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Abstract: For the objective of essentially decreasing computational complexity and time consumption
of signal acquisition, this paper explores a resampling strategy and variable circular correlation
time strategy specific to broadband multi-frequency GNSS receivers. In broadband GNSS receivers,
the resampling strategy is established to work on conventional acquisition algorithms by resampling
the main lobe of received broadband signals with a much lower frequency. Variable circular
correlation time is designed to adapt to different signal strength conditions and thereby increase the
operation flexibility of GNSS signal acquisition. The acquisition threshold is defined as the ratio
of the highest and second highest correlation results in the search space of carrier frequency and
code phase. Moreover, computational complexity of signal acquisition is formulated by amounts of
multiplication and summation operations in the acquisition process. Comparative experiments and
performance analysis are conducted on four sets of real GPS L2C signals with different sampling
frequencies. The results indicate that the resampling strategy can effectively decrease computation
and time cost by nearly 90–94% with just slight loss of acquisition sensitivity. With circular correlation
time varying from 10 ms to 20 ms, the time cost of signal acquisition has increased by about 2.7–5.6%
per millisecond, with most satellites acquired successfully.

Keywords: signal acquisition; bandpass sampling; circular correlation time; computational complexity;
time consumption; GNSS receivers

1. Introduction

As the most mature Global Navigation Satellite System (GNSS), Global Positioning System (GPS)
has occupied the dominated position in many aspects, such as civil application, scientific research, and
military defense. Further, the GPS modernization plan has drawn remarkable improvement that adds
new civil signals transmitted by parts of GPS satellites for high-accuracy navigating and positioning
in complex environments. These new signals possess better performance of self-/cross-correlation,
as well as the ability to suppress narrowband interference and correct transmission delay of the
ionosphere [1]. The longer code period of new signals, especially GPS L2C signals, indicates that
computational complexity and time consumption will become greater for conventional acquisition
algorithms [2]. Besides, multimode multi-frequency GNSS receivers are applied in many fields
nowadays. Broadband receiving of multi-frequency signals is the popular and feasible technique to
minimize the energy consumption and physical size of those receivers [3,4]. However, broadband
receiving requires higher sampling frequency, which dramatically increases computation and time
consumption of the subsequent signal processing. It brings an inevitable dilemma for signal acquisition.

In principle, signal acquisition is the chief operation to identify the visibility of satellites and
provide estimated values of carrier frequency and code phase of received signals. Based on these
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estimated values, signal tracking can be successfully activated for following baseband operations.
Actually, signal acquisition is a two-dimensional search process over carrier frequency and code
phase uncertainty [5], by correlating with local replicated ones. Successful acquisitions are affirmed
if acquisition decision statistics exceed the acquisition threshold. Conceivably, signal acquisition is
quite time-consuming and requires tremendous computation [6]. Meanwhile, computation acts as
the bottleneck of GNSS receiver applications, as it determines the lowest sensitivity of the baseband
processing. Therefore, requirements for faster, less computationally demanding, and more efficient
acquisition approaches are put forward to GNSS receivers in an extensive research field [1,5,7].

Attributed to the primary convolution and correlation operations in the acquisition process,
various sophisticated acquisition algorithms have been investigated to enhance the efficiency of Fast
Fourier Transform (FFT) to confront the challenge of computation and time cost. For instance, ideas
of sparse FFT [8], fast FFT [9], reduced-size FFT [10], and averaging correlation [11] are attempted to
reduce computational complexity when acquiring satellite signals. Specific to n-point FFT operations
of parallel search acquisition algorithms, various divisions have presented their respective effects
on relieving the burden of computation and time cost, such as radix-2 and radix-4 FFT [12] or by
replacing with m sets 2k-point FFT [13]. Besides, multi-step acquisition methods [14–18] also are
studied to seek for better performance of signal acquisition on computation and time consumption.
Taking advantage of the double-channel structure of modernized GPS signals, the joint data-pilot
channel strategy [19] outperforms other individual channel strategies on signal acquisition. In fact,
computational complexity and time consumption of signal acquisition are highly dependent on the
data size of sampled signals used for convolution and correlation operations. Although extensive
study has been conducted, most of them concentrate on reducing instant processing points of FFT.
Only a few investigations [20–22] have carried out attempts to directly shorten or down-sample the
received original signals. The bandpass sampling theory [23], which is a direct expansion of the
traditional Shannon sampling theorem, has been widely applied in the fields of communication and
radar signal processing [24–26]. In the GNSS community, the bandpass sampling theory was adopted
to design a direct conversion of GNSS carrier signal [27–30] in order to reduce the sampling frequency
of the direct RF sampling front end of GNSS receivers. However, currently mainstream commercial
GNSS receivers generally employ the intermediate frequency (IF) sampling front end. In the design
of IF sampling front end for multi-frequency GNSS receivers, its bandwidth is generally much larger
than that of the single-frequency front end, in order to incorporate multiple signals located at adjacent
frequency points in one channel of the IF front end. Owing to the fact that signals of each frequency
point are acquired separately, signal acquisition can be realized within the lower bandwidth. It exactly
inspires us to apply the bandpass sampling theory to the efficient and fast signal acquisition of the IF
sampling GNSS receivers.

