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Abstract: Magnetic nanoparticles are met across many biological species ranging from magnetosensitive
bacteria, fishes, bees, bats, rats, birds, to humans. They can be both of biogenetic origin and due
to environmental contamination, being either in paramagnetic or ferromagnetic state. The energy
of such naturally occurring single-domain magnetic nanoparticles can reach up to 10–20 room
kBT in the magnetic field of the Earth, which naturally led to supposition that they can serve as
sensory elements in various animals. This work explores within a stochastic modeling framework
a fascinating hypothesis of magnetosensitive ion channels with magnetic nanoparticles serving as
sensory elements, especially, how realistic it is given a highly dissipative viscoelastic interior of living
cells and typical sizes of nanoparticles possibly involved.
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1. Introduction

Influence of weak electromagnetic fields on living species is perceived by many scientists as
a controversial subject matter. Nevertheless, there is a huge body of evidence of a substantial
impact ([1–4], see, especially, the book by Binhi [5] and the references therein). One of such
manifestations is given by the microwave auditory effect or Allan Frey hearing effect [6–16], an auditory
perception of microwave pulses by humans and animals, which earlier has been considered mysterious.
Now, the mystery of this effect is completely resolved within a thermoelastic theory [7–16] of acoustic
wave production in closed resonators (e.g., human or animal head) filled with microwave absorbing
tissues having a very large water content (think about heating of food in microwave oven, to realize
a possible physical reason). Good reviews are available [13–15] and the theory and experiment
agree convincingly well. The energy absorption per pulse of 16 µJ/kg sufficient to produce the
microwave hearing effect [9,13] in humans is 36,000 times lower that the maximal limit of 576 J/kg
permitted in the IEEE C95.1 radiation safety standard [13], and a corresponding pulse-like elevation of
temperature is really tiny, about 10−6 ◦C per pulse [13,15], however, rapid (about µs). This is currently
probably the only one of known profound effects of weak electromagnetic fields on living systems
which is explained completely. However, a direct influence of GHz and THz waves on neuronal
tissues, which is also evidenced experimentally, is still not convincingly explained and this is the
subject of ongoing research [17,18]. Epidemiological evidence for follow-up health effects including
a spectrum of neuropsychiatric disorders is extensive, see e.g., in [19], and the references therein.
Sensing and navigation of various living species such as magnetosensitive bacteria, fishes, turtles,
bees, bats, rats, birds, etc. in the weak magnetic field of the Earth (about 50 µT) presents another well
established effect [5,20,21]. Differently from electric fields, quasi-static magnetic fields are practically
not screened by moving ions and counter-ions, and can deeply penetrate into biological tissues [5].
Currently, such a high sensitivity to magnetic fields presents a puzzle with two basic hypothetical
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theories proposed to resolve it. One suggests that this is a non-thermal quantum effect based on
spin-dependent electron transfer reactions [20,22–24] in certain proteins related to vision [21,23–25]
and it is light-dependent. Whereas it might indeed be relevant for certain birds, it certainly cannot be
applied to animals navigating in dark such as fishes, or nocturnal mammals such as bats. An alternative
theory is based on a wide presence of magnetic nanoparticles (MNPs), such as magnetite (iron oxide,
Fe3O4), in organs and tissues of many biological species [26–29], including human brain [30–34].
The biomagnetite nanoparticles were first discovered in magnetotactic bacteria [35], where they form
chains of magnetosomes [35–37]. Whereas magnetite nanoparticles produced by, e.g., diesel engines,
have typically a rounded form, the biomagnetite particles have typically a prismatic or elongated
parallelepiped form [26,27]. This characteristic feature is even used as a plausible criterion for that
magnetite nanoparticles found in a Martian meteorite ALH84001 may possibly evidence for the
existence of life on this planet in the past [38]. The presence of biomagnetite is currently accepted by
NASA as one of possible traces of life. How big can such particles be? For example, a typical volume
size corresponding to the maximum of probability distribution of biomagnetite particles in a bacterial
strain named NIc is V = 144× 106× 106 nm3 [37]. Crystals of such size are in a single-domain
ferrimagnetic state at room temperatures [26,27] with saturation magnetization Ms = 4.8 · 105 A/m.
Hence, such particles have a permanent magnetic dipole moment µ = MsV = 7.28× 10−16 A ·m2

and their magnetic energy in the magnetic field of the Earth is EB = µBe ≈ 3.88× 10−20 J ∼9.47 kBTr,
i.e., almost 10 room kBT, well over a typical thermal energy. Interestingly, about 10% of biomagnetite
particles in human brain have sizes corresponding to such a large magnetic energy [30] with overall
particles density 4 ng per gram of tissue in the gray matter on average, or about 106 particles per
gram of tissue. In hippocampus, their density is even larger, 50 ng/g [32]. A recent PNAS paper [33]
questioned the biological origin of this magnetite. Indeed, most particles found in the polluted brains
of deceased persons who lived in Mexico City and Manchester were of anthropogenic origin [34].
They were of a rounded form with a median diameter of 18 nm. However, their specific density
ranged from 0.2 to 12 µg/g of dry tissue [33], i.e., it was from 50 to 3000 times larger than one
in unpolluted human brains [30]. No wonder that biomagnetite concentration is such brains was
negligible with respect to one incurred by the environmental pollution. As a side remark, a brain
polluted by magnetite nanoparticles will absorb more incident microwave energy than one free of
such particles, or having a natural concentration. In particular, the local temperature around such
particles can be increased stronger. A standard argumentation [39,40] that a temperature increase
by 10−4 − 10−5 ◦C is physically and biologically irrelevant is wrong, as evidenced by the theory and
practice of microwave auditory effect [13,15]. This is because the temperature increase is very rapid
at a pulse-modulation. Magnetic nanoparticles are known to heavily absorb microwaves between
0.5 and 10.0 GHz through ferromagnetic resonance and also produce hypersound via magnetoacoustic
effect [41,42]. The physics of this effect is even used to thermally destroy cancer cells, which are
known to accumulate magnetic nanoparticles [43], by using sufficiently strong microwaves (magnetic
hyperthermia). An excess accumulation of magnetic nanoparticles in biological tissues can generally
be a signature of decease.

