaders
fault diagnosis is not very comprehensive. In the future, more classes, object properties, data properties
and individuals need to be designed to reflect the complex relationship between fault mode, fault
causes and fault effects.

(2) By expanding the rule base and case base by defining more detailed rules and accumulating
more cases, more fault diagnosis results (such as recommendation of fault maintenance shops, severity
of fault harmfulness, fault alarming level, etc.) will be deduced.

(3) The values wj and mj will be calculated reasonably and accurately based on mathematical
methods (such as analytic hierarchy process, expert judgment and fuzzy analysis, etc.) in the future.

(4) In the next step, more actual faults will be accumulated, and several indexes of fault diagnosis
performance will be constructed to evaluate the accuracy of the method.

(5) The proposed fault diagnosis method is invalid when the data acquisition device of loaders
cannot collect or loses running parameters. Therefore, the probability model of fault locations and
fault causes of loaders will be evaluated and diagnosed based on historical operating parameters and
the prediction algorithm in the future.

(6) Relative to the correction maintenance mode used in this paper, predictive fault diagnosis
and maintenance is more important, because it can repair the faults in advance, so as to avoid greater
damage to the loaders caused by faults. To realize predictive maintenance, firstly, auto-regressive
and a moving average model and an artificial neural network need to be introduced, to predict
operating parameters based on historical operating parameters. Secondly, based on predictive
operating parameters, the fault diagnosis method combining ontology, CBR and RBR will still be
executed, as in this paper. Finally, predictive fault causes, fault locations and maintenance measures
can be achieved.

(7) Although we validated the approach to some extent, it really needs to be empirically evaluated
as well. Hence, in the future, we will invite experts and maintenance shop professionals in the loaders
fault diagnosis domain to diagnose faults empirically. By combining the approach results and their
empirical results, the approach proposed in this paper can be further validated.
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