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Abstract: Industrial wireless applications often share the communication channel with other wireless
technologies and communication protocols. This coexistence produces interferences and transmission
errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these
mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of
data packets and the measures to handle them produce an undesirable drop in the QoS and hinder
the overall robustness and energy efficiency of the network. Interference avoidance mechanisms,
such as frequency hopping techniques, reduce the need for retransmissions due to interferences but
they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other
hand, the total absence of interference avoidance mechanisms introduces a security risk because
the communication channel may be intentionally attacked and interfered with to hinder or totally
block it. In this paper we propose a method for supporting the design of communication solutions
under dynamic channel interference conditions and we implement dynamic management policies
for frequency hopping technique and channel selection at runtime. The method considers several
standard frequency hopping techniques and quality metrics, and the quality and status of the
available frequency channels to propose the best combined solution to minimize the side effects of
interferences. A simulation tool has been developed and used in this work to validate the method.

Keywords: wireless sensor networks; robustness; coexistence mechanisms; interference avoidance;
security; frequency hopping; channel characterization

1. Introduction

Wireless Sensor Networks (WSN) are one of the industrial applications that benefit the most from
the license-free nature of the Industrial, Scientific and Medical (ISM) band. Nevertheless, the ISM
band has to be shared with other devices and systems using standard communication protocols
such as Wireless Local Area Network (WLAN) or Bluetooth [1]. This situation leads to interferences
in the communication channel and, as a result, produces (pseudo-) random transmission errors.
Re-transmitting interfered packets might eventually succeed, but at the expense of increased latency
and energy consumption of the devices.

Lost packets and increased latency directly affect the QoS of the network, first by the direct loss of
arbitrary packets and second by the side effects of the missed packets such as breaking a multi message
or state-full process that has to be started from the beginning (i.e., pairing, network establishment,
discovery, etc.) [2].
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Additionally, not all interferences are unintentionally produced by coexisting networks. External
attackers may try to block the communication channel in order to perform a Denial of Service (DoS) [3]
attack. DoS security attacks are specifically designed for interfering with the communication link,
either hindering or totally blocking the communication channel. Thus, communication protocols that
do not appropriately manage the communication channel may not be able to provide a satisfactory
security level.

All in all, interference avoidance mechanisms that reduce the need for retransmissions are highly
desired in WSN domains in order to minimize energy consumption, reduce unnecessary degradation
of QoS and reliability as well as to raise security.

In this paper we present a method for supporting the design of communication solutions for
saturated and dynamic environments from the point of view of channel interference. This method
characterizes frequency hopping techniques based on the quality of the available frequency channels.
Frequency hopping techniques relay on the use of multiple frequency channels over time as opposed
to statically allocating and using a single frequency channel. The main idea is that, in case of channel
interference, frequency hopping helps in minimizing the side effects by avoiding (at least temporally)
the interfered frequency. Figure 1 shows a frequency hopping schedule example in which multiple
frequency channels are selected at different time instants.
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Figure 1. Example of a Frequency Hopping schedule.

The core of the method is based on several standard frequency hopping techniques as well
as quality metrics for the characterization of available and valid frequency channels. The proposed
method homogenizes the notation used to describe the different techniques and normalizes the different
quality metrics based on the statistical properties of the RSSI values. Thanks to the homogenization
and normalization, the different techniques can be fairly compared based on quality and performance
indicators. Additionally, the method is flexible enough to accommodate new frequency hopping
techniques, quality metrics and performance indicator approaches. Thus, it is scalable and extensible
with new additions.

All the techniques and metrics are combined into a two-dimensional matrix. Each technique and
metric pair represents a possible solution which provides a subset of selected or preferred channels
and the sequence in which the channels are used. For some techniques, this sequence is purely random
while for others the sequence will change based on specific parameters. For instance, in techniques
based on probabilistic channel usage, there are channels within the subset which are used more often
because they are considered to be of “better” quality. On the other hand, and regarding quality metrics,
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some metrics are better suited for characterizing static interferences while others are better used for
dynamic interferences that hop between channels.

All the solutions from the matrix are compared to determine the best one: the solution that results
in the fewer number of interferences for the given interference range, either produced by coexisting
networks or by external factors (such as malicious attacks).

The proposed method can be used in two complementary scenarios: (a) as a deployment planning
supporting tool in order to decide on the best frequency channels, channel quality metrics and
frequency hopping techniques and (b) as a runtime management component for the dynamic allocation
of communication frequency channel. In the former case, a network topology can be planned based
on the frequency channel subset, channel hop sequence and the number of hops of each node to the
gateway. In the latter case, the management component can be implemented into a device which will
monitor the quality of the environment using the selected quality metric and dynamically adapt to the
environment conditions by switching to the most suitable frequency hopping technique. Additionally,
the method can also take into account the characteristics of constrained systems (either computationally
or energetically) in order to select the most suitable solution.

To the best knowledge of the authors, this is the first attempt to define a method that homogenizes,
combines and compares several frequency-hopping techniques for network deployment and real-time
adaptation. As will be shown in Section 3, current approaches compare either different frequency
hopping techniques or characterization metrics, but no common comparison is made to specify
the best solution taking into account frequency channel quality behaviour and its evolution over
time. No technique found in the SoTA adapts the frequency hopping technique dynamically to the
environment conditions. Several frequency hopping techniques are analysed, but their use is not
modified at run time (nor the quality metric) if the interferences pattern (and frequency channel quality)
changes in the medium-long term.

This paper only considers the theoretic validation of the proposed method in simulated scenarios.
The method has been implemented as a Matlab tool, which has been used in this work for testing and
validation purposes. The validation considers realistic network coexistence and interference scenarios
and applies the method to compute the best solution for the given scenario, evaluating frequency
channel interference in terms of Packet Error Rate (PER). Thus, the Matlab tool is used as a deployment
planning supporting tool and its efficiency is evaluated.