Currently, magnetic control of cellular processes using biofunctional MNPs presents a hot topic
(see a recent review [44] and the references therein). Apart from hyperthermia-based therapy
and controlled drug delivery [43], this includes, e.g., genetically targeted control of neuronal
system [45], control of calcium influx in cortical neuronal networks [46], and control of inner ear
hair cells [47]. In [45], a genetically engineered magneto-sensitive ion channel named Magneto
was created. It comprises of a cation ion channel, TRPV4, fused to a paramagnetic protein ferritin.
In [46], mechano-sensitive ion channels were controlled via MNPs modulating tension in biological
membranes. In [47], MNPs were fused with cilia of hair cells. In all cases, sufficiently strong magnetic
fields were required, of the order of 100 mT, i.e., three orders of magnitude larger than Be. This is
because the corresponding MNPs were either (super)paramagnetic or smaller than 100 nm in linear
size, or both. All three above cited papers are already dealing experimentally in fact with artificial
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magneto-sensitive ion channels or complex nanomagnetic biostructures involving ion channels.
In addition, in Ref. [48], a membrane pore forming activity of magnetic nanoparticles has been
shown. Hence, such man-made biological structures were already in fact demonstrated, however,
for sufficiently strong magnetic fields, much stronger than biological species normally experience.

The idea that a magnetic nanorod can play a role in biological sensing of weak magnetic
fields by birds has first been proposed by Yorke [49]. Kirschvink et al. [27,28,50] suggested that it
can be a magnetosensitive ion channel that involves a magnetic nanoparticle as sensory element.
Several variants of such channels were further proposed and discussed [51,52]. Whether such
theoretical proposals can be feasible or not requires, however, a serious detailed investigation of
the dynamics of such models [40], which is necessarily stochastic. The sensory element unavoidably
experiences friction and random thermal noise caused by the environment, which are related by
the fluctuation–dissipation theorem [53–55], at a local thermal equilibrium. Cytosol is a viscoelastic
liquid, when it is functional, to a first rough approximation, with the main water component which
accounts for up to 80% of the cytosol’s mass content. However, it is densely stuffed with different
protein polymers, which dramatically enhances the cytosol viscosity for particles of the linear size
of 100 nm range and even smaller. Thus, in Refs. [28,29,50], the effective viscosity felt by magnetic
nanoparticles is assumed to be 100 times larger than the one of water. Notice that a starving cell
can do a transition to an anabiosis state, where cytosol behaves more like a superviscous solid with
virtually infinite viscosity [56]. However, we are more interested in its functionally active liquid-like
state. The characteristic time scale of sensor was estimated it Refs. [28,50] assuming that the sensor
is monostable and it fluctuates around a fixed point, which is not affected by the magnetic field.
In that original model, one assumes that the ion channel opens when a critical angle fluctuation occurs,
and the amplitude of this fluctuation is affected by the magnetic field. However, most biological ion
channels do exhibit a characteristic bistable dynamics while fluctuating between open and closed
states [57]. Binhi and Chernavskii considered an orientational bistable dynamics of a magnetosome
tethered to cytoskeleton [58,59], however, not in the context of ion channels, but rather stipulating that
the above quantum mechanism can be mediated by a fluctuating magnetic field of a magnetosome.
Indeed, it can largely exceed one of the Earth [60,61]. Anisotropic field of a spherical ferromagnetic
magnetosome is estimated to be up to 402 mT strong near to its surface [61].

The magnetic sensor dynamics of hypothetical ion channels should also be bistable, rather than
monostable. Such a model was proposed recently in Ref. [61]. The bistability therein is induced by
a gating spring type instability as earlier suggested in the context of hair cell ion channels [62,63].
The analysis of this model for realistic parameters showed, however, that for a viscous friction
that is 100 times larger than one in water the time scale of switchings would be so large that such
a channel would not be functional. Moreover, the effective friction caused by cytosol for the particles
of the size of 100 nm can be even larger, e.g., 1000 fold larger than one in water [64–69]. Cytosol as
a complex fluid [70,71] is, however, not a Newtonian but rather viscoelastic liquid [72–85], and on
the appropriate time scales (probably up to hours in some cases) it is characterized by a slowly,
power law decaying memory kernel with a memory cutoff at large times [70,71,86,87]. Integration of
this memory kernel yields an effective friction at very large times, when the memory effects can be
neglected. The discussed memory friction yields subdiffusion on the relevant time scales, which has
been experimentally measured for various nanoparticles in cytosol [56,73,74,77–79,82,88–99] including
magnetosomes [81]. Even smaller particles of the size of only several nanometers can subdiffuse on
the time scale up to one hour [74,83]. The non-Markovian dynamics, which includes such effects,
has also been studied in Ref. [61] using a Markovian embedding approach of Refs. [87,100]. Contrary to
naive reasoning involving a largely enhanced normal viscous friction, however, in accord with the
results of non-Markovian rate theory [101–105], it has been shown that such bistable sensors can be
functional and operate on a millisecond to second time scale. This is in line with some earlier studies
showing that viscoelastic subdiffusion largely accelerates (and not hinders, contrary to a common but
misleading interpretation [84]) transport processes in living cells over the naive macroscopic Markovian
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treatment with a largely enhanced normal viscosity. Viscoelastic power-law memory friction yields
non-exponential distribution of the waiting times such as stretched exponential distribution, which
elegantly explains [61,87,100] the physical origin of such distributions in ionic channels [106–108] and
1/ f noise [109], although other approaches also exist [109–116]. In [61], nanosensor rod consists of
several nanoparticles. It is coupled by peptide elastic springs to the gating structural elements of several
ion channels forming a cluster and can do a large-amplitude orientational motion (about 150 angle
degree change), while moving to a metastable state corresponding to the open state of the channels
in cluster. In this paper, I will explore the possibility of sensor consisting of the only one sufficiently
large nanoparticle and doing a relatively small orientational motion (about 30 degree change) while
creating an opening torque on the gates of the channels within a very similar model. It will be shown
that such a magnetic sensor is more realistic and it would operate much faster, on biologically relevant
time scales, despite a largely enhanced effective friction. Viscoelastic properties of cytosol are very
important for this and cannot be disregarded.

