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Abstract: A porous silicon microcavity (PSiMC) with resonant peak wavelength of 635 nm was
fabricated by electrochemical etching. Metal nanoparticles (NPs)/PSiMC enhanced fluorescence
substrates were prepared by the electrostatic adherence of Au NPs that were distributed in
PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization
and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA).
Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum
detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR) of the MC
substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence
enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive
in biosensor.
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1. Introduction

PSi is a biocompatible photonic material, which has potential applications in the field of
biosensing [1,2]. In particular, functionalized PSi can be fabricated into multiple sensors. Rapid
desorption of nicotine from respiratory gas has been achieved by analytical ionization on the porous
silicon surface [3]. Metal (Ni and Bi) coatings on the PSi nanostructure surface were prepared for high
capacity and the stable performance anode material lithium ion battery [4]. As previously described,
PSi has been used for the preparation of a variety of sensors, especially in the field of optical sensor.

Currently, labeled-free and labeled biosensors are summarized as the two common types of PSi
optical biosensors. The variation of the effective refractive index of the PSi film is caused by the
entrance of biomolecules attached to the PSi, which is directly translated to the movement of the
spectrum [5–7] in labeled-free biosensor, and the change of luminescence center [8,9]. Labeled biological
detection has the characteristics of high sensitivity, good selectivity, less biomass, and fast response
time. Two main approaches utilizing fluorophore-labeled for the amplification of the optical signal in
biosensor applications were developed. In refractive index-enhanced reflectance spectrum movement,
the binding of fluorophore-labeled molecules to biomolecular recognition elements attached to a PSi
sensor surface is probed by the movement of reflectance spectrum. This method was implemented by
using the high refractive index of quantum dots [10]. In SPR-enhanced fluorescence, the enhanced
field of metal NPs increases the fluorescence intensity of the fluorophore-labeled molecules [11–13].

Metal NPs combined with photonic crystal technology can further enhance the optical signal
and improve sensitivity. Fluorescence enhancement of the Au NPs in TiO2 inverse opal photonic
crystal has achieved SARS and HIV virus detection using label-free DNA, the signal intensity and the
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detection sensitivity is improved by one order of magnitude [14]. Park et al. [15] reported the formation
of photonic crystals from the resin and further enhanced the fluorescence by embedding Ag NPs.
In order to further explore the new method of high sensitivity detection of the biology based on the
PSi photonic devices, the combination of the unique photon transmission control capability (band-gap
of Bragg reflector, defect mode of MC etc.) of the PSi photonic crystal device noble metal NPs is
dedicated to develop a biosensor with better performance based on fluorescence detection. In recent
years, some new advances in the fluorescence enhancement analysis of the probe molecules on the PSi
Bragg mirror obtained by our group are summarized. When the fluorescence emission peak of the
probe molecules falls into the high reflection band of PSi Bragg reflector, the fluorescence intensity
of the probe can be increased [16]; DNA has been specifically selected by fluorescence resonance
energy transfer(FRET) from quantum dots and Au NPs on PSi Bragg reflector substrate [17]. However,
few studies are concerned with the PSi photonic crystal fluorescence enhancement for biological
detection [18–20]. Especially, the combination of metal NPs and the PSi photonic crystal is used to
further improve the performance of biosensors based on fluorescence detection technology. Therefore,
the PSi with biological characteristics, large surface area characteristics, and easy preparation of all
kinds of photonic devices could be combined with SPR to futher enhance the sensitivity of biosensors
for detecting fluorescence changes.

This paper mainly studies (1) the impact of Au NPs adsorbed on PSiMC and the Bragg reflector
on the fluorescence enhancement, (2) the specificity identification of DNA on the Au NPs/PSiMC
device sensor, and (3) the linear correlation between fluorescence intensity and the concentrations
of RRA-DNA. The flow chart of the PSiMC device substrate for the detection of DNA is shown in
Figure 1. Firstly, the PSiMC were functionalized to adsorb Au NPs; secondly, the thiol modified DNA
was connected with the Au NPs as a target DNA; then, complementary DNA modified with RRA was
hybridized with target DNA.
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Figure 1. The flow-process diagram of DNA detection on metal NPs /PSiMC device. (I) Au NPs
adsorbed on functionalized PSiMC; (II) the immobilization of target DNA on Au NPs /PSiMC device
substrate; (III) the hybridization of probe RRA-DNA sequences with target DNA.