The paper is structured as follows: Section 2 presents a summary of the current interference
avoidance mechanisms used in standard communication protocols, followed by Section 3 which
includes the related work for this paper. Section 4 summarizes the metrics used by the method to
characterize and determine the quality of the available frequency channels. Section 5 introduces the
different frequency hopping techniques considered by the method. Section 6 describes the core of the
method and Section 7 presents the evaluation. Finally, Section 8 summarizes and concludes the paper
pointing out future steps.

2. Interference Avoidance in Standard Protocols

Within the 2.4 GHz ISM band, different standards have been developed to enable interoperability
between devices. Each of these standards uses a different mechanism for interference avoidance.
The well-known and widely used Wireless Local Area Network (WLAN), for instance, adopts the
IEEE 802.11 standard [4] which makes use of Direct Sequence Spread Spectrum (DSSS) [5]. In DSSS
the message signal is modulated with a bit sequence known as Pseudo Noise (PN) that consists of
pulses of a much shorter duration (larger bandwidth) than the pulse duration of the message signal.
The same PN code is used by the receiver to reconstruct the message signal. The modulation of the
signal makes the resulting signal noisier and, thus, more immune to unintentional or intentional
interference. WLAN divides the 2.4 GHz ISM band into 11 channels with 22 MHz bandwidth each.
Thus, only three channels can be used at the same time avoiding overlapping of the frequency bands.
DSSS is not suitable to low-power systems due to the high data rates involved.
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The IEEE 802.15 standard [6] is the base for Wireless Personal Area Networks (WPAN). Here,
the range is smaller than for the WLAN, but the energy consumption is considerably reduced. The first
sub-standard IEEE 802.15.1 is known as Bluetooth [7], which uses Frequency Hopping Spread Spectrum
(FHSS) [5]. In FHSS the message signal is transmitted by rapidly switching among many frequency
channels, using a pseudorandom sequence known to both transmitter and receiver. FHSS divides the
available frequency band into sub-bands or channels, and hops among them in a predetermined order.
Bluetooth divides the 2.4 GHz ISM band into 79 channels with 1MHz bandwidth each, and hops from
channel to channel up to 1600 times per second.

Even if Bluetooth is more energetically efficient than WLAN, it is not suitable for some applications
where autonomous operation of battery-powered devices is desirable. The sub-standard for Low-Rate
Wireless Personal Area Networks (LR-WPAN) is IEEE 802.15.4 [8], which divides the spectrum into
16 non-overlapping channels (starting from channel 11 to channel 26) with a channel width of 3 MHz.

The manifold benefits of wireless technologies, specially the absence of cables, make Wireless
Sensor Networks (WSN) attractive for industrial applications as well. However, the adoption of
wireless technologies in industry poses extra challenges, mainly because factory environments are
typically harsh in terms of interferences, noise and physical obstacles. Several industrial organizations,
such as ZigBee [9], HART [10] and ISA [11] have been promoting the use the IEEE 802.15.4 standard to
introduce wireless technologies in industrial applications. While ZigBee only utilizes DSSS provided
by the IEEE 802.15.4 physical layer, WirelessHART [10] and ISA100 [12] adopt channel hopping and
channel blacklisting to improve the data transmission reliability [13]. In ZigBee, all the transmissions
stay on the same channel unless the entire network decides to hop to another channel.

WirelessHART uses only 15 of the 16 channels defined by the IEEE 802.15.4: channels 11 to 25.
Channel 26 is not included as the corresponding frequency is not allowed in some countries [14].
Communication among network devices is arbitrated using Time Division Multiple Access (TDMA) [15],
which allows for the scheduling of link activity. To enhance reliability, TDMA is combined with channel
hopping mechanisms. WirelessHART employs non-adaptive frequency hopping where each link in
the network switches randomly between the 15 available channels. Moreover, channels subject to
interference may be eliminated due to blacklisting, and so, the number of available channels may be
less than 15. Transmissions are synchronized in 10 ms timeslots and during each timeslot all available
channels can be used simultaneously by the various nodes in the network. This allows 15 packets to be
propagated through the network at the same time while minimizing the risk of collisions.

Like WirelessHART, ISA100 uses TDMA along with collision avoidance mechanisms, such as
Carrier Sense Multiple Access with Collision Avoidance (CSMA-CA) and Clear Channel Assessment
(CCA) [16], resulting in increased data transmission reliability. Before packets are transmitted,
the transmitter listens on the channel on which it intends to transmit in order to assess if the channel is
clear. If the channel is not clear, the transmitter backs off for a random amount of time, after which
it attempts to retransmit the packet. Devices communicate according to various channel hopping
techniques, with each subsequent transmission utilizing the next channel defined in the hopping
sequence. Different devices use different offsets in the hopping sequence, resulting in interleaved
hopping of devices operating in a wireless subnet. Every data packet needs to be acknowledged
by the receiving device, and unacknowledged packets are retransmitted on a different channel over
a different frequency. Hopping techniques include channel blacklisting and adaptive hopping. Channel
blacklisting is a centralized decision made by the system manager, while adaptive hopping is a localized
decision based on statistics of wireless parameters collected by each device. Adaptive hopping allows
wireless devices to adapt their hopping sequences based on the quality of communication with
specific neighbours.

3. Related Work

There is a significant amount of literature that contains studies of the performance and coexistence
of the different IEEE standards. The authors in [17], for instance, examine the reliability of a point to
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point communication with a real IEEE 802.15.4 hardware by measuring the Packet Error Rate (PER)
and the Received Signal Strength Indicator (RSSI), both in indoor and outdoor RF environments.
The obtained results are used to calibrate the error model in the ns-2 network simulator in order to
produce a more real simulation environment and evaluate the IEEE 802.15.4 network performance in
a more reliable way. Furthermore, the coexistence between IEEE 802.15.4 and IEEE 802.11 networks is
addressed, measuring the impact these two wireless technologies have on each other when operating
concurrently and in range. It is concluded that the IEEE 802.15.4 network operation has practically
no negative influence on a concurrent IEEE 802.11 communication, but if no care is taken about the
operational channels of the two technologies, the IEEE 802.11 network will have a negative effect on
the performance of the IEEE 802.15.4 network. From the performed measurements, there should be
at least 7 MHz offset between the operational frequencies for a satisfactory performance of the IEEE
802.15.4 network.