2. Model

We consider the model sketched in Figure 1, where a single magnetosome consisting of
an elongated nanoparticle of magnetite in single-domain ferrimagnetic state of length L and width
d < L, dressed in a protein–lipid membrane, can rotate around one edge fixed on a cytoskeleton
element arming the cell membrane inside the cell. For L = 150 nm and d = 107 nm its magnetic
energy in the magnetic field of the Earth reaches EM = µBe = 4.12 · 10−20 J or about 10 kBTr for
Tr = 297 K depending on its orientation, which is characterized by the angle φ, and the orientation
of the magnetic field given by the angle ψ in plane geometry. Biomagnetite nanoparticles of such
a size are commonly met both in some bacteria and in the human brain. This “nanocompass” is
coupled by m elastic peptide linkers (depicted in red) to the gates (depicted in blue) of m ionic channels
forming a cluster in the membrane (one is depicted). One end of the linker is attached at the distance
l from the rotation axis to magnetosome and another one to a molecular latch, which forms a gate
opening and closing an ion-conducting pore formed by a membrane channel protein. In the absence
of magnetic field or for its unfavorable orientation (e.g., ψ = 0), the linkers are relaxed (folded) and
the channels are closed (right part of Figure 1). For a properly oriented field, the linkers are fully
stretched (unfolded) and the channels are open (left part of Figure 1). Even in predominantly closed
state channels can stay open time from time due to thermally activated transitions of sensor between
its two metastable states depicted in Figure 1. Likewise, in the predominantly open state channels
close stochastically in time. The mean time intervals in the states and the mean opening probability
of ion channel complex, which determines the ion current controlled by it, strongly depend on the
magnetic field. Sensor experiences friction and thermal noise caused by environment, which crucially
determine its stochastic dynamics.

µ
µ

ψ φ

B

Figure 1. A sketch of the considered model, see the text for detail. Not to scale.

The linker, which is an entropic spring provided by a disordered peptide, is modeled by a finite
extensible nonlinear elastic (FENE) chain [117]. Its elastic energy depending on the elongation x is given
by UFENE(x) = − 1

2 kLl2
max ln(1− x2/l2

max), where kL is elastic spring constant, and lmax is the maximal
extension length of the linker, when it is fully stretched. The rotation of sensor is thus bounded to some



Sensors 2018, 18, 728 5 of 19

angular interval [0, φmax], where φmax depends on l and lmax. We will choose it sufficiently small, like in
Figure 1. The channel gate can be in one of two states. The closed state is characterized by the energy ε1,
and the open one has the energy ε2 − f0x, which depends on the linker elongation x, where f0 is a force
constant characterizing the strength of coupling (force exerted by the linker on the gate). The gate
fluctuates very fast and its dynamics is slaved to a much slower sensor. Statistical mean force exerted by
the channel gate on the linker is f (x) = −dG(x)/dx , where G(x) = −kBT ln Z(x), is a corresponding
potential of mean force with Z(x) = exp[−βε1] + exp[−β(ε2 − f0x)] being the statistical sum of the
gate, and β = 1/(kBT) is inverse temperature. The mean force is f (x) = f0 p(x), where

p(x) =
1

1 + exp[− f0(x− l0)/(kBT)]
, (1)

is probability of the gate to be open and l0 = (ε2 − ε1)/ f0. To define some x0 as equilibrium point, we,
following [63], redefine the mean force by a shift as f (x) = f0[p(x)− p(x0)]. Furthermore, the linker
elongation is approximated as x(φ) = 2l[sin(φ/2) − sin(φ0/2)], where φ0 is an equilibrium angle.
The potential of mean force or rather torque acting on the rod in our model is [61]

U(φ) = −1
2

kl2
max ln

{
1− [x(φ)/lmax]

2
}

− kBTm ln {1 + exp[ f0(x(φ)− l0)/(kBT)]}
+ m f0 p(φ0)x(φ)− µB cos(ψ− φ), (2)

where p(φ0) = p(x = 2l sin(φ0/2)), k = mkL. We shall scale the energy in units of U0 = kl2
max,

temperature in the units of U0/kB, distances in units of lmax, and forces in units of fu = U0/lmax.
U0 will be fixed to U0 = 10 kBTr ≈ 41 pN · nm ≈ 0.25 eV. For m = 7 and a linker with stiffness
kL = 0.0429 pN/nm [95], k ≈ 0.3 pN/nm, this U0 corresponds to lmax ≈ 11.69 nm and force units
fu ≈ 3.51 pN. In this paper, we choose l = 2, l0 = 0.91, f0 = 3, φ0 = 0.1 rad ≈ 5.73◦. The corresponding
U(φ) and p(φ) are plotted in Figure 2. U(φ) is bistable due to a gating spring instability featuring
such models [62]. Namely, if the sensor pulls the linker sufficiently strong, another metastable state
emerges. Notice that the probability of the channel to be half-open, p = 0.5, belongs in this model
to the attraction domain of U(φ) belonging to the open state. When it becomes lower in energy than
one corresponding to the relaxed linker (closed channel), the channel becomes predominantly open.
This occurs, e.g., when the magnetic field is applied at the angle ψ ≈ 114.59◦.