2. Experimental Details

2.1. Fabrication of PSiMC

PSi was prepared by standard anodic etching technique [21]. The material used is p-type
monocrystal silicon <100> (resistivity 0.03–0.06 Ω·cm). The etching solution for electrochemical etching
of PSi is 10% hydrofluoric acid alcohol solution. Prior to preparation of the samples, the parasitic layer
of highly doped p-type silicon wafer was removed by short electrochemical etching and dissolution in
NaOH. It has been proved that the existence of this parasitic film affects the optical properties of the
photonic structure, reduces the pore size of the surface [22], and prevents the molecules from entering
the porous silicon structure. The preparation parameters of PSiMC are shown in Table 1. As shown
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in Figure 2, the distribution of MC layers: a cavity layer is introduced into the two symmetrically
distributed Bragg reflectors; the corrosion current density of cavity layer is 110 mA/cm2, the A layer
is a high porosity layer with a current density of 110 mA/cm2, the B layer is the low porosity layer,
and the current density is 60 mA/cm2. The arrangement of the PSiMC structure is (AB)6A4(BA)6,
and the resonance cavity wavelength is 635 nm. Bragg reflectors with 14 cycles, which are arranged as
(AB)14, are predicted to have the same thickness of MC. The fresh samples were thoroughly cleaned
with deionized water and dried under N2 airsteam.

Table 1. Experimental parameters of PSiMC.

Sample Current Density Corrosion Sequence

MC
Layer A: 110 mA/cm2

(AB)6AAAA(BA)6Layer B: 60 mA/cm2

Cavity layer: 110 mA/cm2

Bragg reflector Layer A: 110 mA/cm2
(AB)14Layer B: 60 mA/cm2
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Figure 2. The cross-section image of PSiMC.

More significantly, however, the 3D AFM image corresponding to the porous silicon layer, was
illustrated in Figure 3. In fact, AFM images have shown, before gold deposition, almost irregular and
randomly dis-tributed nano-crystalline silicon pillars (pointed silicon tip). Consequently, the gold
deposit will follow this morphology and it will overlay each surface at a certain distance.
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2.2. The Functionalization of PSi

The fresh PSi devices are easy to oxidize, which affects the stability of the fabricated sensors.
The fresh PSi devices are fully oxidized in hydrogen peroxide (30%) for 24 h at room temperature.
After oxidation, the PSi device surface will form relatively stable silicon oxide, and then, oxidized PSi
samples are aminated for 1h in 5% (3-aminopropyl) triethoxysilane (APTES), cleaned with deionized
water and dried under N2 airsteam. The surface of the PSi after aminated treatment is positively
charged and can electrostatically adsorb Au NPs prepared by citrate reduction [23,24]. The interaction
was stable and irreversible.

2.3. The Fabrication of Gold Nanoparticles

Au NPs were prepared by hydrothermal method given in [25]. Chlorauric acid solution (50 mL,
1.0 mM) was heated to 100 °C by heat collecting magnetic heating stirrer. Under boiling, sodium citrate
solution was quickly added (8 mL, 1 wt %), with continuous heating while stirring. Until the color
of the solution changed from yellow to red wine, heating did not commence, and cooling to room
temperature was preserved. After being soaked in colloidal Au solution for 5 h, the aminated PSi
samples were removed and rinsed with deionized water.

The absorption spectra of the Au NPs are presented in Figure 4a, and the strongest absorption peak
is located at 518 nm. Regarding the morphology of functionalized PSi deposited with Au NPs as shown
in Figure 4b, Au NPs evenly distributed on the surface and the pores of PSi can be clearly observed,
and the diameter of Au NPs is 7 ± 2 nm. A zoom-in SEM characterization figure of porous silicon
microcavity (PSiMC) and the hybrid nanostructure are provided in Figure S1 (supporting information).
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Au NPs.

2.4. DNA Fragment linked to Metal NPs

DNA fragments are purchased from the INVITROGEN TRADING Co., Ltd. (Shanghai, China).
The sequence of DNA fragments is shown in Table 2; sample 1 and sample 2 are applicable for Au
NPs/PSiMC metal enhancement substrate; sample 3 is applied to bare PSiMC substrate without
Au NPs.
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Table 2. The sequence of DNA fragment.