As another important solution contributing to the signal acquisition challenge, massive
correlation-related approaches also have been widely investigated. From the perspective of correlation
period, Qaisar et al. [31] introduced an interesting chip-wise correlation strategy that accumulated
code samples in one period and calculated correlation values for each chip period to reduce the
search space and computation. In contrast, Zhu et al. [32] extended the correlation time to an entire
duration of navigation data bit, aiming at enhancing the sensitivity of receivers. Further, Zhu et al. [33]
proposed a variable time parallel acquisition scheme and different accumulation schemes over multiple
code periods to detect weak signals. Jin et al. [34] exploited a fusion acquisition method of multiple
correlation strategies to reduce correlation loss caused by sign transition of high data rate signals.
Especially, a small increase of computation emerged using the delay-accumulation method [35]
and data-pilot optimized combining acquisition methods [36]. Additionally, Ta et al. [37] presented
a partial acquisition algorithm using specially-designed matched filters and differential post-correlation
techniques to simplify computational complexity of signal acquisition. Although increasing correlation
time is an effective way to ensure acquisition accuracy, computation and time consumption generally
present higher expense due to the longer correlation time. Further, it is difficult to find out many
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researches that have done detailed exploration on the relationship between acquisition performance
and correlation time, and that have been applied effectively to signal acquisition of GNSS receivers.

With regard to broadband multi-frequency GNSS receivers, we propose a resampling strategy
and variable circular correlation time in this paper to decrease computational complexity and time
consumption of signal acquisition. Inspired by the bandpass sampling theory, the resampling strategy
reduces greatly the data size of the sampled signal with just slight loss of signal quality. It lays
the computational foundation for FFT, correlation and convolution operations of signal acquisition.
In particular, the resampling strategy is implemented step-by-step to demonstrate the capability of
combining with existing FFT-/correlation-based acquisition algorithms. Taking the longer code period
into consideration, the relationship between circular correlation time and acquisition performance
is concerned for the potential of shortening circular correlation time to adapt to different signal
strength conditions and thereby increase the operation flexibility of GNSS signal acquisition. Moreover,
the acquisition threshold is defined as the ratio of the highest and second highest correlation results
in the search space of carrier frequency and code phase. Computational complexity is formulated by
amounts of multiplication and summation operations in the signal acquisition.

This paper is organized as follows: Section 2 introduces the characteristics of the GPS L2C signal as
an example, and the framework of GNSS receivers to indicate the crucial role of the proposed strategies.
Next, Section 3 elaborates on the proposed resampling strategy and variable circular correlation time,
in terms of the principle, realization, coarse and fine acquisition, as well as performance evaluation.
Comparative experiments and performance analysis are performed on four sets of real GNSS signals
in Section 4, to verify the effectiveness of the resampling strategy and variable circular correlation time.
Conclusions are drawn in Section 5.

2. Characteristics of Satellite Signals and Framework of GNSS Receivers

2.1. Characteristics of Satellite Signals

In this paper, we take the GPS L2C signal as an example of GNSS signals. GPS L2C signal is
the civil signal, newly added on the existing L2 frequency band and modulated by civil-moderate
(CM) and civil-long (CL) codes. The mechanism of the GPS L2C signal is described as follows: Firstly,
the navigation message is encoded by forward error correction (FEC) coder and modulated on CM
code to comprise the data channel. Meanwhile, without navigation message, CL code acts as the
pilot channel by direct sequence spread spectrum (DSSS) method. After that, signals of data and
pilot channels are separately added on the baseband signal by time division multiplexing (TDM)
method, and further modulated by binary phase shift keying (BPSK) method on carrier wave. Finally,
the generated signal is transmitted by satellites. GPS L2C signal received from satellites can be modeled
as [4,22]:

SL2(t) = A[D(t− θ)CM(t− θ + kTM) + CL(t− θ)]cos[2π( f IF + fD)t + ϕ] + n(t) (1)

where A is the signal amplitude and D(t) is the navigation message. CM(t) and CL(t) represent
CM and CL codes, respectively. θ is code phase in the received signal. TM denotes the period of CM
code and k indicates the number of CM epochs in the current CL epoch, 0 ≤ k ≤ 74. The carrier
frequency of the received signal consists of the intermediate frequency f IF and Doppler frequency shift
fD, which results from the relative motion between the satellite and the receiver. ϕ refers to the initial
carrier phase. Besides, n(t) is the thermal noise in the received signal, denoted as the additive white
Gaussian noise. It is noticeable that the signal is just composed of the cosine term on account of the
BPSK method.

2.2. Framework of GNSS Receivers

Primarily, the signal processing framework of GNSS receivers mainly includes 4 parts: data
collection, signal acquisition, signal tracking, and navigation solution, as shown in Figure 1. Firstly,
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the original signal received by the antenna is converted from low-power high-frequency into
intermediate-frequency, and then sampled as digital to send to different channels of receivers. Next,
visible satellites are identified by signal acquisition. It is also obtained that estimated values of
carrier frequency and code phase of acquired satellite signals. Then, based on these estimated
values, carrier wave and pseudo-random noise (PRN) code are accurately removed from the received
signal by applying phase locked loop (PLL) and delay locked loop (DLL) to signal tracking. Finally,
the navigation message is extracted by bit and frame synchronization to calculate position and velocity
of the receiver. In this way, satellite signal has been processed by GNSS receivers to accomplish the
functions of positioning, navigating, and timing.
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In this paper, the resampling strategy is proposed to decrease the data size of the sampled signal
without obvious loss of signal quality, so as to greatly reduce computational complexity and time
consumption of signal acquisition. Currently, signal acquisition is fundamentally realized by the
serial search algorithm, parallel frequency space search algorithm, and parallel code phase search
algorithm. By contrast, the parallel code phase search algorithm is the most efficient one that searches
all code phases at the same time for each frequency bin. Hence, we chose the parallel code phase
search algorithm on behalf of conventional acquisition algorithms to perform the resampling strategy.
Besides, signal acquisition is improved by variable circular correlation time.