0 10 20 30
φ

-1 -1

0 0

1 1

U

B=0
µB=U0, ψ=0

µB=U0, ψ=114.59
ο

p
p

Figure 2. Effective potential for the sensor rotations (in units of U0), as a function of its orientation φ

(in degrees) depending on the presence of magnetic field and its orientation. The motion of sensor is
restricted by the plane of membrane and the maximal angle φmax ≈ 34.95◦ due to the maximal extension
length of anharmonic linker. The probability of the cluster to be in the conducting state is also depicted
by the red line with symbols. For B = 0, or for ψ = 0, the global minimum corresponds to the closed
state. In the magnetic field of Earth, the cluster is expected to be predominantly in the conducting state,
e.g., for ψ ≈ 114.59◦ or 2 rad, where the global minimum corresponds to the open state.
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3. Theory and Results

To obtain the averaged probability 〈p(ψ, B)〉 of the ion channel cluster to be in the open
state depending on the strength and orientation of the magnetic field, one has to average p(x(φ))
in Equation (1) over φ with the statistical weight function P(ψ, B, φ) = exp[−U(φ)/(kBT)]/Z ,
where Z =

∫ φmax
0 exp[−U(φ)/(kBT)]dφ is the corresponding statistical sum. The result is shown

in Figure 3.

0 100 200 300
ψ

0

0.2

0.4

0.6

0.8
<

p
>

µB=U0

µB=2U0

Figure 3. Dependence of the averaged probability 〈p(ψ, B)〉 on the angle ψ (in degrees) for two values
of the magnetic energy. One corresponds to U0 = kl2

max, i.e., a characteristic energy of the stretched
gating springs, and another one is double of it. Notice that the sensor operation is possible already
for µBe = U0 with the maximal averaged opening probability over 0.5. For a larger sensor with the
linear sizes increased by the factor 21/3 ≈ 1.26, i.e., 189× 134.8× 134.8 nm3 (also met in living species),
the maximal averaged probability increases to about 0.8. Such a sensor would be, however, less sensitive
to the variations of ψ near to the maximum.

The corresponding averaged current through a cluster of ion channel is 〈I〉 = mi0〈p(ψ, B)〉,
where i0 is unitary conductance of a single channel in the cluster. Already single such sensory complex
consisting of m = 7 large conductance ion channels with i0 ∼50 pA can be sufficient to depolarize the
membrane above a sensitivity threshold and evoke spiking activity in hypothetical magneto-sensitive
neurons [61].

For the magneto-sensor complex to be functional, its dynamics is, however, also very important.
For example, if its characteristic times would lie in the range of minutes or hours, it, for sure, would not
be of any relevance for animals.

3.1. Stochastic Dynamics without Memory

First, we consider stochastic orientational dynamics of the sensor in the viscous medium
under the mean torque f (φ) = −∂U(∂)/∂φ, viscous friction term Fv = −η0φ̇, with orientational
friction coefficient η0, and the corresponding white Gaussian thermal noise ξ0(t) of the environment.
The last two are related by the fluctuation–dissipation relation (FDR) named also the second
fluctuation–dissipation theorem (FDT) by Kubo [53–55], 〈ξ0(t′)ξ0(t) = 2kBTη0δ(t − t′), at the
medium’s temperature T. δ(t) here is the Dirac’s delta function signaling that this noise has an infinite
root-mean squared amplitude—a common singular model in statistical physics. The overdamped
stochastic dynamics reads [54,55,118]

η0φ̇ = f (φ) + ξ0(t) , (3)

and a characteristic time-scale entering it is τsc = η0/U0. Precise estimation of the rotational frictional
coefficient for the particle of the form considered is not easy [119]. A simplest estimate can be obtained
by replacing it with the sphere of equal volume V = Ld2. Then, η0 ∼6ζ0V, where ζ0 is the medium’s
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viscosity. For water at T = 20 ◦C with ζ0 ∼ 1 mPa · s, we obtain τsc ∼ 0.17 ms, which is much smaller
than for the rod-like sensor in [61]. This is a first reason why it is faster. τsc is the time scale used
in our simulations done using the second-order stochastic Runge–Kutta method, or stochastic Heun
method [120], see in Methods. The sample trajectories are shown in Figure 4 both for predominantly
closed channels (part a, for ψ = 0), and for predominantly open channels (part b, ψ = 2 rad.)
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Figure 4. Sample trajectories (central part) and the distributions of the sensor orientation (left part),
as well as distribution of current values (right part) for µB = U0 at two fixed magnetic field angles:
(a) ψ = 0, with ionic channels being predominantly closed; and (b) ψ = 2 rad≈ 114.59◦, where channels
are predominantly open, in the case of Markovian memoryless dynamics. Black curves correspond
to the motion of sensor and the red ones to fluctuations of ionic current due to open-closed gating
dynamics. The dashed blue lines in the left parts are the corresponding theoretical values of distribution,
P(ψ, B, φ) = exp[−U(φ)/(kBT)]/Z , with U(φ) in Figure 2. Time is in units of τsc = 0.17 ms, angle in
radians, and current in the units of a maximal current possible.