In [1], the coexistence between IEEE 802.11, IEEE 802.15.1 and IEEE 802.15.4 is examined through
mathematical analysis. For different combinations of affected and interfering networks, the PER
caused by cross-technology interference is calculated. This PER is calculated from the Signal to Noise
Ratio (SNR) at the affected wireless network receiver, and it is evaluated in terms of distance between
interfering and affected networks, packet interval and channel separation. When varying the interferer
distance from the receiver or the packet interval, the transmitter and interferer channels are chosen
as follows: IEEE 802.11 on channel 1 (2412 MHz), IEEE 802.15.1 on channel 3 (2410 MHz) and IEEE
802.15.4 on channel 12 (2410 MHz), thus constituting co-channel interference. When varying the
channel separation, the interferer channel separation from the transmitter is varied from −15 to
15 MHz, thus constituting adjacent channel interference. It is concluded that the IEEE 802.15.1 is more
affected by IEEE 802.15.4 interference than vice versa. On the other hand, the IEEE 802.15.1 results to
be more resistant than IEEE 802.15.4 against IEEE 802.11 interference.

Nevertheless, these studies do not deepen in interference avoidance mechanisms such as frequency
hopping. Some other work can be found in the literature related to models and simulators of frequency
hopping systems [18–20]. The authors in 18 modelled a frequency hopping wireless communication
system based on the Signal Processing Worksystem (SPW) developed by CoWare (acquired by Synosys
in 2010) [21]. The designed system is tested in terms of its Bit Error Rate (BER) performance under
broadband and partial-band noise. The interfering noise is generated and modelled as the sum of
a broadband Additive White Gaussian Noise (AWGN) and a multi-tone interference noise, where
the jammer spreads some interference signals on a number of discrete frequency points. The system
defines 32 frequency channels, and the frequency hopping pattern is generated according to a certain
pseudo-random algorithm.

In [19], a simulator is designed to simulate and evaluate a frequency hopping spread spectrum
communication systems using VisSim Comm software [22], which is mainly designed to simulate
and analyse communication systems. The presented simulator is capable of simulating a complete
system (transmitter, receiver and medium) operating under a noisy environment. The carrier
frequencies for the FHSS system are varied in a pseudorandom manner within a wideband channel.
The performance of the communication system is evaluated in terms of BER, and it is concluded
that the FHSS significantly reduces the probability of error of a system operating under narrow band
jamming conditions.

In [20], mathematical modelling is used to simulate and analyse the performance improvement
using frequency hopping spread spectrum with popular modulation techniques using Matlab-Simulink.
The baseband signal is combined with a randomly generated carrier frequency. The carrier frequency
is controlled by a Pseudorandom Noise (PN) sequence generator and the signal is transmitted over
AWGN. The received data is demodulated using the same PN code, and compared to the original
input data to calculate the BER.

Theses simulators deal only with frequency hopping systems with pseudorandom frequency
sequences, and do not consider adaptive frequency hopping techniques, where the selected
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frequency channels are adapted to the conditions and characteristics of the environment interferences.
The method presented here takes into consideration different hopping techniques and channel quality
metrics found in the literature. These hopping techniques and metrics are interlaced to analyse different
possible solutions and obtain the best subset of channels as well as a predetermined hopping sequence
for a given scenario where the network under study has to coexist with unwanted interfering networks.

4. Channel Characterization Metrics

This section describes the different channel characterization metrics taken into consideration in
the analysis. Different quality metrics can be used in order to classify frequency channels based on
interference level. Regardless of the metric used, the method must classify lowly interfered channels
as “good” and highly interfered channels as “bad”. The Received Signal Strength Indicator (RSSI),
for instance, measures the RF power level received by an antenna. The channel is characterized by
its centre frequency and bandwidth. The higher the RSSI signal, the worse the channel, as it is highly
interfered by unwanted coexisting systems. RSSI is usually measured in dBm units, that is, the power
ratio (P) in decibels (dB) referred to one milliwatt (mW):

P(dBm) = 10· log10
P(mW)

1 mW
(1)

The RF power level of a radio signal ranges between 0 dBm and −120 dBm. The closer this value
is to −120 dBm, the better, because that means there is little to no interference. Typical lowly interfered
environments range between −100 dBm and −80 dBm.

Alternatively, frequency channels can be classified using Packet Error Rate (PER), which represents
the rate of non-received to sent frames. A channel is classified as bad if its PER exceeds the system
defined threshold. Bit Error Rate (BER) can be used in a similar way.

In the following sections we will focus on the RSSI as a channel quality indicator, as the
measurements and calculations involved with RSSI are less complicated, and RSSI values are easily
available from the chipsets. However, the work presented here is equally applicable to other indicators
(such as PER) with little or no modification. RSSI values must be measured over a specified observation
time for all the available channel frequencies. Figure 2 shows an illustrative example of RSSI signals
over an observation time of 1 s for the 16 channels available in an 802.15.4 network. On purpose, some
channels are affected only by white noise, while others are interfered to a greater or lesser extent by
some coexisting systems.
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Figure 2. Example of Received Signal Strength Indicator (RSSI) signal over 1 s for an IEEE 802.15.4
network with 16 channels. The RSSI values lie within −120 dBm and 0 dBm. Higher RSSI values
indicate channels interfered to a greater extent, while lower RSSI values indicate channels interfered to
a lesser extent.
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From RSSI values, different statistical properties can be obtained for channel characterization [23].
These statistical properties are calculated over a specified observation time for every available
frequency channel.

• Mean value (mean): A low mean value of the RSSI signal over the observation time indicates
low RF power in the channel and, thus, a lowly interfered channel. The lower the mean value,
the better the channel.