3. Methodology of the Resampling Strategy and Variable Circular Correlation Time

3.1. Principle of the Resampling Strategy

Generally, the original signal can be reconstructed from the sampled signal without loss of signal
quality if the sampling frequency is higher than twice the upper cutoff frequency of the original
signal. However, this principle is not suitable for signal acquisition of multimode multiband GNSS
receivers. These receivers can receive multi-frequency satellite signals at the same time. Therefore,
a much higher sampling frequency is required to sample the received broadband signal. Obviously,
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it is rather aimless, low-efficiency, and of low quality to acquire a specific frequency signal by sampling
the received broadband signal in this way. Moreover, the higher sampling frequency results in much
more computation and time consumption for signal acquisition, because the data size of the sampled
signal is much larger. To address this dilemma of balance between the sampling frequency and the
greatly increasing computation, we propose the resampling strategy based on the bandpass sampling
theory [23].

Theorem 1. Bandpass Sampling Theory: Assume that the frequency band of a time-continuous signal x(t)
is located at [− fu,− fl ] ∪ [ fl , fu], where fl and fu are the lower and upper cutoff frequencies, respectively.
B denotes the bandwidth of the signal x(t), B = fu − fl . In order to reconstruct the original signal x(t) without
spectrum aliasing from the sampled sequence X[k], the acceptable sampling frequency fs should be in the range of

2 fu

n
≤ fs ≤

2 fl
n− 1

, n ∈ [1, N] (2)

where N = Z−( fu/B) denotes the maximum integer no more than fu/B. Note that, n = 1 just makes sense
for the case that fs ∈ [2 fu, +∞).

The relationship between fs and fu is illustrated in Figure 2. In order to avoid spectrum aliasing
when reconstructing the original signal, the sampling frequency fs should be chosen from cyan
areas, not gray ones. In Figure 2, the available range of the sampling frequency fs consists of
N non-overlapping cyan sections, denoting as Φn = [2 fu/n, 2 fl/(n− 1)], (n = 1, 2, . . . , N) and
fs ∈ ∪N

n=1Φn. It is realizable for the sampling frequency to be much lower, such as [2B, 4B], instead
of the conventional range ( fs ≥ 2 fu, the cyan n = 1). The parameters, fsu, fsl , and fds will be discussed
for the proposed resampling strategy later.
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3.2. Realization of the Resampling Strategy for Signal Aquisition

Sampling the time-continuous signal s(t) with the frequency fs, the frequency spectrum of the
sampled sequence S(kTs) is the same as that of the original signal s(t) in the frequency domain,
periodically extended with the period fs. Hence, with the appropriate sampling frequency, expanding
components of the sampled sequence will not fold with the frequency spectrum of the original signal
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in [− fu,− fl ] ∪ [ fl , fu]. In this way, the original signal can be recovered from the sampled sequence
without loss of signal quality. Based on the bandpass sampling theory, the proposed resampling
strategy is realized as Algorithm 1 for signal acquisition of GNSS receivers.

Algorithm 1 Realization of the Resampling Strategy for GNSS Signal Acquisition

Input:

The received broadband satellite signal;

Output:

Doppler frequency and code phase offset of the received satellite signal.

1. Filter out side lobes of the original broadband satellite signal;
2. Update the parameters of the resampling strategy;
3. Resample the main lobe signal with the resampling frequency;
4. Restore the resampling acquisition results to that of conventional acquisition algorithms;

Return: the acquired Doppler frequency and code phase offset of the received satellite signal.

Note the broadband signal received by multimode multiband GNSS receivers as
S(t) = {SL1(t), SL2(t), SL5(t), SE5(t), . . .}. It includes GPS L1, L2, L5 signals, as well as signals
transmitted by other satellite systems, such as Galileo, GLONASS, and BeiDou. We intend to assume
that the main lobe refers to the GPS L2C signal, and other signals are regarded as the side lobe signals.
A bandpass filter is designed to extract the main lobe signal SL2(t) from the broadband signal S(t).

fl = f IF − B
2

fu = f IF +
B
2

ωp =
[

2 fl
fs
− ∆ω f

2 fu
fs

+ ∆ω f

] (3)

where fl and fu are the lower and upper cutoff frequencies of the main lobe signal SL2(t). fs is the
conventional sampling frequency for the broadband signal S(t). f IF and B represent the intermediate
frequency and bandwidth of SL2(t). It is guaranteed that fs � 2 fu in order to effectively sample SL2(t).
The bandpass filter is designed as an n-order Hamming-window linear-phase finite impulse response
(FIR) filter. The pass band ωp is the vector of the normalized cutoff frequencies. ∆ω f is the margin to
ensure the main lobe signal reserved completely.

By employing the designed bandpass filter on the broadband signal, the side lobe signals are
filtered out while the main lobe remains. This plays as a foundational block to avoid frequency aliasing
and reduce the data size of the sampled signal.

(1) Update the Parameters of the Resampling Strategy

A resampling filter is designed to resample the main lobe signal SL2(t), obtained by the bandpass
filter. The lower and upper cutoff frequencies and bandwidth of the resampling filter, fdl , fdu and Bd,
are expressed as 

fdl = fl
fdu = fu

Bd = fdu − fdl

(4)

Based on the bandpass sampling theory in Theorem 1, the lower and upper boundaries of the
acceptable sampling frequency, fsl and fsu, are determined as

fsl =

{
2 fdu, i f n < 1
2 fdu

n , i f n ≥ 1
(5)
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fsu =

{
fsl , i f n ≤ 1
2 fdl

n− 1 , i f n > 1
(6)

Here, n = 1, 2, . . . , N. And N = Z−( fdu/Bd). The center of the acceptable sampling frequency
range [ fsl , fsu] is regard as the resampling frequency fds:

fds =
fsl + fsu

2
(7)

The parameters of the resampling strategy, fsl , fsu and fds, are illustrated as the blue, red and
green curves in Figure 2, respectively. The number n is chosen as the maximum integer N to decrease
the resampling frequency as much as possible. For that SL2(t) is the high-frequency narrowband
signal, the conventional sampling frequency fs is much higher than the bandwidth ( fs ≥ 2 fu � B).
As the red curve in Figure 2, the resampling frequency fds is maintained in the lower frequency range
[2Bd, 6Bd], (Bd � fu).