From very long single trajectories we extract residence time distributions in open and closed
states using the following procedure. Two thresholds are placed at the potential minima of the sensor
metastable states corresponding to U(φ) or, equivalently, two maxima of the probability distribution
of the ionic current. The residence time interval in the closed state starts after a first downward
crossing of the lower threshold and continues until the first upward crossing of the higher threshold.
Likewise, the residence time interval in the open state starts after a first upward crossing of the upper
threshold and continues until the first downward crossing of the lower threshold. This allows to
map the continuous fluctuation processes in Figure 4 (central part) onto the corresponding two-state,
on-off processes, characterized by the survival probabilities of the residence time-intervals in the
corresponding states, Pc(τ) and Po(τ). In the case of sufficiently large potential barriers, the Markovian
continuous state dynamics yields also two-state Markovian dynamics completely characterized by the
exponential survival probabilities Pc,o(τ) = exp(−ro,cτ), and the corresponding probability densities
ψc,o(τ) = −dPc,o(τ)/dτ = ro,c exp(−ro,cτ), where ro = 1/〈τc〉, and rc = 1/〈τo〉 are the opening and
closing rates, respectively. In the case of Markovian two-state dynamics, they are inverse of the mean
residence times in the closed state, 〈τc〉, and the open state, 〈τo〉, correspondingly. As a more general
model, we use a stretched-exponential or Weibull distribution

Pc,o(τ) = cc,o exp
[
−(τ/τc,o)

βc,o
]

(4)
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for the whole survival probability derived from numerics (then, cc,o = 1) or some parts of it.
The corresponding density

ψc,o(τ) =
cc,oβc,o

τ
βc,o
c,o

1
τ1−βc,o

exp
[
−(τ/τc,o)

βc,o
]

(5)

has a decaying power law part 1/τ1−βc,o , for 0 < βc,o < 1 which is the reason why this distribution
can be confused for a truly power-law dependence on the corresponding plots for a large τc,o. To avoid
this pitfall of interpretation, the plots of survival probability P(τ) can be preferred.
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Figure 5. Survival probabilities of open and closed times in the case of memoryless dynamics for the
channels: (a) predominantly closed, µB = U0, ψ = 0; and (b,c) predominantly open, µB = U0, ψ = 2.
(a,b) The residence time distributions are extracted by placing two thresholds at the sensor orientations
corresponding to the maxima of probability distribution of the sensor orientations (the left panel in
Figure 4), or, equivalently, the current values (the right panel in Figure 4). (c) Only one threshold is used
at the minimum of current distribution corresponding to p = 0.2 and the top of U(φ) barrier separating
two metastable states. Notice, that many re-crossings of this threshold occur when the sensor dwells
on the top of this barrier. A measuring device with a finite time resolution ∆tres will miss many of
such events. We model this by using ∆tres = 100δt, where δt = 2 · 10−6 is the time step in simulations.
Notice that this incorrect procedure leads to spurious power law and stretched exponential distributions
with the parameters shown in the plot. It results also in far too small values of the mean residence
times, 〈τc〉, 〈τo〉, as compare with the correct values in the part (b). Clearly, these “measurable’’ mean
times will become even much smaller for ∆tres = δt. This procedure with one threshold placed at top
of the barrier separating two basins of attraction is hence very subjective and it cannot be trusted.

The just described procedure of extracting two-state process is well known (see, e.g., in [61,100]).
In [61], the derived in this way exponential distributions agree very well with the results of Kramers
theory for the transition rates [105], which confirms that this procedure is essentially correct. In the
present case, the potential barriers are smaller and the curvatures of the potential wells (at the bottom),
and the barrier (at the top) are very different. In such a situation, a good agreement with the Kramers
theory is not expected. In this respect, notice large fluctuations of the sensor orientation in Figure 4 in
the case of the relaxed linker and the closed state of channel. In a sharp contrast, these fluctuations are
much smaller when the linker is in its tense state. This does not mean, however, that there cannot be
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large fluctuations of conductance when the linker is tense. Vice versa, they are much larger when the
linker is tense than when it is relaxed. This is because the midpoint of p(φ) dependence belongs to
the attraction basin of the metastable state of U(φ) that corresponds to the open state, and the barrier
corresponds to p(φ) ≈ 0.2 (see Figure 2). The amplitude of current fluctuations which corresponds the
large-amplitude fluctuations of sensor with the relaxed linker is quite small because of an exponential
dependence in Equation (1). The numerics for the case of predominantly closed channels in Figure 5a
show that the closed time residence time distribution is nearly exponential cc = 1, and τc ≈ 〈τc〉.
However, the open time distribution is not quite exponential. Initially, it is different from exponential,
see in inset of Figure 5a, which is the reason why co ≈ 1.214 > 1 and fitted τo does not agree well with
〈τo〉. The corresponding mean opening probability is calculated as 〈p〉 = 〈τo〉/(〈τo〉+ 〈τc〉), and it is
quite small in Figure 5a. For predominantly open channels in Figure 5b, both open and closed time
distributions are nearly exponential. The corresponding mean times 〈τo〉 = 4.254× 0.17 ≈ 0.723 ms
and 〈τo〉 = 2.338× 0.17 ≈ 0.397 ms are quite small, being typical for very fast ion channels like sodium
channels, which are crucial for neuronal excitability. Notice also that the corresponding 〈p〉 ≈ 0.645 is
somewhat larger than 〈p〉 calculated for the continuous process in Figure 2.