• Standard deviation (std): A high standard deviation indicates a highly interfered channel because
of the high variability of the RF power. The lower the standard deviation, the better the channel.

• Skewness (skew): The skewness indicates the asymmetry of the RSSI distribution. A symmetric
distribution, which means skewness of around zero, is expected when the RSSI signal is only
affected by white noise and no interfering radio transmissions. When multiple RSSI peaks occur
due to radio transmissions, the distribution of the RSSI signal extends to higher values and, thus,
a higher value of skewness is expected. The skewness of a signal, x, is calculated by Equation (2),
where n is the number of RSSI samples, mean(x) the mean value and std(x) the standard deviation
of x.

skew(x) =
1
n

∑n
i=1(xi −mean(x))3

std(x)3 (2)

• x% quantile (quan): The x% quantile of a set of samples describes the cut value which divides
the statistical distribution so that x% of the samples are below the cut value. A simple way to
calculate the quantile is to sort the RSSI values and find the entry with the index corresponding to
the x% of the vector length. The lower this value, the less peaks occur in the RSSI signal and the
lower interference from other radio systems is expected.

• Number of samples over threshold (soth): It is the number of RSSI samples over a specified power
level threshold. The lower this value, the less peaks occur in the RSSI signal.

All mentioned properties have in common that lower values indicate less interference and thus
better channels. These properties must be transformed into a channel gain metric, H, that is directly
proportional to the channel quality, so that it can be directly introduced in the equations presented in
Section 5. To do this, a simple linear adjustment is performed:

H = α·x + β (3)

where x is an arbitrary statistical property of the RSSI signal and α and β are parameters to be adjusted.
Furthermore, the H metric is normalized between [0, 1], so that the α and β parameters are derived in
the following way:

[min(x), max(x)]→ [1, 0]

1 = α·min(x) + β

0 = α·max(x) + β

}
→
{

α = 1
min(x)−max(x)

β = − max(x)
min(x)−max(x)

(4)

Figure 3 shows an illustrative example of this linear projection from the mean value of the RSSI
signal (that ranges from −120 dBm to 0 dBm) to a normalized quality metric. The power metric
presented in Equation (5), Q = |H|2, is also represented.

For the RSSI values in Figure 2, the calculated statistical properties are represented in Figure 4.
The derived channel gains are represented in Figure 5.
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It can be observed that most of the statistical properties result in similar channel gains for the
considered RSSI signal. This does not stand for the skewness metric, which suggests that channels 2,
6, 10 and 14 are worse than channels 4, 8 and 12, for instance. Even if channels 2, 6, 10 and 14 have
higher interfering power peaks, they also have more continued traffic, resulting in a more symmetric
skewness function and, thus, lower skew values. Therefore, the skewness metric would be a better
indicator of channel quality when dealing with dynamic interferences that vary a lot in time, while the
others would be better when dealing with static interferences that hold in time.

So, one of the open questions will be to find the most appropriate metric for a reliable channel
quality indicator. Even more, for some metrics, some parameters will have to be adapted for each
specific application (the cut value and the power threshold for the x% quantile and SOTH respectively).
One of the main objectives of the proposed method is to automatically decide the best RSSI property
for each specific scenario.

5. Frequency Hopping Techniques

This section describes the different frequency hopping techniques taken into consideration
in the analysis. Hopping techniques determine not only the subset of channels, but also the
way these channels are scheduled. Frequency hopping techniques can be classified as either
channel-ignorant or channel-aware [24]. With channel-ignorant frequency hopping techniques,
the hopping pattern is selected regardless of the channel characteristics, whereas with channel-aware
frequency hopping techniques, the hopping pattern is selected after determining the channel
characteristics. Channel-aware hopping techniques can be further classified as reduced-hop-set and
probabilistic-channel-usage techniques [24–26]. Algorithms based on reduced hop sets totally avoid
bad channels. On the other hand, algorithms based on probabilistic channel usage use all channels,
although bad channels are assigned a smaller usage probability that depends on environmental
conditions. Figure 6 summarizes the frequency hopping technique types. These techniques are
explained in more detail in the following subsections.
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5.1. Channel-Ignorant Techniques

Random Frequency Hopping

In Random Frequency Hopping (RFH) [27], the available frequency band is divided into K narrow
sub-bands, and transmission is carried out by transmitting short bursts of data on one sub-band at
a time, hopping from sub-band to sub-band in a pseudo-random way.

With channel ignorant techniques such as RFH, over a sufficiently large amount of time,
all sub-bands will be used a roughly equal number of times, and so, transmission over bad sub-bands
is inevitable. This will cause system performance degradation resulting in high packet error rates.
To solve this problem, channel-aware frequency hopping techniques are proposed, where the hopping
pattern is selected after determining the channel characteristics. Channel-aware or adaptive frequency
hopping algorithms are able to provide better throughput against static interferences, dynamic
interferences or both static and dynamic interferences, but they might be more vulnerable to jamming
attacks as they decrease the frequency diversity.

5.2. Channel-Aware, Reduced-Hop-Set Techniques

Frequency hopping techniques based on reduced hop sets select M channels from the available K
channels, and hop among them in a pseudo-random manner.

5.2.1. Highest Gain Frequency Hopping

The most obvious example of the reduced-hop-set techniques is the Highest Gain Frequency
Hopping (HGFH), where the selected M channels are the ones with highest gain.

