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Abstract: Although face recognition systems have wide application, they are vulnerable to 

presentation attack samples (fake samples). Therefore, a presentation attack detection (PAD) 

method is required to enhance the security level of face recognition systems. Most of the previously 

proposed PAD methods for face recognition systems have focused on using handcrafted image 

features, which are designed by expert knowledge of designers, such as Gabor filter, local binary 

pattern (LBP), local ternary pattern (LTP), and histogram of oriented gradients (HOG). As a result, 

the extracted features reflect limited aspects of the problem, yielding a detection accuracy that is 

low and varies with the characteristics of presentation attack face images. The deep learning method 

has been developed in the computer vision research community, which is proven to be suitable for 

automatically training a feature extractor that can be used to enhance the ability of handcrafted 

features. To overcome the limitations of previously proposed PAD methods, we propose a new PAD 

method that uses a combination of deep and handcrafted features extracted from the images by 

visible-light camera sensor. Our proposed method uses the convolutional neural network (CNN) 

method to extract deep image features and the multi-level local binary pattern (MLBP) method to 

extract skin detail features from face images to discriminate the real and presentation attack face 

images. By combining the two types of image features, we form a new type of image features, called 

hybrid features, which has stronger discrimination ability than single image features. Finally, we 

use the support vector machine (SVM) method to classify the image features into real or 

presentation attack class. Our experimental results indicate that our proposed method outperforms 

previous PAD methods by yielding the smallest error rates on the same image databases. 

Keywords: face recognition; presentation attack detection; multi-level local binary pattern;  

visible-light camera sensor; convolutional neural network 

 

1. Introduction 

Nowadays, biometric recognition systems are widely used in various application systems 

because they are hard to steal, have high recognition accuracy, and are convenient for users [1,2]. 

Such a recognition method is based on the difference in specific physical or behavioral characteristics 

among people. For example, previously, faces and/or fingerprints were used to distinguish people. 

Along with face and fingerprint, several biometric features, such as veins (blood vessels) [3,4],  

iris [2,5], palm-print [4,6,7], and ear [7,8], have been used in recognition applications. These previous 

studies have shown that biometric systems are more suitable in terms of enhancing recognition 

accuracy and user convenience as compared to traditional recognition methods, such as token-based 
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methods (using keys and cards) or knowledge-based methods (using username and passwords). 

However, with the development of technology, biometric recognition systems have become 

vulnerable to fake samples being presented during the image acquisition process [1,9,10]. 

Among biometric recognition methods, face recognition is the most common and widely used 

method in applications such as computer/smartphone login, identification cards, and border and 

passport control [1,11,12]. This biometric feature uses the facial appearance as the key to recognize 

(distinguish) an individual among people. Although it has several drawbacks, such as variations in 

illumination and head pose, it is still used in combination with other biometric features (such as 

fingerprints, finger-veins, and palm-veins) to ensure the accuracy of recognition systems. In the face 

recognition process, users are required to present their faces in front of capturing devices  

(visible-light or thermal cameras) so that their face images can be captured. Subsequently, the face 

localization and feature extraction steps are performed to extract image features from the input face 

image. Finally, a matching step is performed to recognize (or identify) the user in the input image. 

Because of its operation procedure, a face recognition system can be attacked using printed 

photographs, masks, or video displays [13–23], thus reducing the security level of this system.  

To solve this problem, the presentation attack detection (PAD) methods have been researched 

for face recognition system. Previous studies are classified into two categories of non-training-based 

and training-based feature extraction methods. As the former category, Tan et al. [14] used a sparse 

low-rank bilinear discriminative model on the image features extracted by a difference of Gaussian 

(DoG) and/or logarithmic total variation (LTV) methods to discriminate the real and presentation 

attack images. Using the NUAA database [14], they showed that the real and presentation attack 

images can be discriminated using their proposed method. With the NUAA database,  

Maatta et al. [15] used three feature extraction methods, Gabor filter, local phase quantization (LPQ), 

and local binary pattern (LBP), to extract the image features and classify the real and presentation 

attack images using support vector machines (SVMs). According to their results, the classification 

error was significantly reduced compared to those in research by Tan et al. [14]. Similarly, 

Benlamoudi et al. [20] used the LBP method for addressing the PAD problem for a face recognition 

system. However, they used the active shape model (ASM) method to align the face and the Fisher 

score to reduce the dimensionality of the extracted features. Parveen et al. [21] proposed a method 

that uses a dynamic local ternary pattern (DLTP) for detecting presentation attack face images; they 

used the DLTP method to extract image features and the SVM method for classification. However, 

the detection accuracy when using the NUAA database was slightly worse than those obtained by 

Maatta et al. [15] and Benlamoudi et al. [20], while the accuracy when using the CASIA database was 

better than that obtained by Benlamoudi et al. [20]. These results show that the handcrafted features 

are suitable for solving the PAD problem for a face recognition system. However, as shown in the 

above studies, the detection accuracy varies significantly among different databases, indicating that 

the handcrafted features do not completely solve the PAD problem. 

The deep learning framework has shown very high classification accuracies compared to 

handcrafted features on many computer vision systems and has been successfully applied to various 

computer vision problems such as image classification [24–27], object detection [28,29], and  

face-based age estimation [30,31]. It has also been used for extracting image features for computer 

vision systems [32,33]. This method uses the image filtering technique to extract the image features 

and a neural network to classify the extracted image features into several desired classes. Using 

considerable training data, this method has proven to outperform conventional methods in computer 

vision systems. In addition, it has been successfully applied for detecting presentation attack images 

in finger-vein recognition systems [9].  

Based on these consideration, training-based feature extraction methods have been studied as 

the second category of PAD methods. Menotti et al. [10] used such a method to detect presentation 

attack images in several biometric recognition systems such as iris, face, and fingerprint recognition 

systems. Their results indicated the sufficiency of the deep learning method for detecting 

presentation attack images in biometric recognition systems. However, their study also showed that 

this method did not outperform the handcrafted feature extraction method in all cases. In detail, the 
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deep learning method outperformed the handcrafted feature extraction method in the case of the 

fingerprint recognition system, but not always in the cases of iris and face recognition systems.  

In a study by Nanni et al. [34], the deep learning framework was applied for general image 

classification problem as an image feature extractor. In detail, they used several CNN models which 

were trained for several different problems to extract image features of the current problem. Based 

on the extracted image features, they used several SVM models to classify the input images into 

desired classes. Finally, the outputs of SVM models are combined with those based on handcrafted 

features using weighted sum rule to produce a final classification result. In another study [35], they 

additionally used several kinds of handcrafted image feature extraction methods such as LBP, local 

ternary pattern (LTP), LPQ to extract the image features besides the deep features for classification 

problem. As a result of this study, they proved that the handcrafted and deep image features can 

extract different information from input images. Based on this result, they showed that the 

combination of handcrafted and deep features is sufficient for enhancing the classification accuracy. 

However, the methods proposed in these studies use multiple CNN models and methods for 

handcrafted image feature extraction. This approach makes the classification system become very 

complex. In addition, the authors used only score level fusion with fixed weight values for combining 

the results of deep and handcrafted features. This could be a limitation of these methods because the 

weights should be selected according to the characteristics of images in each application. And, they 

did not apply their methods to the PAD problem for face recognition. 

To overcome the above limitations of previous research on the PAD problem for a face 

recognition system, we propose a new PAD method based on hybrid features that combines 

information from both handcrafted and deep learning features. Our proposed method is novel in the 

following four ways. 

• First, to the best of our knowledge, this is the first approach to PAD for face recognition systems 

using a combination of deep and handcrafted image features. By combining the deep and 

handcrafted image features, we enhance the detection accuracy compared to conventional state-

of-the-art detection methods and reduce the variation in detection accuracy caused by the 

variation in face images. 

• Second, instead of using multiple pre-trained CNN models for extracting image features as 

previous studies [34,35], we re-train a single CNN model using a large amount of real and 

presentation attack images for extracting deep features. Using this method, we make the CNN 

model more suitable for PAD problem for face recognition system and reduce the complexity of 

detection system compared to previous studies. 

• Third, we use two methods for combining the detection results produced by using deep and 

handcrafted image features, including the score-level fusion and feature-level fusion. For the 

score-level fusion, the weight values for combining the deep and handcrafted images features 

are experimentally obtained to make them best describe the characteristics of the PAD problem 

for face recognition system.  

• Finally, through [36], we made our trained CNN model with all the algorithms for PAD open to 

other researchers, to enable them to draw comparisons with our method. 

Table 1 summarizes the comparison of previous research conducted on the PAD problem and 

our proposed method. In the rest of this paper, we will first describe our PAD approach for a face 

recognition system in detail in Section 2 using a combination of handcrafted and deep image features. 