(2) Resample the Main Lobe Signal with the Resampling Strategy

When applying the resampling filter to the main lobe signal SL2(t), the sampling frequency and
intermediate frequency are updated to fds and fdIF. Especially, fds is significantly decreased compared
to the conventional one fs. The original intermediate frequency f IF also is equivalent to the much
lower one fdIF, which is the remainder of f IF and fds, as Equation (8). The resampled sequence Sd(k)
is expressed as Equation (9).

fdIF = M( f IF, fds). (8){
Sd(k) = Ss(k)
k = Z+

(
i× fs

fds

) (9)

Ld = Z−
(

L× fds
fs

)
(10)

where Z+(x) denotes the minimum integer bigger than x. Ss(·) and Sd(·) are the sequences
obtained by sampling SL2(t) with fs and fds, respectively. i is the index of samples in the sequence
Ss(i), i = 1, 2, . . . , L. L denotes the length of Ss(i), while k is that of the resampled sequence
Sd(k), k = 1, 2, . . . , Ld. Due to fds � fs, Ld is much shorter than L (Ld � L).

Therefore, Sd(k) is extracted from Ss(i) to equivalently express the main lobe signal SL2(t).
Though the length is greatly reduced, Sd(k) is sufficient to reconstruct the main lobe signal. It is
beneficial for reducing the computation and time consumption of signal acquisition.

(3) Restore the Resampling Acquisition Results to that of Conventional Acquisition Algorithms

The parameters of the resampling strategy, fds and fdIF, and the resampled sequence Sd(k) are
utilized to obtain the acquisition results, including actual carrier frequency fdc, Doppler frequency
shift fdD, and code phase offset θd. In order to be applied to signal tracking in the conventional way,
the acquisition results of the resampling strategy are restored equivalently to the carrier frequency fc

and code phase offset θ of the conventional acquisition algorithm. In this way, the capability of the
proposed resampling strategy to combine with conventional acquisition algorithms has been proven.

fdD = fdc − fdIF (11)

fc = fdD + f IF (12)

θ = Z−
(

θd × fs

fds

)
+ 1 (13)

With the resampling strategy acting on the original broadband signal, the signal flow chart is
illustrated in Figure 3. Remarkably, the data size of the resampled signal is decreased from L to
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Ld, (Ld � L). Therefore, the resampling strategy is capable to greatly reduce computation and time
consumption of signal acquisition.
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3.3. Coarse Acquisition with Variable Circular Correlation Time

Conventional acquisition methods usually set the circular correlation time as one period of PRN
code. Those are low-efficiency, time-consuming, and of large computation. Especially, code periods of
GPS L2C signal are as long as 20 ms for CM code and 1.5 s for CL code. Actually, the shorter circular
correlation time could quicken signal acquisition if the received GPS signal is strong enough. For weak
signals in noisy environments, the longer circular correlation time ensures the acquisition performance.
For the purpose of exploring the effects of different circular correlation times on the performance of
signal acquisition, we introduce variable circular correlation time in the coarse acquisition.

The reference signal Sr(i) of length Lr is extracted from the resampled signal Sd(i).
The zero-padding PRN code Cr(i) is introduced to calculate circular correlation with the reference
signal to obtain accurate carrier frequency and code phase.{

Pr = Pc + Px

Lr = Lc + Lx
, Px ∈ (0, Pc] (14)

Sr(i) = Sd(i), i = 1, 2, . . . , Lr. (15)

Cr(i) =

{
CM(i), i = 1, 2, . . . , Lx

0, i = Lx + 1, Lx + 2, . . . , Lx + Lc.
(16)
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Specifically, Pc is the period of PRN code and Px represents variable circular correlation time,
Px ∈ (0, Pc]. If Px = Pc, the variable circular correlation time method is the same as conventional
acquisition algorithms. Lr, Lc and Lx are the lengths of signals with periods Pr, Pc, and Px.

At frequency search step k, the reference signal Sr(i) is multiplied with local carrier replica Wl(k)
of frequency f (k) to remove carrier wave from Sr(i) and obtain the baseband signal Sw(k)

Wl(k) = ej2π f (k) (17)

Sw(k) = Wl(k)·Sr(i) (18)

With different code phase offsets, the baseband signal Sw(k) is circular correlated with the local
zero-padding code Cr(p), as illustrated in Figure 4. rx(k, p) is the circular correlation result of Sw(k)
and Cr(p). FFT is adopted to quicken the correlation calculation in the time domain, as Equation (20).
F [x]∗ refers to the complex conjugate value of F [x].
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Figure 4. Circular correlation results of the baseband signal Sw(k) and the local zero-padding code
Cr(p): (a) code offset between Sw(k) and Cr(p) is 0 (aligned); (b) code offset between Sw(k) and Cr(p)
is less than (Lc − Lx) samples; (c) code offset between Sw(k) and Cr(p) is more than (Lc − Lx) samples.

rx(k, p) =
Lr

∑
i=1

Sw(k, i)Cr(p + i), p = 1, 2, . . . , Lr. (19)
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F [rx(k, p)](n) =
Lr

∑
p=1

Lr

∑
i=1

Sw(k, i)Cr(p + i)e
−j2πnp

Lr = F [Sw(k)]·F [Cr(p)]∗ (20)

Correlation magnitude reflects the self-/cross-correlation relationship of the received satellite
signal and the local code replica. When they are completely aligned, a much higher correlation peak is
gained. In the search space of carrier frequency and code phase, the correlation magnitude Mx(k, p) is
formulated as

Mx(k, p) = |rx(k, p)| =
√

R2[rx(k, p)] + I2[rx(k, p)] (21)

where R(·) and I(·) denote the real and imaginary parts of a complex data. By Equations (19)–(21), it
is very easy to find out the highest correlation peak in the search space. Denote the corresponding
carrier frequency and code phase as f̂dc and θ̂d, respectively.