5.2.2. Matched Frequency Hopping

Channels with high gains tend to be adjacent to each other, and so, it might be easier for a jammer
to jam adjacent frequency channels. The Matched Frequency Hopping (MFH) not only selects channels
with high gains, but also tries to select channels with dispersed frequencies [28]. In this technique,
the main parameter used to select the M channels is the set of channel gains, Hk, from which the power
metrics, Qk, are calculated:

Qk = |Hk|2 (5)
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To select channels with high gains and reasonably well-spaced frequencies, a normalized power
metric, Bk, and a cumulative metric, Ck, are defined:

Bk =
Qk

∑K
i=1 Qi

k ∈ {1, 2, . . . , K} (6)

Ck =
k

∑
i=1

Bi (7)

The cumulative metric will always be a monotonically increasing function of k. This metric is
used with the M equally spaced values over [0, 1) given by

ym =
1
M

(
m− 1

2

)
m ∈ {1, 2, . . . , M} (8)

to determine the indices of the selected channels. The index of the mth channel is given by the value of
k such that

Ck−1 ≤ ym < Ck (9)

Figure 7 illustrates how M = 10 channels are selected among K = 100 available channels using
this method. For the considered metric, using the highest gain technique would result in selecting the
first five and last five channels, while only attending to channel separation would result in equally
spaced channels. The MFH algorithm tends to select channels with high gains while avoiding selecting
clusters of adjacent channels.
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Figure 7. Channel selection for Matched Frequency Hopping (MFH) technique. The red line represents
the channel gain and the blue line represents the cumulative sum of the power metric. The selected
channels are represented as vertical black lines. The best channels are selected from the intersections
between the cumulative metric and the equally spaced horizontal lines.

5.2.3. Clipped Matched Frequency Hopping

The Clipped Matched Frequency Hopping (CMFH) is an evolution of the MFH technique [29].
The channel gains are first clipped at a certain threshold, proportional to the maximum gain, and then,
the clipped channel gains are decreased by this threshold. That means any channel gain less than or
equal to the threshold, ξmax(|Hk|2), is set to zero. The power metrics, Qk, are redefined so that

Qk =

{
|Hk|2 − ξmax(|Hk|2), |Hk|2 > ξmax(|Hk|2)
0, |Hk|2 ≤ ξmax(|Hk|2)

(10)
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The MFH technique is then applied to the new clipped power metrics, instead of using directly
|Hk|2 as it is done in the MFH technique. The CMFH technique will result in a hopping set with more
concentrated channels than in the MFH technique, but with higher gains.

5.2.4. Advanced Frequency Hopping

The Advanced Frequency Hopping (AFH) technique further improves the performance of the
MFH technique by selecting more channels with higher gains [30]. The modified power metrics are
given by

Qk =
|Hk|2

(1 + α)max
(
|Hk|2

)
− |Hk|2

(11)

where α is a small scaling factor that can be adjusted to obtain different responses. The MFH technique
is then applied to the new power metric.

Figure 8 illustrates the channel selection for the HGFH, MFH, CMFH and AFH techniques. In all
the cases M = 10 channels have been selected. It can be seen how the MFH technique selects more
dispersed channels compared to the HGFH. The CMFH and AFH techniques modify the power
metric to cluster the channel selection around the highest gain channels but still preserving certain
channel separation.

Figures 9 and 10 illustrate the evolution of the channel selection in the CMFH and AFH techniques
when varying the ξ and α parameters. When increasing the threshold in the CMFH technique, the
selected channels tend to concentrate around the highest gain channels, as more bad channels are
discarded. The same happens when decreasing the α parameter in the AFH technique.
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Figure 8. Comparison of channel selection between different frequency hopping techniques: (a) Highest
Gain Frequency Hopping (HGFH); (b) Matched Frequency Hopping (MFH); (c) Clipped Matched
Frequency Hopping (CMFH) with ξ = 0.1; (d) Advanced Frequency Hopping (AFH) with α = 0.1.
The selected channels are represented as vertical black lines. HGFH directly uses the channel gain (red)
to select the best channels, while MFH, CMFH and AFH use the cumulative metrics (blue) obtained
from the power metrics (green) and their intersections with the equally spaced horizontal lines.
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Figure 9. Channel selection evolution in the Clipped Matched Frequency Hopping (CMFH) technique
when varying the threshold parameter: (a) ξ = 0.1; (b) ξ = 0.3; (c) ξ = 0.5.
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Figure 10. Channel selection evolution in the Advanced Frequency Hopping (AFH) technique when
varying the α parameter: (a) α = 1; (b) α = 0.1; (c) α = 0.01.

5.3. Channel Aware, Probabilistic-Channel-Usage Techniques

Unlike the reduced-hop-set techniques, probabilistic-channel-usage techniques use all the
available channels, but channels marked as good are used with higher probability.

5.3.1. Weighted Random Frequency Hopping

In the Weighted Random Frequency Hopping (WRFH) technique, the hopping set contains
all of the K channels, just like with the standard RFH, but when deciding the hopping sequence,
a non-uniform probability distribution is used so that channels with higher gains are more likely to be
selected [24]. The probability, Pk, of selecting channel k is given by

Pk =
|Hk|2

∑K
i=1|Hi|2

k ∈ {1, 2, . . . , K} (12)

where Hk is the same channel gain introduced in Equation (5). This equation is analogous to the
normalized power metric in the MFH technique (Equation (6)). For each hop, the selection of the
channel is carried out by a cumulative metric, Ck, as it is done with the MFH technique:

Ck =
k

∑
i=1

Pi (13)
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The index of the nth channel is given by the value of k such that

Ck−1 ≤ yn < Ck n ∈ {1, 2, . . . , K} (14)

where yn is a pseudo-random number over [0,1). This is the main difference with the MFH technique,
as the corresponding ym numbers in the MFH were M equally spaced values over [0,1). So, in the
WRFH technique, all the channels can be selected with more or less probability, while in the MFH
technique, there were only M selected channels that would be used with equal probability.