Using the proposed method, we perform various experiments using two well-known public 

databases, NUAA [14] and CASIA [16], to evaluate the performance of our proposed method in 

comparison with previous methods. This will be described in Section 3. Based on the experimental 

results, we will give our explanations on the problem in Section 4. Finally, we will conclude our study 

in Section 5. 
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Table 1. Comparison of previous research on PAD problem for a face recognition system and our 

proposed method. 

Category Method Strength Weakness 

Non-training-based  

feature extraction methods 

- Using sparse low-rank 

bilinear discriminative 

model [14]; Gabor filtering, 

LBP features, and LPQ 

features [15,20]; Color 

texture information based 

on LBP method [17]; and 

DLTP features [21]. 

- Using image quality 

assessment [19] 

- Easy to implement 

- Suitable for detecting 

low-quality presentation 

attack images 

- Detection accuracy is 

fair 

- Detection accuracy may 

vary according to the 

image database 

Training-based feature 

extraction methods 

- Using CNN method with 

structure and parameter 

optimization [10] 

- Using handcrafted features 

and multiple pre-trained 

CNN models for feature 

extraction, and SVM 

method classification [34]. 

- Using multiple pre-trained 

CNN models for deep 

feature extraction; 

Combining deep and 

handcrafted image features 

using score-level fusion 

method [35] 

- Learn the features for 

discriminating the real 

and presentation attack 

images automatically 

using a large number of 

training images [10] 

- Extract deep image 

features easily using pre-

trained CNN models 

which were trained for 

other problems with 

handcrafted features [34] 

- Combines the strength of 

handcrafted and deep 

features for the detection 

problem; high detection 

accuracy [35] 

- Requires time-

consuming and 

powerful hardware for 

training a CNN model; 

Requires a large number 

of training images [10] 

- Requires multiple CNN 

and SVM models for 

extracting image 

features, and 

classification [34] 

- More complex than 

conventional methods; 

requires long processing 

time because of the use 

of multiple CNN and 

SVM models. 

- Using single CNN model; 

fine-tunes CNN model 

using a large number of 

images to train deep feature 

extractor; combines deep 

and handcrafted image 

features using score-level 

fusion and feature-level 

fusion methods. 

(Proposed method) 

- More simple than 

previous deep learning-

based methods by the use 

of single CNN model 

- Combines the strength of 

handcrafted and deep 

features for the detection 

problem 

- Archives better detection 

accuracy than single 

method (handcrafted or 

deep method) 

- Complex and requires 

considerable processing 

power as compared to 

single handcrafted 

method or CNN method 

- Requires a large number 

of training images 

2. Proposed PAD Method for Face Recognition System 

2.1. Overview of the Proposed Method 

Figure 1 shows an overview of our proposed method. Our proposed method uses a face image 

that is same as the input of a face recognition system as the input, and processes it to produce a binary 

decision of “real” or “presentation attack” image. The first step in our proposed method is to localize 

the face region in the input face image. For this purpose, we first pre-process the input image to 

extract the face region and compensate the in-plane rotation of the face if it exists. As a result, we 

obtain a frontal face region image that is sufficient to extract image features in subsequent steps. The 

pre-processing step is detailed in Section 2.2. 

As explained in Section 1, our proposed method uses two feature extraction methods to extract 

the image features from the detected face region, including the handcrafted features (using MLBP 

method) and deep features (using CNN method). These feature extraction methods are detailed in 

Sections 2.3 and 2.4, respectively. Using these two methods, we obtain two feature vectors which 

represent the characteristics of the input face images. To combine the information associated with the 

two feature vectors for the PAD problem, we further concatenate these feature vectors to form a 

combined feature vector, called hybrid feature vector. Using this vector, the input images are 

classified into “real” and “presentation attack” images using the PCA method for feature selection 

and SVM method for classification. The PCA and SVM methods are detailed in Section 2.5. 
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Figure 1. Flowchart of our proposed PAD method for a face recognition system. 

2.2. Face Region Detection and Normalization  

Input images for the PAD system can contain both face and background regions. Therefore, as 

explained in Section 2.1, our proposed method begins with the face region localization step in order 

to detect and extract the face region. As indicated by Benlamoudi et al. [20], the performance of the 

PAD method can be enhanced if the face region is well localized and normalized. Inspired by this 

result, we use a state-of-the-art face landmark detection method proposed by Kazemi et al. [37], called 

ensemble of regression trees (ERT), to detect the face region as well as 68 landmark points on the 

detected face. As a result, we can easily and efficiently detect the face region in the input image. 

Normally, faces in input images can contain in-plane rotation because of the natural head pose 

of users during image acquisition. This phenomenon causes the misalignment problem between 

faces. As a result, the extracted image features are also misaligned between the face images, thus 

degrading the PAD performance. To address this misalignment problem, we further perform a face 

region normalization procedure by compensating the in-plane rotation using the detection results of 

the ERT method. In detail, we assume that (Lx, Ly) and (Rx, Ry) are the detected locations of the left 

and right eyes on the face, which are measured by averaging the corresponding landmark points 

around the left and right eyes, and (Cx, Cy) is the location of the center of face region measured by 

averaging all 68 landmark points on the face. Based on these points, in-plane rotation compensation 

is performed by rotating the entire face region around the center location of the face by an angle 𝜃. 

The rotation angle 𝜃 is calculated in Equation (1), and the compensation procedure is illustrated in 

Figure 2:  

𝜃 = tan−1 (
𝑅𝑦 − 𝐿𝑦

𝑅𝑥 − 𝐿𝑥

) (1) 

Using the in-plane rotation compensation method, the faces are aligned as shown in Figure 2b. 

Based on this result, we crop the detected face region to produce the face region image using the 68 

landmark points and use this face region as the input of feature extraction methods. 
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(a) (b) 

Figure 2. Description of in-plane rotation compensation and face region localization in our research: 

(a) input face image with in-plane rotation phenomenon and (b) resultant image of in-plane rotation 

compensation with localized face region box. 

2.3. Handcrafted Image Feature Extraction Based on MLBP Method 

The previous PAD research for a face recognition system mainly used handcrafted feature 

extraction methods, such as Gabor filtering [15], local phase quantization [15], LBP [15,17,20], quality 

assessment [19], and DLTP [21], to extract image features. Among these feature extraction methods, 

the LBP method yielded the high detection accuracy. In our study, we use an extension of the LBP 

features, called MLBP features, for PAD for a face recognition system in order to enhance the 

detection ability of the LBP method. The LBP feature extraction method has been widely used to 

extract image features for many computer vision systems, such as face recognition [12], face 

expression recognition [38], finger-vein recognition [3], and human age estimation [39,40]. This 

method offers several advantages in extracted image features, including robustness to illumination 

and rotation variation [12,38–40]. An LBP operator is defined in Equation (2), where R and P indicate 

the radius of the circle and the number of surrounding pixels of the LBP operator, respectively; gc 

indicates the gray level of the center pixel of the circle; and gi indicates the gray level of the 

surrounding pixels: 

LBP𝑅,𝑃 = ∑ s(gi − gc)𝑃−1
i=0 2i where s(𝑥) = {

1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

 (2) 

Using the LBP method, we can extract a p-bit binary descriptor for each pixel in a given image 

using its surrounding pixels. As shown in Equation (2), the LBP method works as a local thresholding 

function for encoding the texture of an image in a small local region. Because of this reason, the LBP 

method offers illumination-invariant characteristic to the extracted image features, which plays a 

very important role in computer vision systems. The descriptor of each pixel obtained using the LBP 

method is used to describe the micro-texture in images, such as lines, spots, corners, and plane  

texture [39,40]. For our PAD research, we further classify the pixel descriptors into uniform and  

non-uniform descriptors, where the uniform descriptors are the ones having at most two bit-wise 

transitions from 0 to 1 (or from 1 to 0), while the non-uniform descriptors are those having more than 

two bitwise transitions from 0 to 1 (or from 1 to 0). As a result, the uniform descriptors mainly depict 

useful micro-textures (lines, spots, corners, and plane texture features), while the non-uniform 

descriptors depict very complex micro-textures and are normally originate from noise. To form the 

image features using the LBP method, we further accumulate the histogram of the uniform and  

non-uniform descriptors over an image and use this histogram as the extracted image features. 

Assuming that that the LBP operator has radius R and number of surrounding pixels P, the dimension 

of the extracted image features is given in Equation (3). By using different values of R and P, we can 

extract the LBP features at different scales (R) and resolutions (P): 

𝐷𝑖𝑚 = 𝑃 × (𝑃 − 1) + 3 (3) 

In a conventional setup, the image features are extracted by the LBP method by accumulating 

the histogram of the texture features over the entire face region. As a result, the extracted image 

features form a global feature vector and less affected by the misalignment problem. However, to 
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obtain more powerful image features, the face region is then divided into several local regions. For 

each local region, a histogram feature vector is obtained using the conventional LBP method. Finally, 

the LBP features of the entire image are obtained by concatenating the feature vectors of all local 

regions. Figure 3 illustrates the image feature extraction using the LBP method. Because this feature 

vector is obtained using a single pair of radius (R) and resolution (P), we call it “single-level LBP” 

here. Based on Equation (3), the number of components of the single-level LBP features is equal to 

“M × N × Dim” where M and N are the numbers of local regions in the horizontal and vertical 

directions, respectively.  