In this paper, acquisition threshold is defined as the ratio of the highest and second highest
correlation values in the search space of carrier frequency and code phase. The second highest peak is
found out in the neighborhood range of the highest one. The left neighborhood range is obtained as
[0, θ̂d] ∩ [θl2, θl1] and the right is [θr1, θr2] ∩ [θ̂d, Lr].

θl1 = θ̂d − ∆θ

θl2 = θ̂d − Lx + ∆θ

θr1 = θ̂d + ∆θ

θr2 = θ̂d + Lx − ∆θ

(22)

where ∆θ is the one-chip-period range, excluded from the neighborhood range, for it is too close to the
highest peak to find out the useful second peak. If the correlation ratio is bigger than the acquisition
threshold, it is confirmed that the corresponding satellite is visible and the signal of frequency f̂dc and
code phase θ̂d is acquired successfully.

Note that the frequency spectrum of Cr(p) is asymmetrical, such that the former half part occupies
most of signal power. Thus, we just use the former to compute circular correlation results. This reduces
FFT samples by half, so as to decrease computation of signal acquisition. Additionally, Lx is highly
related to the amount of FFT samples for signal acquisition. Equation (19) provides a good indication
to reduce computation and time cost of signal acquisition by decreasing the sampling frequency fs and
circular correlation time Px. That is exactly realized by the proposed resampling strategy and variable
circular correlation time.

3.4. Fine Acquisition with Pilot Channel

For GPS L2C signals, the phase of CL code is aligned with that of the CM code. The reference
signal S f r(i) of length Lx is directly extracted from the main lobe signal SL2(t) with code phase θ̂d.
Similarly, the CL code is removed from S f r(i) by multiplying with the local CL code replica to get the
baseband signal S f x(i). Considering that no navigation message is modulated on the signal of pilot
channel, FFT acts as the frequency discriminator to find out the accurate carrier frequency.

F [S f x(i)] =
NL

∑
i=1

S f x(i)e
−j2πni

NL (23)

where F [S f x(i)] is the FFT result of S f x(i). The amount of FFT samples NL is set as the power of
2 closest to Lx to speed up FFT calculation, when the signal length Lx is not an exact power of 2.
As F [S f x(i)] is a periodic complex even signal, the frequency spectrum is symmetrical in the frequency
range [0, fds]. Hence, the one-sided FFT is adopted.
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Assume M f x(m̂) as the maximum magnitude of F [S f x(i)] in the frequency range [0, fds], and m̂
is the corresponding index of F [S f x(i)]. The high-accuracy carrier frequency of the received signal is
discriminated as fdc in the fine acquisition:

fdc =

{
m̂ fds

NL
, i f m̂ ≤ NL

2

(NL − m̂) fds
NL

, i f m̂ > NL
2

(24)

Note that the frequency resolution fds/NL is inversely proportional to NL, and NL is highly
dependent on Lx. From this perspective, circular correlation time is positively relative to the resolution
of acquired carrier frequency. That is, the longer circular correlation time will ultimately result in
higher accurate carrier frequency in the fine acquisition. Besides, circular correlation time also affects
computation and time cost of the fine acquisition, for that FFT is utilized as the frequency discriminator.

3.5. Performance Evaluation of Signal Acquisition

For signal acquisition, time cost is usually a stochastic variable. Mean value of time cost is
concerned as one of the most important measurements to assess the performance of acquisition
algorithms. Computation complexity is another crucial evaluation index. Usually, convolution
operation in the time domain is converted into multiplication in the frequency domain by FFT to
improve the efficiency of signal acquisition algorithms. We choose amounts of multiplication and
summation operations to evaluate the computational complexity of signal acquisition.

Equation (25) presents computations of FFT (OFFT), IFFT (OIFFT), amplitude calculation (OAMP),
vector multiplication (OVM) and comparison (OCMP). N refers to the length of the FFT sequence. OM

and OA denote the amounts of multiplication and summation operations, respectively.
OFFT(N) = OIFFT(N) = OM

(
N
2 log2

(
N
2

))
+ OA(Nlog2N)

OAMP(N) = O VM(N) = OM(N) + OA(N − 1)
OCMP(N) = OA(N − 1)

(25)

Note the computations of local code replica generation and correlation ratio calculation as Olc
and Opk. And the computations of coarse and fine acquisition are denoted as Oca and O f a, respectively.
NSV is the number of satellites in the search list, and N f is the amount of carrier frequency bins.