Sample Number DNA Fragment

Sample 1 Target DNA fragment: THS-5′-GGCCTATCAGCTTG-3′

Probe1 DNA fragment: RRA-5′-CAAGCTGATAGGCC-3′

Sample 2 Target DNA fragment: THS-5′-GGCCTATCAGCTTG-3′

Probe2 DNA fragment: RRA-5′-GGCCTATCAGCTTG-3′

Sample 3 Target DNA fragment: NH2-5′-GGCCTATCAGCTTG-3′

Probe3 DNA fragment: RRA-5′-CAAGCTGATAGGCC-3′

TE buffer is made up of Tris(hydroxymethyl)aminomethane (Tris) and ethylenediaminetetraacetic
acid (EDTA), which is mainly used to dissolve DNA and can store DNA steadily. Before being
diluted with TE buffer (pH = 8.0), the DNA fragments were centrifuged for 30 s and aggregated to
the bottom of the tube. In aseptic operation, DNA fragments were diluted to 10 µM, stored at −20 ◦C,
and protected from light. The DNA primer modified with 50 µL Thiol-C6 S-S (THS) was activated
with Tris (2-carboxyethyl) phosphine hydrochloride (TCEP, 1 mM) to cut off the disulfide bond for
1 h at room temperature. The concentration of TCEP is 1 mM. 50 µL THS-DNA (10 µM) was dripped
into PSiMC adsorbed with Au NPs, incubated for 10 h in a 37 ◦C incubator and removed from the
unconnected DNA with TE buffer. Then, the samples were blocked with EA (3 M HEPES buffer,
pH = 9.0) 37 ◦C for 1h. THS-DNA was immobilized on Au NPs as a target DNA, and the final aim
was to achieve hybridization with the captured probe RRA-DNA. The UV-Vis absorption spectrum of
RRA-DNA is shown in Figure 5. The peak at 260 nm is the absorption peak of DNA, and the absorption
peak of RRA is located at 572 nm. 40 µL Rhodamine Red o-X (RRA)-modified DNA fragments with a
concentration of 10 µM–10−4 µM were dripped on PSiMC linked with target DNA, and incubated at
37 ◦C for 10 h. Then, the sensors were cleaned with TE buffer and dried.
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2.5. Measurements

The measurement of fluorescence spectrum employed the UV-Vis fluorescence spectrophotometer
(Hitachi F-4600, Tokyo, Japan) with a slit width of 5 nm. The excitation power was 700 mW, and the
response time was 0.004 s. The data were collected for five different positions from each sample,
and averaged.

The reflectance spectra were collected using U-4100 (Hitachi, Tokyo, Japan). The incident angle is 5◦.
Measurement of surface topography was achieved by FESEM (ZEISS SUPRA55 VP, Oberkochen,

Germany).
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3. Results and Discussion

The excitation and emission fluorescence spectra of RRA-DNA fragment are described in Figure 6.
The main excitation peaks are 360 nm, 530 nm and 572 nm, respectively. The emission wavelength
is 597 nm, which is close to the fluorescence excitation wavelength (572 nm) of RRA-DNA; when
measured, it is not conducive to obtaining the complete emission fluorescence spectra. The ultraviolet
light of 360 nm easily causes damage to biological molecules, so the excitation wavelength of 530 nm is
adopted in the experiment.
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The changes in the reflectance spectra of the PSiMC and PSi Bragg reflector substrate prepared
for biosensor are presented in Figure 7. In the process of sensor preparation, the resonant peak and
band-gap center of the two devices are shifting with every process. Finally, the resonant peak and
band-gap center after the detection of RRA-DNA are expected to coincide with the fluorescence
emission peak of RRA-DNA detected on the sensors, through the reasonable choice of the wavelength
for the resonant peak and band-gap center of the two devices is 635 nm. The whole process of
experimentation involved the following: the fabrication of fresh PSi, oxidation, alkylation, adsorption
of Au NPs, linked target THS-DNA, and detection probe RRA-DNA. Blue shift of the reflection
spectrum reached 100 nm from the complete oxidation process; red shift of the reflection spectrum by
alkylating is 30 nm; deposition of Au NPs gave rise to the blue shift of reflection spectrum; the resonant
cavity wavelength of the PSiMC and the central wavelength of the band-gap of PSi Bragg reflector
are both at 530 nm; both THS-DNA connection and RAA-DNA detection cause the red shift of the
reflection spectra. After the connection of RAA-DNA to the substrates, the resonance peak wavelength
and the center band-gap wavelength shifted to 585 nm.