 

Figure 3. Description of image feature extraction using the MLBP method. 

Although the single-level LBP features are efficient for PAD for a face recognition system [20], the 

use of a single scale and resolution pair is its limitation because face images contain considerable 

variation. Thus, to capture richer information from a face image, we use multi-level LBP (MLBP) 

features instead of single-level LBP features. In detail, we concatenate several single-level LBP features, 

which have different values of radius (R) and resolution (P). As a result, the MLBP features contain 

texture information at various scales and resolutions. In our experiments, we divide the face region into 

2-by-2 local regions and extract the MLBP features using three values of radius (R = 1, 2, and 3) and 

three values of resolution (P = 8, 12, and 16). For a special case of R = 1, we only use P = 8 (the basic LBP 

operator). As a result, we obtain a feature vector of 3732-components for each face image. 

2.4. Deep Image Feature Extraction Based on CNN Method 

Although the handcrafted image feature extraction methods have been proven to be sufficient 

for PAD for a face recognition system, their performances depend on the characteristics of the 

presentation attack images. This is because the handcrafted feature extraction methods are designed 

based on expert knowledge of the designer on the problem. As a result, they reflect limited aspects 

of the problem. To extract more efficient features for the PAD problem, we further use a  

learning-based technique using the CNN method to learn a feature extraction model. As proven by 

many previous studies, CNN is a powerful method and has been successfully applied to many 

computer vision systems such as for image classification [24–27], gender recognition [32], face-based 

human age estimation [30,31], and PAD for finger-vein recognition system [9] as well as iris, face, 

and fingerprint recognition systems [10]. As shown by Menotti et al. [10], the CNN method can be an 

alternative for detecting presentation attack images. 

Figure 4 shows the general structure of a CNN, where a CNN comprises two key parts: 

convolution layers and fully-connected layers. The convolution layers are responsible for performing 

the image manipulation processes using the convolution operations to manipulate and extract the 

image features. The filter coefficients are obtained automatically by using the training process, and are 

dependent on the characteristics of the input training images. Each convolution layer can be followed 
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by a cross-channel normalization layer, a rectified linear unit (ReLU), and a pooling layer to transform 

the convolution operation results and make the CNN invariant to image translation and illumination. 

As a result, we can extract several feature maps (marked as “Feature Maps” in Figure 4), using which 

the CNN classifies the input images into pre-defined categories using fully-connected layers.  

 

Figure 4. Description of general structure of a CNN. 

In the present study, we construct our CNN, for extracting deep image features for the PAD 

problem, based on a very deep CNN architecture proposed by Simonyan et al. [25], called VGG  

Net-19 network. For the PAD problem for a face recognition system, there are only two classes: “real” 

and “presentation attack” images. Therefore, we change the number of output neurons in the original 

VGG Net-19 network from 1000 to 2. Table 2 shows, in detail, the CNN network used in our study. 

By training the network in Table 2 using a large volume of training data, we can obtain a CNN model 

for classifying images into real and presentation attack classes. Then, using the trained CNN model, 

we can extract a 4096-component image feature vector using the second fully connected layer (fc7 in 

Table 2), and use this feature vector to detect presentation attack images using the SVM method. 

To train the CNN in our study, we use a well-known gradient descent method, called stochastic 

gradient descent (SGD), with momentum method [24]. In a conventional gradient descent method, 

the network parameters are updated when all training data are passed through the network. 

Therefore, it is difficult to train the model using a large amount of training data. However, by using 

SGD with the momentum method, the network parameters are updated every time a small amount 

of training data (equal to mini-batch size) passes through the network. As a result, training with a 

large amount of training data can be successfully achieved with faster convergence. The SGD training 

method comprises various parameters including momentum, learning rate, and mini-batch size etc. 

The detail values of these parameters used in our experiments are explained, which are detailed in 

Section 3. 

Although the CNN method is sufficient for many image-based systems, it faces the over-fitting 

problem caused by the use of a large volume of network parameters [9,24,41]. For example, using the 

CNN shown in Table 2, the training process must learn about 140 million parameters. As a result, the 

training process requires a large volume of training data to successfully train its parameters. 

However, such a large volume is difficult to collect. To reduce the effects of the over-fitting problem, 

we use three common methods: dropout, data augmentation, and transfer learning [9,24,41]. In the 

first method, we disconnect several connections between the neurons in a fully connected layer with 

a probability of dropout value (from 0 to 1) [41]. In the second method, we generalize the training 

data by artificially creating additional images from each image in the training data. This procedure 

helps to significantly increase the training data volume as well as generalize the training data. Finally, 

we apply the transfer learning method during network initialization to well initialize the network 

parameters using a pre-trained network that was successfully trained using a very large volume of 

training data [9]. 
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Table 2. Description of the CNN architecture (based on VGG Net-19 network architecture) used in 

our study for PAD for a face recognition system. 

Layer Name 
Number  

of Filters 
Filter Size 

Stride  

Size 

Padding  

Size 

Dropout  

Value 
Output Size 

Input Layer n/a n/a n/a n/a 

n/a 

224 × 224 × 3 

Convolution Layer (conv1_1) 64 3 × 3 × 3 1 × 1 1 × 1 224 × 224 × 64 

ReLU (relu1_1) n/a n/a n/a n/a 224 × 224 × 64 

Convolution Layer (conv1_2) 64 3 × 3 × 64 1 × 1 1 × 1 224 × 224 × 64 

ReLU (relu1_2) n/a n/a n/a n/a 224 × 224 × 64 

MAX Pooling Layer (pool1) 1 2 × 2 2 × 2 0 112 × 112 × 64 

Convolution Layer (conv2-1) 128 3 × 3 × 64 1 × 1 1 × 1 112 × 112 × 128 

ReLU (relu2_1) n/a n/a n/a n/a 112 × 112 × 128 

Convolution Layer (conv2_2) 128 3 × 3 × 128 1 × 1 1 × 1 112 × 112 × 128 

ReLU (relu2_2) n/a n/a n/a n/a 112 × 112 × 128 

MAX Pooling Layer (pool2) 1 2 × 2 2 × 2 0 56 × 56 × 128 

Convolution Layer (conv3_1) 256 3 × 3 × 128 1 × 1 1 × 1 56 × 56 × 256 

ReLU (relu3_1) n/a n/a n/a n/a 56 × 56 × 256 

Convolution Layer (conv3_2) 256 3 × 3 × 256 1 × 1 1 × 1 56 × 56 × 256 

ReLU (relu3_2) n/a n/a n/a n/a 56 × 56 × 256 

Convolution Layer (conv3_3) 256 3 × 3 × 256 1 × 1 1 × 1 56 × 56 × 256 

ReLU (relu3_3) n/a n/a n/a n/a 56 × 56 × 256 

Convolution Layer (conv3_4) 256 3 × 3 × 256 1 × 1 1 × 1 56 × 56 × 256 

ReLU (relu3_4) n/a n/a n/a n/a 56 × 56 × 256 

MAX Pooling Layer (pool3) 1 2 × 2 2 × 2 0 28 × 28 × 256 

Convolution Layer (conv4_1) 512 3 × 3 × 256 1 × 1 1 × 1 28 × 28 × 512 

ReLU (relu4_1) n/a n/a n/a n/a 28 × 28 × 512 

Convolution Layer (conv4_2) 512 3 × 3 × 512 1 × 1 1 × 1 28 × 28 × 512 

ReLU (relu4_2) n/a n/a n/a n/a 28 × 28 × 512 

Convolution Layer (conv4_3) 512 3 × 3 × 512 1 × 1 1 × 1 28 × 28 × 512 

ReLU (relu4_3) n/a n/a n/a n/a 28 × 28 × 512 

Convolution Layer (conv4_4) 512 3 × 3 × 512 1 × 1 1 × 1 28 × 28 × 512 

ReLU (relu4_4) n/a n/a n/a n/a 28 × 28 × 512 

MAX Pooling Layer (pool4) 1 2 × 2 2 × 2 0 14 × 14 × 512 

Convolution Layer (conv5_1) 512 3 × 3 × 512 1 × 1 1 × 1 14 × 14 × 512 

ReLU (relu5_1) n/a n/a n/a n/a 14 × 14 × 512 

Convolution Layer (conv5_2) 512 3 × 3 × 512 1 × 1 1 × 1 14 × 14 × 512 

ReLU (relu5_2) n/a n/a n/a n/a 14 × 14 × 512 

Convolution Layer (conv5_3) 512 3 × 3 × 512 1 × 1 1 × 1 14 × 14 × 512 

ReLU (relu5_3) n/a n/a n/a n/a 14 × 14 × 512 

Convolution Layer (conv5_4) 512 3 × 3 × 512 1 × 1 1 × 1 14 × 14 × 512 

ReLU (relu5_4) n/a n/a n/a n/a 14 × 14 × 512 

MAX Pooling Layer (pool5) 1 2 × 2 2 × 2 0 7 × 7 × 512 

Fully Connected Layer (fc6) 