Olc = OFFT(Lr)

Oca = 2OVM(Lr) + OFFT(Lr) + OVM(Lr) + OIFFT(Lr) + OAMP(Lr)

Opk = OCMP

(
N f × Lr

)
+ OCMP

(
N f × Lx

)
+ OM

(
N f × Lr

)
O f a = OVM(Lx) + OFFT(Lx) + OAMP(Lx) + OCMP(Lx)

Therefore, the computational complexity of signal acquisition Ototal is formulated as

Ototal =
(

Olc + N f Oca + Opk + O f a

)
NSV = OM

total + OA
total (26)

in which,

OM
total =

[(
2N f +

3
2

)
Lx log2 Lx + 10N f Lx +

3
2

Lx

]
NSV (27)

OA
total =

[(
4N f + 3

)
Lx log2 Lx + 15N f Lx + 5Lx − 4N f − 5

]
NSV (28)
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4. Experiments and Discussion

4.1. Experimental Platform and Datasets Description

The resampling strategy and variable circular correlation time proposed in this paper are realized
by MATLAB software, configured with Intel dual-core 3.5 GHz CPU of i7− 5930K and 16.0 G RAM.
The GNSS receiver is equipped with NT1065 “Nomada” and bladeRF as the RF front end. They can
simultaneously receive various GNSS satellite signals, including GPS (L1, L2, L3, L5), GLONASS
(E1, E5a, E5b, E6), BeiDou (B1, B2, B3), Galileo, IRNSS, QZSS. For comparison, experiments and
performance analysis are conducted on 4 sets real GNSS signals collected at the same observation
station. Different configurations are adopted, such as set-up status of the resampling strategy (on/off)
and circular correlation time (10–20 ms). Table 1 presents the data type, intermediate frequency, and
conventional sampling frequency of experimental datasets.

Table 1. The main parameters of GNSS signals used in the experiments.

Dataset No. 1 2 3 4

Data Type 8-bit Real Data 8-bit Real Data 8-bit Real Data 8-bit Complex Data
Intermediate Frequency (MHz) 7.4 7.4 7.6 −0.02

Conventional Sampling Frequency (MHz) 53 53 79.25 4

Besides, basic parameters of the experimental GNSS signals are provided here: the bandwidth of
main lobe is 2.046 MHz, the basis carrier frequency is 1227.6 MHz, the code frequency is 511.5 KHz,
the range of frequency search band is ±5 KHz, and the bandwidth of frequency bins is 100 Hz.
Acquisition threshold is set as correlation ratio Rc = 1.5.

4.2. Performance Analysis of the Resampling Strategy

With emphasis on effects of the proposed strategy on signal acquisition, we execute the resampling
strategy and the conventional algorithm (without the resampling strategy) on all datasets. Experimental
results are discussed in terms of acquisition effectiveness, sensitivity, computation and time cost.

Figure 5 presents the characteristics of the received broadband signal in the frequency and time
domains, as well as the amplitude distribution of the received signal in Dataset 1. By applying the
bandpass filter to the received broadband signal, the power of the side lobe signals was filtered out and
the main lobe signal was retained, as shown in Figure 6. The bandwidth and intermediate frequency
of the main lobe signal were the same as that of the received broadband signal, Bd = 2.046 MHz and
f IF = 7.4 MHz. Besides, the sampling frequency of the main lobe signal was the conventional one,
fs = 53 MHz. Applying the resampling strategy to the main lobe signal, the resampled signal was
obtained, as presented in Figure 7. Specially, the resampled signal had the same bandwidth of the
main lobe signal, while the intermediate frequency changed from f IF = 7.4 MHz to fdIF = 1.43 MHz.
Meanwhile, as a result of the resampling strategy, the sampling frequency was greatly reduced from the
conventional one fs = 53 MHz to fds = 5.97 MHz, to reduce the data size of the resampled sequences
used in FFT, IFFT, and correlation calculation. Here, circular correlation time of signal acquisition was
fixed as Lx = 20 ms.
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The acquisition results of Dataset 1 are listed in Table 2. There were 7 satellites
(PRN 5, 6, 12, 17, 24, 25, and 29) acquired successfully. It also has proved the capability of the
proposed strategy to adapt to the signals with different carrier-to-noise ratios. Comparing experimental
results of the resampling strategy and the conventional method (without the resampling strategy),
it can be found that the two algorithms demonstrated almost the same acquisition performances,
including acquired satellites, carrier frequency, Doppler frequency shift, and code phase offset. There is
no obvious loss of acquisition performance for the resampling strategy. In addition, it is remarkable
that the correlation magnitude of each acquired satellite decreased to about 10% as a result of the
resampling strategy, shown in the bold columns in Table 2. This can be qualitatively attributed to the
reduced-size samples for circular correlation by the resampling strategy, see Equation (10).

Table 2. Acquisition results of the received signal in Dataset 1 without/with the resampling strategy.

Acquired
Satellites Acquisition without the Resampling Strategy Acquisition with the Resampling Strategy

PRN
CNo

(dB-Hz)
Frequency Doppler Code Phase Magnitude Ratio Frequency Doppler Code Phase Magnitude Ratio

(MHz) (Hz) (samples) / / (MHz) (Hz) (samples) / /

5 38.0 7.39649 −3507 701962 21976 3.9492 7.39649 −3508 701963 2210 3.9103
6 42.8 7.40103 1032 356345 40595 6.8311 7.40103 1033 356347 4033 6.2393
12 43.1 7.39853 −1470 193389 40928 7.0512 7.39853 −1465 193394 3983 7.2284
17 33.7 7.40119 1187 879016 14909 2.6156 7.40119 1186 879013 1546 2.6421
24 33.2 7.40152 1522 829115 14041 2.6483 7.40152 1522 829119 1342 2.2496
25 35.9 7.39697 −3027 621138 18820 3.4106 7.39697 −3030 621140 1843 3.2997
29 27.6 7.39708 −2920 933174 12710 2.1654 7.39708 −2922 933179 1196 2.1817

Moreover, the correlation ratio of signal acquisition reflects the relationship of the satellite signal
and local PRN replica, acting as the acquisition threshold in this paper. From the bold rows listed in
Table 2, the correlation magnitude of Satellite PRN12 was a little smaller than that of Satellite PRN6
when acquired with the resampling strategy. Nevertheless, the correlation ratio of Satellite PRN12
was still the biggest among all acquired satellites. The acquisition results of the resampling strategy
kept consistent with that of the conventional acquisition algorithm in Table 2. It proves that setting the
correlation ratio as acquisition threshold can enhance the acquisition performance, especially for cases:
(1) correlation magnitudes are too small in the search space due to noise in the received broadband
signal; (2) there exists more than one value which is higher than the conventional correlation threshold
(always a constant of correlation magnitude).