Separation of Closed and Open States with a Single Threshold

The distribution of current values in the right panel of Figure 4 implies, however, that it might
be difficult practically implement the detecting procedure with two thresholds because the lower
threshold must be set at a very tiny, 10−8 − 10−6, value of current. What a theorist can easily do
in a Gedankenexperiment, an experimentalist can have difficulties to realize in practice. Setting the
lower threshold at some other higher value, say 0.2, can very essentially modify the thus derived
statistics [61], and, hence, it is a rather arbitrary procedure. Another common procedure, which some
experimentalists implement both in ion channel research [57], and, especially, in deriving statistics of
blinking quantum dots [121–124] is to operate with the only one detection threshold. It is “naturally”
placed at the minimum of the current distribution separating two maxima. An immediate objection
of a theorist experienced in the rate theory is that this procedure corresponds to placing a separation
threshold on the top of potential barrier (for the sensor, in our case) separating two metastable basins
of attraction. It might first look natural. However, physical picture of the rate transitions between two
metastable basins of attraction says that it is not. In fact, the particle dwells mostly in a potential well
and seldomly, with rate r0 = (ω0/2π) exp[−∆U/(kBT)], where ω0 is circular frequency of oscillations
near the bottom of the potential well, and ∆U is the height of the potential barrier, comes on the barrier
top. However, it generally can dwell for a while on the top of this potential barrier and re-cross this
single threshold many times, before the particle will make finally transition to another potential well.
These multiple crossings yield the so-called transmission coefficient which being multiplied with r0

renders the resulting rate much smaller. The whole rate theory is, roughly speaking, about how to
calculate this transmission coefficient, which depends on friction, etc. Its maximal value is one (single
crossing). This is why for the overdamped dynamics considered, this second procedure yields totally
different residence time distributions, which severally distort the correct distributions characterizing
two-state dynamics. In particular, the mean residence times derived in such a way will be much
smaller than the correct ones. Experimentally, the problem is softened and can be masked by a finite
time resolution ∆tres of a measurement device. This is why not every fast recrossing will be measured.
With ∆tres becoming large many such recrossing events will be missed. However, this does not mean
that statistics will become closer to the correct one. Not at all. To model this second procedure we use
∆tres = 100δt, where δt is the time step used in simulations, and the corresponding results are depicted
in Figure 5c. First, the mean residence times are indeed much smaller (they became naturally even
much more smaller for ∆tres = δt). Second, the residence time statistics is severely distort. In particular,
about 90% of the closed time intervals follow now a spurious power law, Pc(τ) ∝ 1/τγ, with γ ≈ 0.437,
and hence ψc(τ) ∝ 1/τ1+γ = 1/τ1.437. Similar power laws are indeed measured for quantum dots
using a similar approach with one threshold (however, the physics there is very different and our
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reasoning cannot be directly applied). Moreover, a spurious stretched exponential tail appears with
βc = 0.762 and weight cc = 0.0834. The open time distribution has, however, an exponential tail,
βo = 1. Our example shows explicitly how dangerous can be this second detection method and why it
cannot be trusted. Interestingly, this second procedure barely affects 〈p〉, cf. 〈p〉 = 0.642 in Figure 5b
vs. 〈p〉 = 0.626 in Figure 5c.

Notice that with a naíve replacement τsc → 100τsc = 17 ms in a medium with effective viscosity
100× larger than one of water our sensor dynamics would become 100× slower what would essentially
deteriorate its functionality. A much slower model channel in [61] would even cease to be of any interest
in biological context, if to apply this Markovian reasoning with ηeff = 100 η0. This, however, does not
happen in fact in viscoelastic media such as cytosol, where a more careful treatment is required, since
the viscoelastic memory effects become very essential.

3.2. Stochastic Dynamics in Viscoelastic Environment

In viscoelastic crowded environments such as cytosol, apart from viscous friction
caused by the its main water component, also a viscoelastic memory friction is present,
Fv−el(t) =

∫ t
0 ηmem(t− t′)φ̇(t′)dt′, where ηmem(t) is a memory kernel. It is necessarily complemented

by a corresponding correlated thermal unbiased Gaussian random force of the environment, ξmem(t).
In accordance with the (second) FDT, 〈ξmem(t)ξmem(t′)〉 = kBTηmem(|t− t′|). Sensor dynamics in this
case obeys a generalized Langevin equation (GLE) reading

η0φ̇ = f (φ)−
∫ t

0
ηmem(t− t′)φ̇(t′)dt′ + ξmem(t) + ξ0(t) . (6)

The simplest Maxwellian model of viscoelasticity corresponds to an exponentially decaying
memory kernel, ηmem = k1 exp(−ν1t), where k1 is a spring constant and ν1 is a relaxation rate of stress.
For ν1 → 0, Fv−el(t) behaves as an elastic force, while in the limit k1 → ∞, ν1 → ∞, η1 = k1/η1 = const
it corresponds to the viscous Stokes friction with the friction coefficient η1. This is how Maxwell
derived the phenomenon of viscosity from the phenomenon of elasticity, i.e., by letting the elastic stress
to relax in time [87]. Complex viscoelastic liquids and gels are, however, characterized by a power law
decaying memory kernel, ηmem(t) = ηαt−α/Γ(1− α), with 0 < α < 1, as it has first been established by
Gemant [87,100,125], and which now presents a common model. In this particular case, Fv−el(t) can be
abbreviated as Fv−el(t) = ηαdαφ(t)/dtα, which just defines the fractional Caputo derivative of the order
α. Hence, ηα is customarily named the fractional friction coefficient, and GLE in this particular case
is named fractional Langevin equation or FLE. This is, of course, an idealization. In reality, there are
always two memory cutoffs present. A large time memory cutoff τh = 1/νl defines the slowest
Maxwellian relaxation mode of the environment, and with ηα → ηα exp(−νht), an effective friction
coefficient ηeff =