n/a n/a n/a n/a 

4096 

ReLU (relu6) 4096 

Dropout Layer (drop6) 0.50 4096 

Fully Connected Layer (fc7) 
n/a 

4096 

ReLU (relu7) 4096 

Dropout Layer (drop7) 0.50 4096 

Output Layer (fc8) 

n/a 

2 

Softmax Layer (prob.) 2 

Classification Layer (output) 2 

2.5. Feature Selection Using PCA and Classification using SVM Method 

Using MLBP and CNN methods, we can extract the two feature vectors which describe the 

characteristics of a face image. To create a feature vector that combines the information from each 

single vector, we further concatenate the two feature vectors to form a hybrid feature vector. Because 

the hybrid feature vector is a combination of two types of feature vectors, it contains richer 

information for the PAD problem than a single feature vector. For convenience, we represent the 

handcrafted feature vector as fh and the deep feature vector as fd. Then, the hybrid feature vector is 

formed by concatenating the two vectors as shown in Equation (4): 
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𝑓 = [𝑓ℎ, 𝑓𝑑] (4) 

However, the hybrid feature vector has increased the dimensionality of image features. In detail, 

we extract a 3732-component feature vector fh by using the MLBP method and a 4096-component 

feature vector fd using the CNN method. As a result, the hybrid feature vector is a vector in  

7828-dimensional space (3732 + 4096). The high dimensionality of the feature vector requires high 

processing power and a very complex SVM classifier for classification. To address this problem, the 

subspace method has been widely used [9,12,20,32]. Thus, our proposed method uses the subspace 

method to reduce the dimensionality of the hybrid feature vector, as shown in Figure 1. For this 

purpose, we invoke the PCA method to select a smaller number of components for the hybrid feature 

vector before classifying the real and presentation attack images using the SVM method. By using the 

PCA method, we can arbitrarily select a small number of principal components, which have the 

largest variation, from the original number of components. As a result, the feature vector with this 

small number of principal components can have enough power to describe the original features while 

having much smaller dimension than that of the original features. In our experiments, the number of 

principal components is experimentally selected by which the best classification accuracy is obtained. 

With the selected features using PCA method, our proposed method uses SVM to classify the 

input images into real and presentation attack images. By definition, the SVM method is used to find 

the best hyper-plane that can separate the samples of one class from those of other classes using 

several support vectors. For a nonlinear problem, the SVM method uses various kernel functions to 

map the input feature vectors to a higher-dimensional space in which the problem can be linearly 

separated. To classify an input feature vector, the SVM evaluates the sign of a function as shown in 

Equation (5). In this equation, the SVM uses k-support vectors with the model parameters of 𝑎𝑖 and 

b, and 𝐾(𝑥𝑖 , 𝑥𝑗) is the kernel function [42]. These parameters are trained and stored in a trained SVM 

model using training data. In our experiments, we use three types of SVM kernels—linear kernel, 

radial basic function (RBF) kernel, and polynomial kernel—to measure the accuracy of our PAD 

method, as shown in Equations (6)–(8) [9,42,43]. In addition, we use MATLAB environment for CNN, 

PCA, and SVM implementation [44–46]: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑎𝑖𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏)

𝑘

𝑖=1

 (5) 

Linear kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (6) 

RBF kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

 (7) 

Polynomial kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑐𝑜𝑒𝑓)

𝑑𝑒𝑔𝑟𝑒𝑒
 (8) 

3. Experimental Results 

3.1. Databases and Performance Measurement Criteria 

To the best of our knowledge, the NUAA database is one of the first public databases for training 

and evaluating the performance of the PAD method for a face recognition system [14]. This database 

simulates a simple and general method that re-captures a printed photograph of users for attacking 

a face recognition system. The NUAA database contains real and presentation attack face images of 

15 persons. For each person, they captured both real and presentation attack images in three different 

sessions using generic cheap webcams and real face and printed photograph of users. The 

photographs were either printed on photographic paper or 70 g A4 paper [14]. Thus, the NUAA 

database contains 5105 real and 7509 presentation attack face images in color space with 640 × 480 

pixels of image resolution. In this database, using the collected images, the training and testing  

sub-databases are predefined for training and testing of the PAD method, through which the 

performances of various PAD methods can be compared. In detail, the training database contains 
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1743 real and 1748 presentation attack face images, while the testing database contains 3362 real and 

5761 presentation attack face images. In addition, as explained in Section 2.4, the CNN method 

requires a large volume of training data to reduce the effects of the over-fitting problem. Therefore, 

we enlarge the training database by artificially creating additional images from the original ones by 

shifting, cropping, and scaling methods. In detail, we create 24 additional images by shifting, 

cropping, and scaling each original face image in both horizontal and vertical directions. As a result, 

we obtain a total of 25 images (one original image and 24 artificial images) for each original image in 

the training database. To compare the detection performance of our proposed method with those of 

the previous methods, we apply this procedure to only the training database, and not the testing 

database. The NUAA database and its training and testing sub-databases are detailed in Table 3. In 

addition, Figure 5 shows some example face region images, which resulted from the application of 

the face detection method in the NUAA database.  

 

(a) 

 

(b) 

Figure 5. Example face region images in NUAA database: (a) real images and (b) presentation attack images. 

Table 3. Description of the NUAA database and its augmented databases used in our study. 

Database 
Training Database Testing Database Total  

(Training/Testing) Real Access Presentation Attack Real Access Presentation Attack 

Original NUAA Database 1743 1748 3362 5761 (3491/9123) 

Augmented NUAA Database 
43,575 

(1743 × 25) 

43,700 

(1748 × 25) 
3362 5761 (87,275/9123) 

Since the images in NUAA database were captured using cheap webcams, its quality is limited. 

To evaluate the performance of our proposed method in various attack scenarios, we use another public 

database, called CASIA database [16]. The CASIA database contains real and presentation attack face 

images of 50 persons, which is much larger than the number of clients used in the NUAA database. In 

addition, the CASIA database contains larger variation in quality of face regions (low quality, normal 

quality, and high quality) and the attacking methods (using wrap photo, cut photo, and video display). 

For each person, the database consists of 12 video clips captured in three categories of face region 

quality and three attack methods. Similar to the NUAA database, the training and testing sub-databases 

in the CASIA database are predefined. In details, real and presentation attack data from 20 persons are 

assigned as the training data and the remaining data of 30 persons are assigned as the testing data. 

Using the face detection method, we detect face region images for training and testing sub-databases, 

as shown in Table 4. As shown in this table, we collect 45,052 face images from the training database 

and 65,662 images from the testing database. Similar to the experiments conducted with the NUAA 

database, we created artificial images for the training database in order to generalize the training 
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database and reduce the effects of the over-fitting problem. For this purpose, we created two images 

from each original image in the training database to increase the number of training images from 45,052 

to 90,104 images while keeping the number of images in the testing database constant. In Figure 6, we 

show some example face region imageTs from the CASIA database according to the attacking methods 

of using video display, wrap photo, and cut photo. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6. Example face region images from CASIA database: (a) real access images, (b) presentation 

attack images using video display, (c) presentation attack images using wrap photo, and (d) 

presentation attack images using cut photo. 

Table 4. Description of CASIA database and its augmented databases used in our study. 

Database 
Training Database Testing Database Total 

(Training/Testing) Real Access Presentation Attack Real Access Presentation Attack 

Original CASIA Database 10,914 34,138 15,910 49,712 45,052/65,622 

Augmented CASIA Database 
21,828 

(10,914  ×  2) 

68,276 

(34,138  ×  2) 
15,910 49,712 90,104/65,622 

For evaluating the performance of a PAD method, we use two metrics: the attack presentation 

classification error rate (APCER) and the bona fide (real) presentation classification error  

rate (BPCER) [9,47,48]. By definition, APCER indicates the proportion of attack presentations 

incorrectly classified as bona fide presentations, while BPCER indicates the proportion of bona fide 

(real) images incorrectly classified as presentation attack images. APCER and BPCER are analogous 
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to the false acceptance rate (FAR), and false rejection rate (FRR) in a conventional recognition system, 

respectively. In addition, we use the average classification error rate (ACER) to measure the average 

classification error, as shown in Equation (9). The PAD method with a lower measured value of ACER 

indicates a better detection performance of the system: 

ACER =  
APCER + BPCER

2
 (9) 

In our experiments, for each database (NUAA or CASIA database), we use the training database 

to train the CNN model for deep feature extraction, the PCA transformation matrix, and an SVM 

classifier for real and presentation attack classification. With the result of the training process, we use 

the testing database to measure the performance (in terms of APCER, BPCER, and ACER) of the PAD 

method. 