Satellites acquired by the resampling strategy and the conventional acquisition algorithm were
completely the same, as illustrated in Figure 8. This has proved the effectiveness of the proposed
resampling strategy for signal acquisition. Furthermore, for acquired (cyan and bright green bars) and
not acquired (dark blue and blackish green bars) satellites, the correlation magnitude of the resampling
strategy (the left Y axis) was about 10% that of the conventional one (the right Y axis), corresponding
to results in Table 2.
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Doppler frequency shift, code phase offset, and correlation ratio of acquired satellites in Table 2 can
be demonstrated clearly in the search space of frequency and code phase, for instance, the acquisition
result of Satellite PRN12 shown in Figure 9. The correlation peak occurred at the point of frequency
f̂ = 7.39853 MHz and code phase θ̂ = 193394 (samples). The highest peak was much bigger (Rc > 7)
than other correlation magnitudes in the search space. Therefore, Satellite PRN 12 was acquired
successfully, the carrier frequency is 7.39853 MHz and code phase is 0.365π (1866 chips). The acquisition
results were adopted as estimated parameters for the subsequent signal tracking.
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Aimed at investigating the sensitivity of the resampling strategy under weak signal conditions,
extensive Monte Carlo simulations were performed by employing a high-confidence software IF
signal simulator [38]. The carrier-to-noise ratio was set to vary from 25 to 45 dB-Hz with a step of
1 dB-Hz and circular correlation time of signal acquisition was set as Lx = 20 ms. The experiments of
signal acquisition were repeated for 200 times for each carrier-to-noise ratio. Detection probabilities
are evaluated and compared for signal acquisition without/with the resampling strategy. From the
experimental results of sensitivity illustrated in Figure 10, it can be found that the signal could be
acquired successfully with the resampling strategy when the carrier-to-noise ratio was bigger than
32 dB-Hz, and detection probability had reached 100% with the carrier-to-noise ratio of 38 dB-Hz.
Compared to the detection probability without the resampling strategy (the blue plot), the sensitivity
of the resampling strategy had a loss of nearly 1 dB. It can be attributed to the bandpass sampling filter
that filters out some powers of the side lobe signals from the received broadband signal. However,
the significant computational cost reduction obtained can make up for the sensitivity loss, as longer
circular correlation time and non-coherent integration can be adopted to increase the sensitivity.

In order to validate the effects of the proposed strategy on computation and time cost of signal
acquisition, comparative experiments without/with the resampling strategy were conducted on all
the datasets. Experimental results are presented in Table 3 and Figure 11. Meanwhile, the circular
correlation time was fixed as Lx = 20 ms to eliminate the effects of variable circular correlation time.
With respect to the comparison in Table 3, the resampling frequency was reduced to about 10% of
the conventional sampling frequency by applying the resampling strategy to Dataset 1, 2, and 3.
In Figure 11, computations (multiplication and summation operations) of all the datasets are linearly
related to the amount of frequency bins and the data size of the sampled signal. The amount of
frequency bins was set as a constant, based on the width of frequency search range and the bandwidth
of each frequency bin. And the data size of the sampled signal was exactly determined by the
resampling frequency. Resulting from the reduced sampling frequency, the computation cost of signal
acquisition with the resampling strategy was greatly decreased, nearly 90–94% of that without the



Sensors 2018, 18, 678 16 of 21

proposed strategy, as shown in Table 3 and Figure 11. Besides, the received broadband signal in
Dataset 4 was an 8-bit complex signal with negative intermediate frequency. The bandpass filter of the
proposed resampling strategy was removed since it was not applicable to extract the main lobe signal
of Dataset 4. Additionally, the conventional sampling frequency of Dataset 4 was low enough. Thus,
the resampling frequency reduced to about 59%, not as nearly 10% for other datasets. Correspondingly,
the computation reduction of 43% was gained by applying the resampling strategy to signal acquisition
of Dataset 4. Meanwhile, for all experimental datasets, the time cost of signal acquisition with the
resampling strategy reduced to about 7.7 ∼ 65% of that with the conventional acquisition algorithm,
accompanying with the reduced computation.Sensors 2018, 18, x FOR PEER REVIEW  16 of 21 
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Table 3. Sampling frequency, computation, and time cost of signal acquisition without/with the
resampling strategy for the received broadband signals of different experimental datasets.