∫ ∞
0 ηmem(t)dt = ηατ1−α

h can be introduced. Notice that ηeff characterizes diffusion on
the time scale t� τh. However, τh can be well in the range of minutes and even hours. It depends on
the system considered. We assume it to be in the range of seconds for our nanosensor. As long as t < τh,
e.g., for the duration of sojourn times of our sensor in the metastable states, it is ηα that determines the
stochastic dynamics and not ηeff, which can be effectively infinite, with τh → ∞. This is the reason why
thinking in terms of some ηeff can be very misleading for viscoelastic media. This is a macroscopic
type approximation, which can fail completely on micro- and nano-scales. With this reservation we
use it because far too many researchers continue to think in terms of some ηeff. In the simulations
presented below we fixed α = 0.5 (one of common experimental values for cytosol [74]) and τh = 104

(or about 1.7 s, when τsc = 0.17 ms). ηα will be fixed to two values by choosing ηeff = 100 η0 and
ηeff = 1000 η0. In dimensionless units used in numerics, the former (intermediate) fractional friction
is about ηα ≈ η0, whereas the latter one (strong) is ηα ≈ 10 η0. For intermediate ηα, the relaxation
within a potential well is mostly exponential with a heavy power law tail, while for the large ηα, it is
initially stretched exponential and then changes into a power-law decay (Mittag-Leffler relaxation
function) [61]. This latter one corresponds to dielectric Cole–Cole response [126] which is typical for
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biological media [4]. Furthermore, on physical grounds also a short time cutoff τl = 1/νh is always
necessarily present. It ensures that spectral density of the noise ξmem(t) does not contain frequencies
much above νh. This physically corrects the approximation of continuum medium where such a cutoff
is absent because this approximation neglects the atomistic nature of any real condensed medium.
In our numerics, we take it to be νh = ν0 = 104, and the numerical method is based on approximating
the memory kernel by a sum of exponentials, and using a Markovian embedding (9) of the GLE
dynamics in Equation (6), see in Methods. This allows for a numerically highly accurate approach,
with a well controlled accuracy [87,100]. Typical trajectories for strong fractional friction are shown
in Figure 6. For a weak or intermediate fractional friction, they look more like the ones in Figure 4.
One striking feature is immediately seen in Figure 6. This is a highly bursting character of sojourns
in the open state, where huge many very short excursions happen to the closed state during a long
sojourn in the open state. It visually signals a truly non-exponential kinetics.
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Figure 6. Sample trajectories (central part) and the distributions of the sensor orientation (left part),
as well as distributions of the current values (right part) for µB = U0 at two fixed magnetic field angles:
(a) ψ = 0, with ionic channels being predominantly closed; and (b) ψ = 2 rad≈ 114.59◦, where channels
are predominantly open, in the case of non-Markovian fractional dynamics with ηeff = 1000, ηα ≈ 10 η0.
Black curves correspond to the motion of sensor and the red ones to fluctuations of ionic current due to
open-closed gating dynamics. The dashed blue lines in the left parts are the corresponding theoretical
values of distribution, P(ψ, B, φ) = exp[−U(φ)/(kBT)]/Z , with U(φ) in Figure 2. Time is in units of
τsc = 0.17 ms, angle in radians, and current in the units of a maximal current possible.

3.2.1. Intermediate fractional friction, ηα ≈ η0

The first profound influence of fractional viscoelastic friction on the statistics of the residence time
distributions can be reveal in Figure 7. Namely, the distribution of closed times becomes stretched
exponential with βc ≈ 0.92 in part a, and βc ≈ 0.82 in part b. However, the distribution of open
times remains almost exponential, and the mean times in the states and the mean opening probability
remain only weakly affected, compare with Figure 5a,b. This is especially striking because we can
further arbitrarily increase ηeff, while keeping the same ηα. This is easy to do in our numerics just by
further increasing the number N of exponentials in Equation (7) and, correspondingly, the Markovian
embedding dimension in Equation (9). The results will not be changed because the essential kinetics in
Figure 7 is on the time scale which is already smaller than the cutoff time τh, that further increases
with N. This feature must be shocking for all those who continue thinking in terms of ηeff, rather than
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fractional friction featuring such complex media as cytosol. All in all, for such an intermediate ηα,
our sensor operates as fast as in water. This is a good news.
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Figure 7. Survival probabilities of open and closed times in the case of non-Markovian fractional
dynamics with ηeff = 100, ηα ≈ η0: (a) µB = U0 and ψ = 0; and (b) µB = U0 and ψ = 2. The residence
time distributions are extracted by placing two thresholds at the sensor orientations corresponding to
the maxima of probability distribution.

3.2.2. Strong Fractional Friction, ηα ≈ 10 η0

For a strong fractional friction, both closed and open times have Weibull distribution with smaller
values of the stretched exponential parameter β (see Figure 8). Here, the influence of viscoelastic effects
is very strong. Initially, for small time, β can exceed one, see for closed times (red fitting curve) in
part b. However, the mean opening probabilities are also almost unaffected, as compared with the
Markovian case, despite the mean residence times increase. This increase is not very strong, by a factor
of less than three only. Our sensor remains very fast.
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Figure 8. Survival probabilities of open and closed times in the case of non-Markovian fractional
dynamics with ηeff = 1000, ηα ≈ 10η0: (a) µB = U0 and ψ = 0; and (b) µB = U0 and ψ = 2.
The residence time distributions are extracted by placing two thresholds at the sensor orientations
corresponding to the maxima of probability distribution.