Figure 11 illustrates the differences between the RFH, MFH and WRFH techniques. As an example,
20 frequency hops have been considered for the three hopping techniques. In the case of the random
and weighted random techniques, this results in 20 different channels, whereas in the MFH technique,
some or all of the selected 10 best channels have to be repeated. Because of its random behaviour, the
RFH technique selects some channels with a very low gain. This is partially avoided by the WRFH
as the cumulative metric around the lowest gain channels is hardly increased and is less likely to be
intercepted by the horizontal lines representing the yn random values. However, as the number of
channel hops approaches infinite, it would be inevitable to hop over the channels with the least gain,
which does not happen with the MFH technique.
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Figure 11. Comparison of channel selection between different frequency hopping techniques:
(a) Random Frequency Hopping (RFH); (b) Matched Frequency Hopping (MFH); (c) Weighted Random
Frequency Hopping (WRFH). In the RFH and MFH cases, horizontal lines are equally spaced while in
the WRFH case, horizontal lines are randomly spaced.
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5.3.2. Utility Based Adaptive Frequency Hopping

The Utility Based Adaptive Frequency Hopping (UBAFH) technique extends the performance of
the WRFH by introducing a parameter, α, which is called temperature [31]:

Pk =
Qα

k

∑K
i=1 Qα

i
(15)

The parameter α can be adjusted to achieve different behaviours. Low temperatures will result
in almost even channel usage, while for high temperature values, only the best channels will be
used. When α = 1, the probability distribution happens to be the same as for the WRFH technique.
Additionally, lower and upper bounds on the usage probability can be introduced so that

Pmin ≤ Pk ≤ Pmin (16)

Pmin is introduced to ensure a minimum degree of frequency diversity, while Pmax prevents the
algorithm from converging to scenarios where only a few channels are used.

5.3.3. Smooth Adaptive Frequency Hopping

Smooth Adaptive Frequency Hopping (SAFH) assigns usage probabilities to all channels based on
an exponential smoothing filter for the quality metric to estimate and predict the channel conditions [32].
The algorithm uses exponential smoothing to predict the quality metric of the next time step.
The predicted power metrics are referred as Q′k, while the measured power metric is referred to
as Qk. The predicted power metric at time (t + 1) is calculated by using the predicted metric at time
t plus an adjustment for the error that occurred in the last forecast (measured power metric minus
predicted power metric):

Q′k(t + 1) = Q′k(t) + α·
(
Qk(t)−Q′k(t)

)
(17){

Q′k(t + 1) = α·Qk(t) + (1− α)·Q′k(t)
Q′k(1) = Qk(0)→ (initial condition)

(18)

The balance between new and old data is controlled by the smoothing factor α in the range
between [0,1]. When α approaches 1, the filter gives more weight to recent data and has less of
a smoothing effect. When α approaches 0, the effect of current observation is ignored and only the
smoothed past is retained. By recurrent substitution,

Q′k(t + 1) = α·
[

t−1

∑
j=0

(1− α)j

]
·Qk(t− j) + (1− α)t·Qk(0) (19)

In exponential smoothing, all previous measurements contribute to the smoothed value, but their
contribution is suppressed by increasing powers of the parameter α. The mapping from the metric, Q,
to the probability function, P, is subject to two conditions:

1. The probability assigned to a channel is an increasing function of its quality metric:

Q′i(t + 1) ≤ Q′j(t + 1)→ Pi(t + 1) ≤ Pj(t + 1) (20)

This condition results in good channels being used more often than bad channels.
2. The target average metric, Q′(t + 1), must be above a certain threshold ξ:

K

∑
i=1

Pi(t + 1)·Q′i(t + 1) ≥ ξ (21)
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This condition results in robustness of the link between the nodes.

The following mapping function fulfils the above conditions:{
Pk = (β + c·dk)/δ i f dk ≥ 0
Pk = (β + s·dk)/δ i f dk ≤ 0

(22)

where the term dk is the difference between the predicted metric and the threshold ξ:

dk = Q′k − ξ (23)

A positive dk value indicates a good channel and a negative value indicates a bad channel.
The term c determines how good channels are rewarded, while the term s determines how bad
channels are punished. The larger the c parameter, the more often good channels are used, and the
larger the s parameter, the less often bad channels are used. The term δ is a normalizing factor
that ensures ∑ Pi = 1:

δ =
Kg

∑
i=1

(β + c·di) +
Kb

∑
i=1

(β + s·di) (24)

where Kg and Kb are the number of good and bad channels respectively. The term β is chosen
so that the condition ∑K

i=1 Pi(t + 1)·Q′k(t + 1) = ξ is fulfilled. The case when c = s = 1 and β = ξ

results in

Pk =
Q′k
δ

=
Q′k

∑K
i=1 Q′i

(25)

which represents the WRFH probability function.

As an illustrative example, let us consider a four-channel problem with Q: {0.84, 0.8, 0.82, 0.86}.
Table 1 shows the channel usage probabilities for the WRFH, UBAFH and SAFH techniques for
the specified parameter values. Same results are represented in Figure 12. It can be observed how
increasing the temperature parameter in the UBAFH technique penalizes the usage of the worst
channels in favour of the best ones. The same happens when increasing the c parameter in the
SAFH technique.

Table 1. Comparison of channel usage for Weighted Random Frequency Hopping (WRFH),
Utility Based Adaptive Frequency Hopping (UBAFH) and Smooth Adaptive Frequency Hopping
(SAFH) techniques.

WRFH UBAFH SAFH

Pk = Qk

∑K
i=1 Qi

Pk = Qff
k

∑K
i=1 Qff

i
ξ = 0.85 ξ = 0.85

α = 1 α = 1

ff = 10 ff = 100 c = 10 c = 100
s = 1 s = 1

Q1 0.84 P1 0.253 0.273 0.086 0.197 0.100
Q2 0.8 P2 0.241 0.168 0.001 0.027 0.075
Q3 0.82 P3 0.247 0.214 0.008 0.111 0.088
Q4 0.86 P4 0.259 0.345 0.906 0.665 0.737
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6. Method Description

This section describes the method that analyses the quality of the links between nodes in a Wireless
Sensor Network (WSN) in the presence of other coexisting networks. In Section 4 we introduced
some metrics that can be used to characterize and determine the quality of the available frequency
channels. In Section 5 we described different frequency hopping techniques which select a subset of
channels and define a hopping sequence, avoiding channels with lower quality metrics to a greater or
a lesser extent depending on the hopping technique. These quality metrics and hopping techniques
are interlaced and compared to find the best subset of channels and hopping sequence that result in
a minimum number of interferences, improving network throughput, reliability and resilience against
security attacks.