3.2. Experimental Results 

3.2.1. Detection Accuracy of PAD Method Using Only Handcrafted Features 

In our first experiment, we measure the detection accuracy of the PAD method that uses only 

MLBP features for detection problem. This experiment aims to evaluate the detection ability of MLBP 

features for the PAD problem. For this purpose, the hybrid features in Figure 1 are replaced by MLBP 

features while keeping all other processing steps same. In addition, we measure the detection accuracy 

of the PAD method in both cases of with and without applying PCA for feature selection to validate the 

efficiency of the PCA method for feature dimensionality reduction. The detailed experimental results 

using the NUAA and CASIA databases (which were described in Tables 3 and 4) are given in Table 5. 

In this table, we also report the selected number of principal component (denoted as “No. PC”) by 

which the best detection accuracy is obtained in our experiments. 

The upper part of Table 5 shows the experimental results obtained using the NUAA database. 

As shown in this table, we obtain the smallest detection error (ACER) of 2.492% using the raw MLBP 

features and linear kernel of the SVM method. However, using the PCA method, the detection errors 

are further reduced to 2.077%, 0.966%, and 0.667% using linear, RBF, and polynomial kernels of the 

SVM method, respectively. These experimental results indicate that the PCA method is sufficient for 

reducing the dimensionality of the image features and enhancing the detection accuracy of the PAD 

method using handcrafted image features on the NUAA database. Benlamoudi et al. [20] and  

Parveen et al. [21] used the LBP and DLTP features, respectively, on the NUAA database, and 

obtained smallest errors of 1.00% using LBP features and 3.5% using DLTP features. A comparison 

of their detection errors with our results in this experiment shows that the PAD method based on 

MLBP features outperforms that based on LBP or DLTP features in the case of using the NUAA 

database. Figure 7 shows the detection error tradeoff (DET) curves of the PAD method using 

handcrafted image features in two cases of with and without applying the PCA method. This figure 

plots the changes in APCER as a function of the bona-fide presentation acceptance rate (BPAR), which 

is measured as (100-BPCER) (%). In addition, we draw two curves corresponding to the best detection 

accuracies with ACER of 2.492% and 0.667% for the cases of without and with applying the PCA 

method, respectively. This figure confirms that the PCA method is sufficient for reducing the 

dimensionality of image features and enhancing the detection accuracy of the PAD method in case 

of using the NUAA database. 

The lower part of Table 5 shows the experimental results of the PAD method using handcrafted 

image features on the CASIA database in Table 4. As shown in Table 5, the smallest detection errors 

(ACERs) obtained in these experiments are 10.504% using the RBF kernel and 10.566% using the 

polynomial kernel for the cases of without and with applying the PCA method, respectively. As 

indicated by these experimental results, the error rate produced by the system using the PCA method 

is slightly larger than that produced without applying the PCA method. However, these two errors 

are almost similar (the difference is just about 0.062%) and the use of PCA helps to significantly 

reduce the dimensionality of the original feature vector.  
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Figure 7. DET curves of the detection system that uses only handcrafted image features on NUAA 

database with and without applying PCA method. 

Table 5. Detection accuracy (in terms of APCER, BPCER, and ACER) of the PAD method that uses 

only handcrafted features on the NUAA and CASIA databases (unit: %). 

Database SVM Kernel 
Without PCA With PCA  

APCER BPCER ACER APCER BPCER ACER No. PC 

NUAA Database 

Linear Kernel 2.604 2.380 2.492 0.972 3.183 2.077 90 

RBF Kernel 1.597 31.440 16.518 0.712 1.220 0.966 310 

Polynomial Kernel 1.840 31.916 16.878 0.590 0.744 0.667 310 

CASIA Database 

Linear Kernel 11.904 13.53 12.717 12.294 11.717 12.006 590 

RBF Kernel 8.8309 12.176 10.504 8.862 12.450 10.656 550 

Polynomial Kernel 8.5355 12.838 10.687 9.610 11.522 10.566 530 

Figure 8 shows the DET curves of these experiments corresponding to these two best detection 

accuracies. As shown in this figure, the two DET curves are almost overlapped. Therefore, we can 

conclude that the PCA method is also reasonable for the PAD method. Compared to the detection 

errors generated in the case of using the NUAA database, those generated in the case of using the 

CASIA database are much larger. This result is caused by the fact that the two databases are different, 

and thus, have different characteristics of real and presentation attack images. In addition, these 

results demonstrate that the handcrafted image features have large variation in detection accuracy 

depending on the characteristics of the database. Thus, this problem can reduce the reliability of the 

detection system that uses only handcrafted image features. 

 

Figure 8. DET curves of the detection system that uses only handcrafted image features on CASIA 

database with and without PCA applying method. 
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3.2.2. Detection Accuracy of PAD Method Using Only Deep Features 

We next perform experiments to measure the detection accuracy of the PAD method that uses 

only deep features. As the first experiment in this section, we perform a training procedure to train 

CNN models (network structure described in Table 2) using the SGD algorithm on NUAA and 

CASIA databases. Table 6 shows the parameters for the SGD algorithm. As explained in Section 2.3, 

we apply the transfer learning method to reduce the effects of the over-fitting problem during the 

training process. For implementation, we use a pre-trained model that was successfully trained using 

ImageNet database [24] and VGG Net-19 network model [25], to initialize the parameters of our CNN 

model described in Table 2. Because of using the transfer learning technique, the parameters of our 

CNN model are well-initialized and the consequent training process shows rapid convergence. 

Therefore, as shown in Table 6, we only use a small initial learning rate (0.001) and few training 

epochs (6 epochs) for our training procedure. By definition, an epoch is a unit that indicates that all 

training data are passed through the network. The learning rate is then dropped by a factor of 0.1 

every two epochs to fine-tune the network parameters. The results of the training procedures in the 

cases of using the NUAA and CASIA databases are given in Figure 9a,b, respectively.  

 
(a) 

 
(b) 

Figure 9. Loss curves of training procedures using (a) NUAA database, and (b) CASIA database. 

In this figure, the horizontal axis represents “iteration” which indicates the number of times a 

block of training images with “mini-batch size” is passed through a network and the network 

parameters are updated. As shown in Table 6, we set the mini-batch size as 32, which means that the 

network parameters are updated every time a block of 32 images is passed though the network. As 

shown in Figure 9, the training procedures are successfully conducted, with the loss approaching 

zero and the training accuracy approaching 100% after several hundred iterations. 
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Table 6. Parameters of SGD method for training CNN model in our experiments using transfer 

learning technique. 

Mini-Batch  

Size 

Initial Learning  

Rate 

Learning Rate  

Drop Factor 

Learning Rate  

Drop Period (Epochs) 

Training Size  

(Epochs) 
Momentum 

32 0.001 0.1 2 6 0.9 

Using the results of training the CNN models, we extract the image features and perform “real” 

and “presentation attack” classification as explained in Sections 2.4 and 2.5. The detailed 

experimental results of this experiment are given in Table 7, where using the deep features without 

applying the PCA method, we obtain an error rate of 14.609% using the polynomial kernel of the 

SVM method and the NUAA database. By applying the PCA method on deep features, we further 

reduce the detection error to 11.247% using the linear kernel of the SVM method. In the case of using 

the CASIA database, we obtain the smallest error (ACER) of 2.398% using the linear kernel of SVM 

on original deep features (without applying PCA method) and 2.174% using PCA and the polynomial 

kernel of SVM method. Figures 10 and 11 show the DET curves of these experiments. The 

experimental results indicate that the deep features are also sufficient for the PAD method. In 

addition, the PCA method is sufficient for not only reducing the dimensionality of the image features 

but also enhancing the detection accuracy of the PAD method that uses deep features only. 

Table 7. Detection accuracy (in terms of APCER, BPCER, and ACER) of the PAD method that uses 

only deep features on NUAA and CASIA databases (unit: %). 

Database SVM Kernel 
Without PCA With PCA  

APCER BPCER ACER APCER BPCER ACER No. PC 

NUAA Database 

Linear Kernel 7.915 22.219 15.067 6.909 15.586 11.247 40 

RBF Kernel 9.130 20.583 14.857 5.034 20.226 12.630 20 

Polynomial Kernel 8.367 20.851 14.609 7.412 23.587 15.500 30 

CASIA Database 

Linear Kernel 3.143 1.645 2.398 2.652 1.770 2.211 80 

RBF Kernel 3.067 1.756 2.412 3.369 2.183 2.776 70 

Polynomial Kernel 3.218 1.881 2.550 3.344 2.004 2.174 240 

 

Figure 10. DET curves of the detection system that uses only deep image features on NUAA database 

with and without applying PCA method. 
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Figure 11. DET curves of the detection system that uses only deep image features on CASIA database 

with and without applying PCA method. 