4. Discussion

Design of a magnetosensitive ion channel complex using a single biomagnetite nanoparticle
as a magnetic field sensor makes it more realistic. In essence, the model studied in this paper is
a variant of the model in Ref. [61]. The differences are in detail. However, these details do matter.
First, a single prolonged nanoparticle is used instead of a rod made of 5÷ 7 such nanoparticles, and,
second, a shorter linker is used to restrict the orientational motion of sensor when it fluctuates between
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two metastable states in response to a change of the magnetic field orientation. In our present work,
it is just about 30◦, whereas, in [61], it is about 150◦. This makes the present variant much faster and
more realistic in view of possible sterical restrictions within the cell. This comes, however, at a price:
the magnetic moment of the sensor must be larger to ensure its magnetic energy to be about 10 kBT
in the magnetic fields of Earth vs. 3÷ 4 kBT in Ref. [61]. This is, however, not a problem because
such sufficiently large nanoparticles are met both in certain bacteria, and in the human brain, even
if they are certainly less common that ones assumed in [61]. Furthermore, our analysis shows that
such a sensor would be operating very fast even in viscoelastic cytosol feeling an effective viscosity
1000× larger than one of water. More precisely, this effective viscosity can be even formally infinite,
like in solid, because this is not an effective macroscopic friction defined on a very large time scale
which determines the stochastic switching dynamics. In fact, the microscopic fractional friction does
matter here and it is crucially relevant. If it is large and dominates the dynamics, as in the studied case
of ηeff = 1000 η0, the “off–on” two-state dynamics becomes very bursting. It is not characterized by
nearly exponential distributions of the residence times in two states anymore, but rather by profoundly
non-exponential stretched exponential distributions. Such distributions are indeed measured in several
biological ion channels, and our theory tentatively explains their principal origin as one rooted in
the viscoelasticity of environment. All this clearly correlates with the dielectric Cole–Cole response
in such media (Mittag-Leffler viscoelastic relaxation). It is important that the mean residence times
(MRTs) as well as all higher moments remain finite; moreover, MRTs were increased in our model
study by a factor of less than three only, as compared to ones in water. Arguably, it can be unbelievable
and embarrassing for those who continue to think in terms of an η0 → ηeff renormalization within a
Markovian dynamics. However, this is a result of the proper treatment of non-Markovian effects, and
it presents a very good news with respect to feasibility of such magnetosensitive complexes in living
systems.

If such magnetosensitive ion channels do exist, why then they were not found until now?
The situation here can be similar to ion channels associated with cilia in hair cells. The existence
of those channels is widely assumed and is taken nowadays by many almost as a real fact. However,
they were not identified until now as biological protein structures, such as many other well-known ion
channels, despite numerous efforts. It is very difficult to identify them because each cilia is assumed to
be connected by elastic protein linkers to the gates of many such channels, and it is difficult to confirm
this hypothesis experimentally. The ion channels of cilia in hair cells remain elusive, even if in their
existence practically nobody doubts. The hypothesis of magnetosensitive ion channel complexes is
much less studied. However, it is a reasonable one and it should attract more attention in the future.

5. Methods

The power law memory kernel is approximated between two cutoffs by a sum of exponentials

ηmem(t) =
N

∑
i=1

ki exp(−νit), (7)

with a fractal scaling of relaxation rates νi = ν0/bi−1 and weights ki ∝ να
i . Namely,

ki = ν0ηeff
b1−α − 1

b(i−1)α[bN(1−α) − 1]
. (8)

Here, ν0 = νh = 1/τl is the largest viscoelastic rate of the environment. Using scaling or
dilation parameter b = 10 allows to achieve 4% accuracy of power law approximation between
two cutoffs for α = 0.5 and a sufficiently large N [87,100]. In our numerics, we use ν0 = 104 and
N = 9, τh = bN−1/ν0 = 104. The fractional friction coefficient is ηα = ηeffτ

α−1
h /gα, with an inverse
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proportionality coefficient gα, which slightly differs from unity. For α = 0.5, b = 10, and N > 5,
gα ≈ 1.07. This allows for a Markovian embedding

η0φ̇ = f (φ)−
N

∑
i=1

ki(φ− yi) + ξ0(t),

ηi ẏi = ki(φ− yi) + ξi(t), (9)

of GLE dynamics (6) in a space of N + 1 dimension. Here, yi are non-dimensional linear auxiliary
variables, ηi = ki/νi, and ξi(t) are mutually independent auxiliary uncorrelated white Gaussian noises,

〈ξi(t)ξ j(t′)〉 = 2δijkBTηjδ(t− t′). (10)

They are also uncorrelated with ξ0(t). The initial angles yi(0) are sampled from Gaussian
distributions centered around φ(0), 〈yi(0)〉 = φ(0) with variances 〈[yi(0) − φ(0)]2〉 = kBT/ki,
in order to have a complete equivalence with the corresponding GLE in Equations (6) and (7) in
the ensemble sense [87]. The system of stochastic differential Equations (9) is propagated in time (in
units of τsc = η0/U0) using stochastic Heun method [120]. The time step was fixed to δt = 2 · 10−6.
T = Tr = 297 K, while U0 = 10 kBTr.

6. Conclusions

To conclude, in this paper, we studied a model of magnetosensitive ion channel complexes in
more realistic detail. Our study underpins theoretically a possible existence of such complexes which
should attract more attention of researchers trying to resolve the puzzle of magnetosensitivity of many
animals to environmental magnetic fields. The author is convinced that ion channels are involved in
magnetosensing, even if the concrete structures involving them can be different. More research in this
direction is required and welcome.
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