Two kinds of PSiMC sensors were fabricated. One is a fluorescence enhancement sensor based on
the surface of Au NPs/PSi substrate; THS-DNA fragment of sample 1 in Table 2 is used as a target
DNA. The other is a bare PSi substrate functionalized by glutaraldehyde without Au NPs, and target
DNA is the NH2-DNA fragment in Table 2. The two sets of target DNA have the same base sequence,
and the probe RRA-DNA fragment is complementary to the target DNA. The average intensity of
the fluorescence emission peak on the two kinds of sensors substrate (five samples for every kind) is
presented in Figure 8, enhanced fluorescence signals are observed on Au NPs/PSi substrates. To be
far from the differences in fluorescence signal caused by the amount of probe DNA (complementary
DNA) attached to each sensor, the excessive target DNA (50 µL) is required to attach to each sensor
substrate, while 40 µL of fluorescently labeled complementary DNA was attached to each sensor.
In this case, even if the target DNA attached to each substrate is different, ultimately, it does not affect
the amount of specific binding of the probe DNA, considering that the enhancement of fluorescence
signal is most likely due to the difference in the amount of probe DNA that they bind to each type
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of sensor. The movement of the reflection spectra from the probe DNA binds to each type of sensor
exhibited in Figure 9. An almost identical movement occurred after complementary DNA detected on
S1 (the first type sensor substrate) and S2 (the second type sensor substrate), hence two types of sensor
substrates bind the same amount of probe DNA. Consequently, fluorescence enhancement for the two
type sensors is independent of the different amount of target DNA. Generally, FRET occurs between
Au NPs donor and the fluorescent receptor. The overlapping reduction between the emission spectrum
of RRA and the absorption spectrum of Au NPs (as shown in inset map of Figure 8) is expected to
keep away from the occurrence of FRET. PSi field is helpful to effectively regulate the distribution of
Au NPs, which can reduce fluorescence quenching due to the tiny distance. The pore size of porous
silicon is in 20–25 nm as presented in Figure S1 (supporting information), and the pores and silicon
walls of PSi can help to regulate the distribution of Au NPs, so that the distance between Au NPs is
not too dense. As shown in Figure S1, the distance between the Au NPs is 10–20 nm. In the system
we fabricated, the distance between the Au NPs and the fluorophore immobilized on Au NPs was
less than 5 nm (for 14 base pairs), resulting in fluorescence quenching [26]. However, the diameter
of our Au NPs is 7 ± 2 nm, the distance between the Au NP surface and the fluorophore is about
4.5 nm, and the detected fluorescent enhancement in the presence of Au NPs is a factor of ~2. This
moderate fluorescent enhancement value observed in our experiment is in line with the theoretical and
experimental results obtained by Kang et al. [27]. They reported that when the diameter of Au NPs is
8 nm, and the distances between dye molecules and Au NPs is 4.5 nm, thus, the relative maximum
fluorescent enhancement obtained is about 2. Then, it is plausible that the observed moderate
plasmonic fluorescent enhancement effect can be due to single Au NP in our sensor. In the competition
between fluorescence quenching and fluorescence enhancement, fluorescence enhancement is more
advantageous. More significantly, however, the fluorophores connected to Au NPs deposited on PSi
through DNA fragments act as an optical antenna [28]. According to the description in the article,
the fluorescence enhancement starts to drop for very short distances, indicative for the onset of
quenching. However, for fluorophores placed at such short distances from the surface of the Au NPs
(3~5 nm), there still exists fluorescence enhancement. Fluorescence enhancement is more competitive
than fluorescence quenching, which is a good illustration of fluorescence enhancement based on the
fabricated Au NPs/PSi substrates.
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Figure 9. The movement of the reflection spectra from the probe DNA binds to the sensor
substrates. The first type sensor substrate (S1) functional with glutaraldehyde, is easy to connect
with amino-modified DNA fragments; the second type sensor substrate (S2) is readily connected
sulfhydryl -modified DNA by adsorbed Au NPs.

Au NPs were deposited on PSiMC for DNA detection; the fluorescence spectra are
shown in Figure 10. THS-DNA fragment (THS-5’-GGCCTATCAGCTTG-3’) is arranged for the
target DNA; two kinds probe DNA for PSiMC structure device have been chosen, which are
complementary RRA-DNA (RRA-5’-CAAGCTGATAGGCC-3’) and non-complementary RRA-DNA
(RRA-5’-GGCCTATCAGCTTG-3’). The target DNA is hybridized with the complementary RRA-DNA,
and the DNA is detected by the fluorescence signal of RRA. Strong fluorescence signals can be
observed from Figure 10. The non-complementary DNA cannot specifically be hybridized with
target DNA, and fluorescent signals cannot be observed on the PSi sensor substrate. The enhanced
fluorescence signal from Au NPs/PSiMC substrate is stronger than that obtained on Au NPs/PSi
Bragg reflector. The fluorescence molecules are bound in the active layer of the PSiMC, which makes
the interaction between the molecules and the optical field strong, and enhances the fluorescence
emission of RRA. A similar effect has been reported, that is, the dye molecules (Rhodamine) in the
PSiMC structure are expected to amplify the emission spectrum by optical excitation limited [29].
In addition, glucose oxidase (GOX) and fluorescein isothiocyanate (FITC) labeled streptavidin were
confined in PSiMC, and the enhancement of fluorescence was demonstrated by comparing the surface
fluorescence intensity [30]. In order to exclude the contingency of the experiment, five samples
were prepared for each type with the same condition, five different points were collected for every
sample, and the average value was taken. Although the fluorescence emission wavelength range in
the high reflection band-gap of Bragg reflector structure (585 nm, Figure 7b), after the RRA-DNA is