As shown in Tables 5 and 7, in the case of using the NUAA database, the detection error 

generated by the PAD method that uses only the deep features is worse than that generated by the 

PAD method that uses only handcrafted features (ACER of 0.667% in Table 5 versus ACER of 11.247% 

in Table 7). However, in the case of using the CASIA database, the detection error generated by the 

PAD method that uses only deep features is much better than that generated by the PAD method 

that uses only handcrafted features (ACER of 10.566% in Table 5 versus ACER of 2.174% in Table 7). 

These results show that the performances of the PAD methods that use only handcrafted image 

features or deep features varies significantly depending on the database used. Consequently, the 

reliability of such systems is low. 

3.2.3. Detection Accuracy of our Proposed PAD Method 

The detection results in Sections 3.2.1 and 3.2.2 show that handcrafted and deep features are 

sufficient for detecting presentation attack images in a face recognition system. In our next experiment, 

we evaluate the detection performance of our proposed method, which uses hybrid features instead of 

using only handcrafted or only deep features (as depicted in Figure 1). Similar to our experiments in 

Sections 3.2.1 and 3.2.2, we measure the detection accuracy in two cases of with and without applying 

the PCA method and using three types of SVM kernels (linear, RBF, and polynomial). The detailed 

experimental results using both NUAA and CASIA databases are given in Table 8.  

Table 8. Detection accuracy (in terms of APCER, BPCER, and ACER) of our proposed PAD method 

on NUAA and CASIA databases using feature-level fusion method (unit: %). 

Database SVM Kernel 
Without PCA With PCA  

APCER BPCER ACER APCER BPCER ACER No. PC 

NUAA Database 

Linear Kernel 6.145 14.010 10.077 1.788 1.755 1.771 150 

RBF Kernel 3.888 25.937 14.913 0.174 42.683 21.428 10 

Polynomial Kernel 6.665 15.021 10.843 0.555 0.357 0.456 460 

CASIA Database 

Linear Kernel 2.784 1.629 2.207 2.037 1.356 1.696 120 

RBF Kernel 2.766 1.613 2.189 1.879 1.710 1.795 110 

Polynomial Kernel 2.753 1.647 2.200 2.037 1.513 1.775 210 

The upper part of Table 8 shows the experimental results of our proposed PAD method in the 

case of using the NUAA database. As shown in this table, we obtained the smallest detection error 

(ACER) of 10.077% using the linear kernel of SVM and without applying the PCA method. However, 

we obtain a much smaller error (ACER) of 0.456% by applying PCA method on the hybrid image 

features and using the polynomial kernel of SVM. This result again confirms that the PCA method is 

sufficient for enhancing the detection accuracy in our proposed method. This detection error is smaller 

than those generated by the PAD method that only uses handcrafted features (0.667% in Table 5) or 
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only uses deep features (11.247% in Table 7). In addition to the data shown in Table 8, we show the 

DET curves for various PAD method configurations in Figure 12, including the PAD method that 

uses only handcrafted image features, the PAD method that uses only deep features, our proposed 

PAD method that uses hybrid features without applying the PCA method, and our proposed PAD 

method. As we can observe from this figure and data in Table 8, our proposed method outperforms 

the other three PAD method configurations. 

The lower part of Table 8 shows the detection errors of our proposed PAD method in the case 

of using the CASIA database (as described in Table 4). As shown in this table, we obtain the smallest 

error (ACER) of 2.189% using the RBF kernel of SVM and the raw hybrid features (without PCA 

application). This error is then reduced to 1.696% using the linear kernel of SVM and applying the 

PCA method on the hybrid features (our proposed method). A comparison of the detection errors of 

this experiment with those in Sections 3.2.1 and 3.2.2 shows that the error generated by our proposed 

method (ACER of 1.696%) is smaller than that generated by the PAD method that uses only 

handcrafted features (10.566% in Table 5) or only deep features (2.174% in Table 7).  

As suggested by previous studies [34,35], the deep and handcrafted image features can be also 

combined using another fusion method, called score-level fusion. Inspired by this suggestion, we also 

consider this fusion method to measure the detection accuracy of PAD system and compared with 

our proposed method that uses feature-level fusion approach. In detail, the deep and handcrafted 

image features are respectively used as the inputs of two SVMs to classify input images into either 

real or presentation attack image, as shown in Sections 3.2.1 and 3.2.2. Consequently, we can obtain 

two score values from the two SVMs, which stand for the probabilities of an input image is classified 

as a real or presentation attack image. These scores are then combined using weighted sum rule to 

make the final decision of which class the input image belongs to as shown in Equation (10). In this 

equation, the w1 and w2 are the weight values of CNN and MLBP methods, respectively; and the S1 

and S2 are the prediction scores of PAD systems that use only CNN or only MLBP features, 

respectively: 

S = 𝑤1𝑆1 + 𝑤2𝑆2 (10) 

In our experiments, the optimal weight values are obtained experimentally instead of using fixed 

values in previous studies [34,35]. As shown in Table 9, we obtained the smallest detection errors of 

0.630% using NUAA database (with w1 = 0.15 and w2 = 0.85) and 1.792% using CASIA database (with 

w1 = 0.75 and w2 = 0.25). These errors are little higher than those produced by the use of feature-level 

fusion method for combination in our method (0.456% using NUAA database and 1.696% using 

CASIA database in Table 8). From these experimental results, we find that the feature-level fusion 

method is more suitable than score-level fusion method for our problem. 

Table 9. Detection accuracy (in terms of APCER, BPCER, and ACER) of our proposed PAD method 

on NUAA and CASIA databases using score-level fusion method (unit: %). 

Database SVM Kernel 
Without PCA With PCA 

APCER BPCER ACER APCER BPCER ACER 

NUAA Database 

Linear Kernel 2.500 2.282 2.391 2.202 1.951 2.077 

RBF Kernel 6.131 22.631 14.381 0.565 1.185 0.875 

Polynomial Kernel 5.417 20.784 13.100 0.476 0.784 0.630 

CASIA Database 

Linear Kernel 3.124 1.332 2.228 3.180 1.181 2.181 

RBF Kernel 3.080 1.487 2.283 2.665 1.973 2.319 

Polynomial Kernel 3.344 1.229 2.286 2.407 1.177 1.792 

For demonstration, we show the DET curves of this experiment in the case of using the CASIA 

database in Figure 13. Through the detection accuracy in Tables 8 and 9, and the DET curves in 

Figures 12 and 13, we conclude that our proposed method is sufficient for reducing the detection 

error of the PAD method that uses single feature extraction (only handcrafted image features or only 

deep features). In addition, we confirm that the PCA method is sufficient for reducing the 

dimensionality of the image features and the detection error in our proposed method. 
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Figure 12. DET curves of our proposed PAD method in comparison with other methods on NUAA database. 

 

Figure 13. DET curves of our proposed PAD method in comparison with other methods on CASIA database. 

To validate the efficiency of our proposed method for solving the PAD problem, we further 

perform a comparison of the detection performances between our proposed method and previous 

research using the same testing databases (NUAA and CASIA). As explained in Section 3.1, the 

NUAA and CASIA database are the public databases and they have been widely used in previous 

research on the PAD method for face recognition system [14–17,20,21,23]. In addition, these databases 

were provided with pre-defined training and testing dataset. As a result, we can have a fair 

comparison with previous studies. The detailed comparison is given in Tables 10 and 11 for the 

NUAA and CASIA databases, respectively. In the case of the NUAA database, the baseline method 

proposed by the author of the database gave an error of about 9.5% [14]. Later, Maatta et al. [15] used 

the Gabor filters, LPQ method, and LBP method for extracting image features, and reported the errors 

to be about 9.5% for Gabor filters, 4.6% for LPQ, and 2.9% for LBP. Benlamoudi et al. [20] used LBP 

features in combination with the Fisher score for feature selection and SVM for classification, and 

reported an error of about 1.00% on in the case of using the NUAA database. Parveen et al. [21] used 

the DLTP method for extracting image features and SVM for classification, and reported a detection 

error of 3.5%, which was lower than that reported for the Gabor or LPQ method, but still higher than 

that reported for the LBP method. Comparing these detection performances, we can see that our 

proposed PAD method significantly outperforms all previously proposed methods by producing the 

lowest errors (ACER of 0.456%). 
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Table 10. Comparison of detection error (ACER) of our proposed PAD method with various previous 

methods using NUAA database (unit: %). 