The proposed method can be divided in the following steps:

1. Evaluation of the interfering environment.
2. Frequency channel selection.
3. Packet Error Rate (PER) calculation.
4. Determination of the topology.

In the first step, the interfering environment is evaluated by determining the noise coming from
coexisting networks. The interfering noise is evaluated at every point of interest, that is, at every
location of the nodes of the WSN under study. Over a specified observation time, the RSSI values are
measured for each of the centre frequencies of the available channels in the WSN of interest. From
this RSSI values, all the quality metrics of Section 4 are calculated. Figure 2 showed an example of
RSSI measurements for an observation time of 1 s and for the 16 channels available in a IEEE 802.15.4
network, from which the statistical properties of Figure 4 were calculated.

In the next step, frequency channel selection, the optimal subset of channels is calculated for
each of the available quality metrics of Section 4 and hopping techniques of Section 5. The quality
metrics are normalized according to Equations (3) and (4) to obtain a normalized channel gain, H,
that can be used for every hopping technique of Section 5. The result will be a nxm matrix containing
a subset of channels for each combination of quality metric and hopping technique, n being the number
of employed quality metrics and m the number of employed hopping techniques. Along with the
subset of channels, the hopping sequence is also calculated, that is, the frequency to be used every
time the system hops from one channel to another. The obtained hopping sequence will be used
by the WSN of interest for a specified operation time. Figure 13 shows the observation time during
which the interfering environment is evaluated and the operation time during which the WSN of
interest operates. An example of channel occupancy for WLAN, LR-WPAN and Bluetooth networks is
also represented. WLAN and LR-WPAN networks stay in static channels with 22 MHz and 3 MHz
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bandwidth respectively. In order to simplify the example, the Bluetooth network hops over only three
channels with 1 MHz bandwidth.
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Figure 13. Representation of observation (blue) and operation (purple) times and example of channel
occupancy with two static networks (WLAN and LR-WPAN) and a dynamic network (Bluetooth) that
hops over three frequency channels. The coexisting networks will be analysed during the observation
time to determine the operation of the network of interest during the operation time.

Once the interfering environment is evaluated and the best frequency sequence is determined,
the Packet Error Rate (PER) is calculated for every possible bidirectional connection between nodes
of the WSN of interest. For an error to occur in the communication between two nodes, the signal
of interest and the interfering noise must coexist in time and frequency, and the Signal to Noise
Ratio (SNR) must be higher than the receiving sensitivity. The propagation of the signal of interest is
modelled according to the free-space path loss model:

Pd = P0·
(

4πd f
c

)
(26)

where Po is the transmission power, f the signal frequency, c the speed of light and Pd the received
power at distance d.

The overlapping of the signal of interest and the interference noise can be seen in Figure 14.
The signal of interest (between two specific nodes) is represented in green, starting after the observation
time and hopping from channel to channel within the operation time. All the contributions from
different coexisting networks to the interference noise are represented in red, and the overlaps between
signal and noise are represented in black.
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two types of topologies where each node communicates directly to the gateway (single-hop topology) 
or through other nodes (multi-hop topology). When a node communicates to the gateway through 
other nodes, the PERs of all the transmissions are multiplied to obtain the overall PER. 

In terms of energy consumption, it might be preferable to hop among different nodes, so that 
the communication distances are reduced and the transmission power of the nodes can be lowered. 
In return, this may involve increasing the overall PER. On the contrary, to minimize the overall PER, 
it is most likely that each node has to communicate directly to the gateway, but in exchange for 
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Figure 14. Signal (green) and noise (red) overlapping. There are different sources that contribute
to noise: static networks and dynamic networks that hop over different frequencies. The noise is
analysed during the observation time (blue) to determine the hopping sequence of the signal of interest.
The signal of interest is only transmitted during the operation time (purple). The overlapping of signal
and noise is represented in black. This overlap only implies time and frequency coexistence; for an error
to occur, the SNR must be higher than the receiving sensitivity of the nodes too.

In the last step, determination of the topology, the topology of the WSN can be determined taking
into consideration the distances between nodes and the resulting overall PER. Figure 15 shows two
types of topologies where each node communicates directly to the gateway (single-hop topology) or
through other nodes (multi-hop topology). When a node communicates to the gateway through other
nodes, the PERs of all the transmissions are multiplied to obtain the overall PER.

In terms of energy consumption, it might be preferable to hop among different nodes, so that
the communication distances are reduced and the transmission power of the nodes can be lowered.
In return, this may involve increasing the overall PER. On the contrary, to minimize the overall PER, it is
most likely that each node has to communicate directly to the gateway, but in exchange for increasing
the transmission distances and the consequent power consumption. Assigning different weights to the
overall PER and the maximum transmission distance may result in different topologies, and will help
to choose the topology with the best equilibrium between overall PER and energy consumption.
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7. Evaluation

The evaluation of the presented method is performed beginning with a simulated interfering
environment. It has been done so to have an illustrative interfering noise, coming from both static and
dynamic (frequency changing) networks, and with significant RSSI values. Even though the same
analysis could have been done starting from real RSSI measurements of any specific scenario.

To help in the evaluation of the method, a simulation tool has been developed using Matlab.
The developed tool allows to define the interfering environment, deploy the network under study
and graphically visualize the results of the calculations. Figure 16 shows the main window of the
developed simulation tool.
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representation of the results. The different type of results are represented in their corresponding tab
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The interfering environment is simulated by placing potential coexisting networks close to the
network of interest. The simulation tool allows to choose between different standards: IEEE 802.11,
IEEE 802.15.1 and IEEE 802.15.4. As an illustrative example, let us consider the deployment of an IEEE
802.15.4 network as represented in Figure 17, consisting of four sensor nodes (black dots) that have
to communicate with a gateway (G). The network has to coexist with one IEEE 802.11 (WLAN), two
IEEE 802.15.4 (LR-WPAN A and LR-WPAN B) and one IEEE 802.15.1 (Bluetooth) networks (coloured
markers) located close to the gateway. Our IEEE 802.15.4 network has the ability to hop among the
available 16 channels.
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Figure 17. Example of an 802.15.4 network deployment with four nodes (black dots) and a gateway
(G). The gateway is surrounded by four interfering networks (coloured markers).