DataSet No.
Acquisition without the Resampling Strategy Acquisition with the Resampling Strategy

Sampling
Frequency (MHz)

Computation
(OM, OA)

Time Cost
(s)

Sampling
Frequency (MHz)

Computation
(OM, OA)

Time Cost
(s)

1 53.00 (6.8 × 1011,
1.3 × 1012)

2486 5.97 (6.7 × 1010,
1.3 × 1011)

246.8

2 53.00 (6.8 × 1011,
1.3 × 1012)

2467 5.97 (6.7 × 1010,
1.3 × 1011)

244.9

3 79.25 (1.1 × 1012,
2.0 × 1012)

3455 6.13 (6.9 × 1010,
1.3 × 1011)

268.5

4 4.00 (4.4 × 1010,
8.2 × 1011)

109.5 2.36 (2.5 × 1010,
4.7 × 1011)

70.2

Experimental results in Table 3 and Figure 11 prove that the adoption of the resampling strategy
directly resulted in the significant reduction on the resampled signals, which were used for FFT,
correlation, and convolution operations. It makes the dominated contribution to the improved
performance of computation and time cost of signal acquisition. Moreover, it is concluded that
the resampling strategy can demonstrate better performance for the received broadband signal of
higher conventional sampling frequency.
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4.3. Performance of Variable Circular Correlation Time

Variable circular correlation times are adopted for the coarse signal acquisition of all the datasets
in the experiments to explore the relationship between circular correlation time and time cost of signal
acquisition, as well as acquisition effectiveness.

For all the datasets, the number of satellites acquired without/with the resampling strategy is
shown in Figure 12 when circular correlation time was varying from 10 ms to 20 ms. The experimental
results are exhibited as the comparative red and blue plots to illustrate the effects of the resampling
strategy. There are several cases, marked as green circles in Figure 12c,d, in which the number of
satellites acquired with the resampling strategy was fewer than that with the conventional acquisition
algorithm. However, there were still enough acquired satellites for navigation solution in these cases.
Except that, the majority of experimental results with the resampling strategy were the same with
that of the conventional one. This means that acquisition effectiveness of the resampling strategy can
primarily reach that of the conventional acquisition algorithm, which cost about 10 times computation
and time of the resampling strategy. Further, the number of satellites acquired without/with the
resampling strategy nearly remained unchanged when circular correlation time was increasing from
12 ms to 20 ms. This indicates that there is potential to shorten the circular correlation time so as
to reduce computation and time cost, without obvious loss of acquisition performance. Whereas,
too short circular correlation time reasonably leads to the incomplete acquisition of visible satellites,
as cyan circles in Figure 12a,c.
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Figure 12. Number of satellites acquired without/with the resampling strategy for variable circular
correlation time. The green circles indicate the difference of acquisition results without/with the
resampling strategy; the cyan circles indicate the incomplete acquisition results with too short circular
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The time cost performance of variable circular correlation time on all experimental datasets is
presented in Figure 13, when acquiring without/with the resampling strategy. Noticeably, when
circular correlation time was varying from 10 ms to 20 ms, the time cost of signal acquisition with the
resampling strategy (red bars) were much less than that of the conventional algorithm (blue bars),
nearly decreased by 60–90% for Datasets 1, 2, and 3, while 5–35% for Dataset 4. This is attributed to
the fact that the bandpass filter of the resampling strategy is not suitable for the signal with negative
intermediate frequency in Dataset 4. The experimental results in Figure 13 illustrate the capability of the
resampling strategy to decrease the time cost of signal acquisition. In addition, the blue and red plots
in Figure 13 reflected the changes of time cost when the circular correlation time was varying. The time
cost of signal acquisition without the resampling strategy seemed to increase plainly. Nevertheless,
by linearly fitting these values, the time cost exhibited an increase of 3.6%, 3.6%, 3.8%, and 4.7% per
millisecond for the 4 datasets, respectively, when the circular correlation time was varying from 10 ms
to 20 ms. By contrast, the time cost for the resampling strategy looked stable, despite the existence of
some outliers. Actually, the time cost of signal acquisition increased by 2.7%, 2.7%, 5.7%, and 2.7% per
millisecond for the 4 datasets, respectively.

These experimental results indicate that a relatively shorter circular correlation time is beneficial
for signal acquisition with both the proposed resampling strategy and the conventional acquisition
algorithm, leading to less computation and time cost without obvious loss of acquisition performance.
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5. Conclusions

The resampling strategy and variable circular correlation time are proposed to decrease
computational complexity and time consumption of signal acquisition for GNSS receivers.
The resampling strategy is inspired by the bandpass sampling theory and is applicable for broadband
multi-frequency signals of widely-used multimode multiband GNSS receivers. The realization of the
proposed resampling strategy is described in detail for combination with conventional acquisition
algorithms. Specific to the much longer code period of satellite signals, variable circular correlation
time is investigated to explore the potential of shortening the circular correlation time without obvious
loss of acquisition performance. Moreover, the signal of the pilot channel is utilized to acquire the
high-accuracy carrier frequency in the fine acquisition process. The acquisition threshold is set as
the ratio of the highest and second highest correlation results in the search space of carrier frequency
and code phase. Besides, the sensitivity of the resampling strategy to weak signals is investigated
by extensive Monte Carlo simulations, and the computational complexity of signal acquisition is
formulated by amounts of multiplication and summation operations to evaluate the efficiency of the
signal acquisition algorithms.

Four sets of real GPS L2C signals are applied by comparative experiments to verify the
effectiveness and efficiency of the proposed resampling strategy and variable circular correlation
time. It has been proven that the resampling strategy has effectively decreased the computation and
time cost of signal acquisition by nearly 90–94% without obvious loss of acquisition performance,
although the sensitivity of the resampling strategy had a loss of nearly 1 dB and detection probability
reached 100% when carrier-to-noise ratio was up to 38 dB-Hz. The greater decrease is achieved for
the received broadband signal with the higher intermediate frequency and conventional sampling
frequency. Besides, with circular correlation time varying from 10 ms to 20 ms, the time cost of signal
acquisition increased by about 2.7–5.6% per millisecond, and the number of acquired satellites has no
obvious changes for the cases with the resampling strategy and the conventional acquisition algorithm.
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