Baseline  

Method  

[14] 

Gabor  

[15] 

LPQ  

[15] 

DLTP  

[21] 

LBP  

[15] 

LBP + Fisher  

Score + SVM [20] 

Score-Fusion of Deep  

and Handcrafted  

Features [34,35] 

Proposed  

Method 

9.500 9.500 4.600 3.500 2.900 1.000 0.630 0.456 

In the case of using the CASIA database, an error rate (ACER) of about 17.0% was obtained using 

the baseline method proposed by the author of the database [16] using DoG image features and SVM 

for classification. The error was then reduced to 13.1% by Benlamoudi et al. [20], LBP method for 

image feature extraction, Fisher score for feature selection, and SVM for classification. To extract 

richer information from the face region image, Boulkenafet et al. [17] applied the LBP feature 

extraction method on three channels of color images in YCbCr color space and used SVM for 

classification. Because of using color information, they could reduce the error to about 6.2%. Parveen 

et al. [21] used the DLTP method, instead of the LBP method, for feature extraction and obtained an 

error of 5.4% using the CASIA database. Akhtar et al. [23] extracted the information from image 

patches for discriminating the real and presentation attack images. Consequently, they obtained an 

error rate of 5.07%. As shown in the experimental results in Table 8, our proposed PAD method offers 

an error rate (ACER) of 1.696%, which is much smaller than all of the previously reported errors. 

From the comparisons in Tables 10 and 11, we can conclude that our proposed method is sufficient 

for solving the PAD problem and outperforms previous research. 

Table 11. Comparison of detection errors (ACERs) of our proposed PAD method with various 

previous methods using CASIA database (unit: %). 

Baseline  

Method  

[16] 

Combination of LBP,  

Fisher Score,  

and SVM [20] 

Color Texture  

based on LBP  

Method [17] 

DLTP  

[21] 

Patch-Based  

Classification Method [23] 

Score-Fusion of Deep  

and Handcrafted  

Features [34,35] 

Proposed  

Method 

17.000 13.100 6.200 5.400 5.07 1.792 1.696 

As the final experiment in this Section, we measured the processing time of our proposed PAD 

method. For this experiment, we used a desktop computer equipped with an Intel Core i7 CPU (3.4 

GHz) with 64 GB of RAM memory, and a TitanX graphics processing unit (GPU) [49] for running 

CNN model. The detailed experimental results are given in Table 12. As shown in this table, our 

proposed method takes about 50.5 milliseconds (ms) to process one input face image. Based on this 

result, we can conclude that our proposed method can process at the speed of about 20 frames per 

second (1000/50.5). 

Table 12. The processing time of our proposed method (unit: ms). 

Face Detection  

and Normalization 

Feature Extraction by  

MLBP Method 

Feature Extraction by  

CNN Method 

Feature Selection by  

PCA Method 

Classification by  

SVM Method 

Total Processing  

Time 

16.956 12.915 19.519 0.792 0.320 50.502 

3.2.4. Detection Accuracy of our Proposed PAD Method According to Characteristics of Images 

In this section, we further investigate the effects of image quality and attacking methods on the 

performance of the PAD method. Since the NUAA database was collected by re-capturing printed 

photographs of users without any additional information on image quality, we do not use this 

database in the experiments presented in this section. In contrast, the CASIA database is a more 

complex database, and was collected by simulating several attacking methods; moreover, it uses three 

categories of face region quality during image acquisition. As a result, in our experiments, we 

separate the CASIA database into six sub-databases according to face region quality and attacking 

methods. For the experiments presented in this section, we apply our proposed PAD method (as 

shown in Figure 1) on these six sub-databases of CASIA database to measure the detection 

performance according to the characteristic of input images, i.e., image quality and attacking 

methods.  
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In the first experiment, based on the quality of face regions in video clips provided by the author 

of CASIA database, we separate the entire database into three sub-databases of “Low Quality 

Database”, “Normal Quality Database”, and “High Quality Database” as shown in Table 13. For these 

databases, we only use the real and presentation attack data that are in same quality category. Based 

on this criterion, we obtain the three quality databases, as detailed in Table 13, using the face detection 

method explained in Section 2.2. To reduce the effects of the over-fitting problem, we also perform 

data augmentation on the training data of these quality-based databases to generalize the training 

data while keeping the testing data same as the original data, for comparison with previous research. 

The detailed experimental results are given in Table 14. As shown in this table, we obtain the smallest 

detection error (ACER) of 1.834% using the “Low Quality Database” and the polynomial kernel of 

SVM, an error of 3.950% using the “Normal Quality Database” and the RBF kernel of SVM, and 

2.210% using the “High Quality Database” and RBF kernel of SVM. These experimental results are 

quite different and they indicate that the quality of the face region is an important factor for detecting 

presentation attack images using our proposed PAD method. 

Table 13. Description of the three sub-databases of CASIA database according to quality of face region 

and their augmented database used in our study. 

Database According to  

Quality of Face Regions 

Training Database Testing Database 
Total 

(Training/Testing) 
Real  

Access 

Presentation  

Access 

Real  

Access 

Presentation  

Access 

Low Quality Database 
Original Database 3140 11,019 5298 16,174 14,159/21,472 

Augmented Database 12,560 44,076 5298 16,174 56,636/21,472 

Normal Quality Database 
Original Database 3197 11,276 4830 16,157 14,473/20,987 

Augmented Database 12,788 45,104 4830 16,157 57,892/20,987 

High Quality Database 
Original Database 4577 11,843 5782 17,381 16,420/23,163 

Augmented Database 18,308 47,372 5782 17,381 65,680/23,163 

Table 14. Detection accuracies of our proposed PAD method on sub-databases of CASIA database 

according to the image quality (unit: %). 

Database SVM Kernel APCER BPCER ACER 

Low Quality Database 

Linear Kernel 3.718 0.742 2.230 

RBF Kernel 3.114 0.643 1.879 

Polynomial Kernel 1.906 1.762 1.834 

Normal Quality Database 

Linear Kernel 4.472 4.209 4.340 

RBF Kernel 2.836 5.063 3.950 

Polynomial Kernel 4.576 4.444 4.510 

High Quality Database 

Linear Kernel 0.882 3.958 2.420 

RBF Kernel 1.211 3.210 2.210 

Polynomial Kernel 0.796 4.102 2.449 

 

In the second experiment, we divide the entire CASIA database into three sub-databases—

“Wrap Photo Database”, “Cut Photo Database” and “Video Display Database”—according to the 

three attacking methods. For these databases, the real data include all real data in the CASIA database 

and the presentation attack data are selected based on the attacking method. Consequently, we obtain 

the three databases for this experiment as given in Table 15. Finally, we obtain experimental results 

as shown in Table 16, where the errors (ACERs) of 2.054%, 0.545%, and 4.835% are obtained for the 

databases of “Wrap Photo Database”, “Cut Photo Database”, and “Video Display Database”, 

respectively. As indicated in these experimental results, the error generated using video display to 

attack a face recognition system is the largest among the three attacking methods. This shows that it 

is most difficult to detect the presentation attack images that are developed using video display of 

the face as compared to the other two attacking methods, probably because the presentation attack 

images developed using a video display have less negative effects, such as blur, noise, or additional 

illumination, than those using wrap or cut photo. As a result, the presentation attack images 

developed using a video display look more similar to real images than those developed using the 

other two methods. For demonstration, we show the DET curves of all experiments in this section in 

Figure 14, where the characteristics of the presentation attack images (quality and attacking methods) 
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strongly affect the PAD method by yielding very different detection accuracies according to types of 

presentation attack images. 

 

Figure 14. DET curves of the detection system using our proposed PAD method on six sub-databases 

of CASIA database according to image quality (low, normal, and high quality) and attacking methods 

(using wrap photo, cut photo, and video display). 

Table 15. Description of the three sub-databases of CASIA database according to attacking methods 

(wrap photo, cut photo, and video display) and their augmented database used in our study. 

Database According to  

Attack Method 

Training Database Testing Database 
Total 

(Training/Testing) 
Real  

Access 

Presentation  

Access 

Real  

Access 

Presentation  

Access 

Wrap Photo 

Database 

Original Database 10,914 12,860 15,910 19,250 23,774/35,160 

Augmented Database 43,656 51,440 15,910 19,250 95,096/35,160 

Cut Photo 

Database 

Original Database 10,914 9,499 15,910 14,801 20,413/30,711 

Augmented Database 43,656 37,996 15,910 14,801 81,652/30,711 

Video Display 

Database 

Original Database 10,914 11,779 15,910 15,661 22,693/31,571 

Augmented Database 43,656 47,116 15,910 15,661 90,772/31,571 

Table 16. Detection accuracies of our proposed PAD method on sub-databases of CASIA database 

according to the attacking methods (unit: %). 