Sensors 2018, 18, 661 9 of 12

connected to the sensor substrate, can improve the detection of the fluorescent signal, the fluorescence
enhancement on Au NPs/PSi substrate depends not only on the PSi photonic crystal structure, but
also the plasma resonance with Au NPs. RRA-DNA is connected to the PSiMC, and the wavelength of
the MC resonance peak is located at 585 nm. This occurred because of the fluorescence peaks overlap;
therefore, it cannot achieve high fluorescence enhancement from high reflection, and the phenomenon
of fluorescence enhancement can be interpreted as the plasma resonance produced by the combination
of MC structure and Au NPs. Both the wavelengths of resonant cavity and band-gap are at 530 nm
(fluorescence excitation wavelength) for PSi adsorbed with Au NPs as shown in Figure 7. Therefore,
a strong SPR can be produced on the MC substrate. The advantage of fluorescence enhancement
produced by SPR is more prominent than that caused by the reflection band-gap.Sensors 2018, 18, x FOR PEER REVIEW  9 of 12 
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Figure 10. The fluorescence spectra of RRA-DNA detected on PSi biosensor. The concentration of
RRA-DNA is 1 µM. There are two spectra from two different samples for one kind of sensor. One of
the spectra is the fluorescence spectrum for the detection of complementary probe DNA (the solid
square), and the other one is the spectrum for the detection of non complementary probe DNA (the
solid regular triangle).

Unlike that reported in this literature [29], spectral narrowing on PSiMC substrate for the
fluorescence detection of RRA in this paper is not observed compared with the Bragg substrate.
The reason for this phenomenon is that there are many layers of Bragg reflector in PSiMC, and the
pore size of the PSiMC is not enough to allow the RRA-DNA molecules to enter into the deep layer of
Bragg until entering the cavity layer.

THS-DNA (10 µM, 50 µL), which was connected with Au NPs/PSiMC substrate, causes
hybridization under different concentrations (10 µM-10−4 µM, 40 µL) of complementary RRA-DNA.
The fluorescence spectra are shown in Figure 11. There is a red shift for the emission peak of the
fluorescence spectra with increasing DNA concentration. The reason for this phenomenon is that more
DNA will attach to a gold nanoparticle with increasing DNA concentration, making the particle size
increase and a red shift for the emission peak of the fluorescence spectra. According to the linear
fitting graph (Figure 12), it shows a good linear correlation between the fluorescence intensity and
the concentration, the minimum detectable concentration can reach 10−5 µM. Let us note that the
sensitivity of the presented simple preparation and low cost assay is superior to that reported for
complex biochip [31], enabling the detection of IgG molecules at the concention of 11 pM and Au
nanograting [32] for the detection of DNA (100 pM).
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Although many studies based on SPR fluorescence enhancement for DNA detection have
been carried out in the past few years [32–34], there remains a huge challenge of detecting short
sequence DNA, because the short distance between Au NPs and fluorophore can hardly be useful for
fluorescence enhancement. The demonstration of Au NPs-enhanced fluorescence for the detection
of short sequence DNA in our sensing configuration will play an important role in designing future
novel sensing platforms.

4. Conclusions

The fluorescence enhancement of probe RRA-DNA on the PSiMC substrate is better than that
of the PSi Bragg reflector. The fluorescence intensity of RRA-DNA detected on the PSiMC substrate
is twice as much as that on the Bragg reflector substrate. The results show that the fluorescence
enhancement caused by plasmon resonance of Au NPs/PSiMC and Au NPs has advantages over that
caused by the high reflectivity of the Bragg reflector. This fluorescence-enhanced substrate achieves
highly sensitive DNA detection with a detection threshold of 10 pM. The enhancement of fluorescence
emission on MC demonstrates that these structures are excellent materials to evolve into easy-to-use
biosensors, which utilize the luminescence response of the molecules to be detected.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1, Figure S1:
(a) The zoom-in SEM figures of porous silicon microcavity (PSiMC), and (b) the hybrid nanostructure of gold
nanoparticles (Au NPs) deposited on porous silicon.
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