Database SVM Kernel APCER BPCER ACER 

Wrap Photo Database 

Linear Kernel 2.244 2.888 2.566 

RBF Kernel 2.206 1.901 2.054 

Polynomial Kernel 2.520 2.390 2.455 

Cut Photo Database 

Linear Kernel 1.113 0.203 0.658 

RBF Kernel 0.905 0.263 0.584 

Polynomial Kernel 0.949 0.142 0.545 

Video Access Database 

Linear Kernel 5.506 4.163 4.835 

RBF Kernel 5.0409 5.491 5.266 

Polynomial Kernel 4.6574 5.159 4.908 

Finally, we compare the detection accuracy yielded by our proposed method with those 

obtained in various previous studies using the same presentation attack databases according to image 

quality and attacking methods. The detailed comparisons are given in Table 17. As shown in this 

table, our proposed method outperforms all previous methods by yielding the lowest detection error. 
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Table 17. Comparison of detection errors (ACERs) of our proposed PAD method with previous 

methods using CASIA sub-databases according to image quality and attacking methods (unit: %). 

Detection Method 

Low  

Quality  

Database 

Normal  

Quality  

Database 

High  

Quality  

Database 

Wrap  

Photo  

Database 

Cut  

Photo  

Database 

Video  

Access  

Database 

Baseline Method [16] 13.0 13.0 26.0 16.0 6.0 24.0 

LBP-TOP [22] 10.0 12.0 13.0 6.0 12.0 10.0 

IQA [23] 31.7 22.2 5.6 26.1 18.3 34.4 

Combination of LBP, Fisher Score, and SVM [20] 7.2 8.8 14.4 12.0 10.0 14.7 

Patch-based Classification Method [23] 5.26 6.00 5.30 5.78 5.49 5.02 

Color Texture based on LBP method [17] 7.8 10.1 6.4 7.5 5.4 8.4 

Proposed Method 1.834 3.950 2.210 2.054 0.545 4.835 

4. Discussion 

Figure 15 shows some examples of the resultant images of the PAD method that uses only 

handcrafted (MLBP) features on the NUAA database. This figure shows images for three cases: 

“presentation attack to real” classification error (Figure 15a), “real to presentation attack” 

classification error (Figure 15b), and correct classification (Figure 15c). As observed from this figure, 

the error cases mainly occur when the presentation attack images are clear and of good quality 

(Figure 15a) or the real images have blurred effects or large illumination variation (Figure 15b). In a 

conventional face recognition system, the input face images are directly captured from real 3-D faces 

of users. Therefore, the quality of the captured face images is very high. On the other hand, since the 

presentation attack images are re-captured using photo/video displays that are in 2-D space, the 

consequent presentation attack images can contain blur or plane texture features. However, there are 

some cases in which the real images are captured under poor capturing conditions, such as high 

illumination or vibration of camera (or face) during capturing, or the presentation attack images are 

captured under a focused condition using high-quality photo/video displays. As a result, the 

appearance of real images become little blurred and/or white, as shown in Figure 15b, while that of 

presentation attack images becomes more distinctive, as shown in Figure 15a.  

 

(a) 

 

(b) 

 

(c) 

Figure 15. Examples of detection result images by PAD method that uses only MLBP features for 

detection problem on NUAA database: (a) “presentation attack to real” error cases; (b) “real to 

presentation attack” error cases; and (c) correct detection cases. 
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Because the MLBP features are used to measure the skin details on face region, such as edges, 

corners, and blobs, the good-quality presentation attack images can produce MLBP features that are 

similar to those produced using slightly poor real images. Consequently, the PAD method using 

MLBP features produces errors. For demonstration, we show some correct detection result images of 

the PAD method using MLBP features in Figure 15c. In this figure, the first two images (from left to 

right) are the presentation attack images that contain blurred and unclear appearance, and are 

correctly detected as the presentation attack images. In the last two images, the PAD method correctly 

classifies them as real images because of their high quality and distinctive appearance. Our results 

indicate that the use of good-quality photo/video displays for attacking can increase the possibility 

of successful attack of a face recognition system using MLBP image features, while the poor capturing 

condition can result in false rejection of real images as the presentation attack ones.  

In Figure 16, we showed some examples of detection results of PAD method that only uses the 

deep features on NUAA database. Similar to Figure 15, we also showed the three examples of 

“presentation attack to real” classification error cases in Figure 16a, “real to presentation attack” 

classification error cases in Figure 16b, and the correct detection cases in Figure 16c. It is easily to 

observe from Figure 16b that the “real to presentation attack” classification error cases caused by the 

PAD method that only uses deep features contains large illumination variation. As shown in this 

figure, the non-uniform illumination occurred on the real images randomly on face regions. In 

addition, as shown in Figures 15 and 16, the face images contain large texture variation caused by the 

background, glasses, and facial expression. Consequently, the face region contains very large 

variation compared to other biometric features such as finger-vein, finger-print, or iris. Although the 

CNN method has proven as a very powerful method for image classification and feature extraction, 

it still has its own limitations as explained in Section 2.4, especially the over-fitting problem, due to a 

huge amount of network’s parameters need to be trained. Therefore, the CNN method requires a 

huge amount of image data to train a model. As shown in Section 3.1, although we performed data 

augmentation on training database, the number of individuals in training database is still small  

(9 persons in NUAA and 20 persons in CASIA database).  

 

(a) 

 

(b) 

 

(c) 

Figure 16. Examples of detection result images of the PAD method that uses only deep features on 

NUAA database: (a) “real to presentation attack” error cases, (b) “presentation to real” error cases, 

and (c) correct detection cases. 
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As a result, the training data is small, and it can cause errors while training CNN models. In 

addition, as shown in Figure 16b,c, the PAD method can give correct detection results if the input 

face images do not contain extraordinary features such as facial expression and/or expensive 

illumination. By presenting expensive illumination on face, the texture features on face region can be 

disappeared and replaced by a plane or white texture. As a result, PAD method can produce incorrect 

detection results. 

Figure 17 shows some examples of result images of our proposed PAD method. Figure 17a 

shows some result images that are incorrectly classified by the PAD method that uses only MLBP 

features, but correctly classified by our proposed method. Similarly, Figure 17b shows some result 

images that are incorrectly classified by the PAD method that uses only deep features, but correctly 

classified by our proposed method. As shown in this figure, although these images contain negative 

effects such as large variation of illumination or high quality of face region, they are correctly 

classified by our proposed method. This figure again shows the efficiency of our proposed PAD 

method over those that use only MLBP or only deep features. 

 

(a) 

 

(b) 

Figure 17. Examples of detection result images by our proposed PAD method on NUAA database: (a) 

images detected incorrectly by the PAD method that uses only MLBP features, but correctly detected 

by our proposed PAD method, and (b) images detected incorrectly by the PAD method that uses only 

deep features, but correctly detected by our proposed PAD method. 

As shown in Tables 5 and 7, the performances of the PAD method that uses single feature 

extraction method vary according to the database used. In detail, the detection errors vary between 

the NUAA and CASIA databases with ACERs of 0.667% and 11.247% using handcrafted features on 

the NUAA database, and 10.566% and 2.174% using deep features on the CASIA database. These 

results show that the PAD method that only uses handcrafted image features or only deep image 

features has low reliability in application. However, the combination of these two features helps us 

in reducing the error rates in both databases as well as the difference between them (0.456% for 

NUAA database and 1.696% for CASIA). From this result, we can conclude that our proposed method 

has higher reliability than the PAD method that uses single feature extraction method. 

5. Conclusions 

In this paper, we have proposed a new method for detecting presentation attack images in a face 

recognition system to enhance its security level. Our proposed method is based on the use of hybrid 

features, which are a combination of handcrafted features and deep features, in order to collect richer 

information than that obtained using single feature extraction method. Our experiments indicated 

that the handcrafted image features are suitable for detecting presentation attack images with low 

image quality, while the deep image features are suitable for detecting presentation attack images 

with high quality. Thus, by combining the two types of image features, we can significantly enhance 

the detection accuracy compared to the use of a single method and other previous methods. In detail, 



Sensors 2018, 18, 699 26 of 28 

 

in the case of using the NUAA database, which contains low-quality images and large illumination 

variation, the handcrafted features work better than deep features by yielding errors (ACERs) of 

0.667% and 11.247% using MLBP and deep features, respectively. Using our proposed method, the 

error is significantly reduced to 0.456%. In the case of using the CASIA database, which is larger and 

contains higher-quality images as compared to the NUAA database, the deep features work better 

than handcrafted features. The detection errors (ACERs) generated using the CASIA database were 

10.566%, 2.174%, and 1.696% using handcrafted features, deep features, and hybrid features, 

respectively. The experimental results indicated that our proposed method outperforms previous 

PAD methods for face recognition system using the same database (NUAA and CASIA databases). 
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