From the transmission power of each interfering network, the interference noise is calculated at
every location of the nodes of the network under study. The signal propagation is modelled according
to the free-space path loss (Equation (26)). The transmission powers of the interfering networks are
shown in Table 2, along with the transmission power and the receiving sensitivity of the network
of interest.

Table 2. Transmission powers and receiving sensitivities for the interfering networks and the wireless
sensor network under study.

INTERFERENCE WSN

WLAN Bluetooth LR-WPAN A LR-WPAN B 802.15.4

TRANSMISSION POWER 100 mW 2.5 mW 1 mW 1 mW 1 mW
RECEIVING SENSITIVITY - - - - −90 dBm

The developed tool allows to configure the observation and operation times, as well as the
hopping time and the slot times of each network. For the reduced hop set techniques, the number
of channels to employ must be defined as well. Table 3 summarizes the time parameters employed
in the evaluation example. The interference noise is observed for 0.1 s and, then, the connections of
the network of interest are evaluated for an operation time of 0.9 s. Therefore, the total analysis time
results in 1 s, with a time resolution (time step) of 1 ms. The slot and wait times of all the networks
are set to the same values: 3 ms and 2 ms respectively. For the WSN of interest and the interfering
Bluetooth network, the hop times are set to 5 ms, meaning that every 5 ms these networks hop from
one frequency channel to another.
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Table 3. Time parameters employed in the analysis.

OBSERVATION
TIME 0.1 s

OPERATION
TIME 0.9 s

ANALYSIS
TIME 1 s

TIME STEP 1 ms

INTERFERENCE WSN

WLAN Bluetooth LR_WPAN A LR_WPAN B 802.15.4

SLOT TIME 3 ms 3 ms 3 ms 3 ms 3 ms
WAIT TIME 2 ms 2 ms 2 ms 2 ms 2 ms
HOP TIME - 5 ms - - 5 ms

The IEEE 802.11 (WLAN) and the interfering IEEE 802.15.4 (LR-WPAN A and LR-WPAN B)
networks transmit in static frequency channels, while the IEEE 802.15.1 (Bluetooth) network hops from
frequency to frequency in a random way. For simplicity, a reduced set of seven channels have been
selected from the available 79 of the Bluetooth network. Figure 18 shows the occupancy of the 2.4 GHz
bandwidth over time and the amplitude of the interference noise as received by the gateway.
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according to the free-space path loss model. The four interfering networks are at the same distance 
from the gateway, but have different signal strengths as they have different transmission powers. 

Figure 18. Interference noise at the gateway location: (a) Frequency pattern. The WLAN network
transmits in the 6th channel of the 802.11 standard, centred at 2437 MHz with a bandwidth of 22 MHz
(red). The LR-WPAN A network transmits in the 4th channel of the 802.15.4 standard, centred at
2420 MHz with a bandwidth of 3 MHz (yellow). The LR-WPAN B network transmits in the 13th
channel, centred at 2465 MHz (green). The Bluetooth network transmits over seven frequency channels
with a bandwidth of 1 MHz each, hopping from channel to channel in a random way (blue); (b) Signal
strength. The signal strength of each interfering network at the gateway position is calculated according
to the free-space path loss model. The four interfering networks are at the same distance from the
gateway, but have different signal strengths as they have different transmission powers.

Figure 19 represents the channel selection for different metrics and hopping techniques. In order
to simplify the visualization, only four hopping techniques (HGFH, WRFH, AFH and SAFH) and
two metrics (mean value and standard deviation of RSSI) have been represented, but the analysis has
been done for all the eight hopping techniques in Section 5 and all the five metrics in Section 4, as will
be summarized at the end of this section. The configuration parameters of some of the metrics and
hopping techniques (when needed), are presented in Table 4.
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For the reduced-hop-set techniques (HGFH and AFH), M = 10 channels have been selected.
The HGFH technique selects the 10 best channels directly from the channel gain, while the AFH
technique selects the 10 best channels from the cumulative sum of the modified power metric
(Equation (11)). With HGFH, both the mean and standard deviation metrics result in the same subset
of channels, whereas with AFH, the resulting subset of channels are slightly different. The WRFH and
the SAFH use all the available channels, but the best channels are used more often than the worst ones.
The channel quality is determined from the cumulative metric: the higher the slope of the cumulative
metric, the higher the probability for the corresponding channel to be selected.

The resulting hopping sequence is represented in Figure 20. The interference noise from all
the interfering networks is represented in red and the signal of interest is represented in green.
The overlapping of the interference noise and signal is represented in black, but as we have mentioned
before, aside from the overlapping, the signal to noise ratio has to be higher than the receiving
sensitivity for the communications to fail. The bad channel avoidance is best observed here. The HGFH,
for instance, totally avoids the 22 MHz band of the WLAN network. However, it does not manage to
avoid the 3 MHz bands of the LR-WPAN A (channel 4) and LR_WPAN B (channel 13) networks when
choosing 10 channels. The AFH tries to avoid the occupied channels while maintaining certain level of
frequency dispersion and, thus, the WLAN is not always avoided. WRFH and SAFH do not avoid any
of the occupied channels, but channels within the 22 MHz band of the WLAN network are used less
often than good channels.

Table 4. Configuration parameters for quality metrics and hopping techniques.

QUALITY METRIC PARAMETERS

QUANTILE SOTH
95% th = −60 dBm

HOPPING TECHNIQUE PARAMETERS

CMFH AFH UBAFH SAFH

ξ = 0.1 α = 0.5 α = 2

ξ = 0.85
α = 1
c = 10
s = 1

The amplitude gains of the signal of interest and noise are represented in Figure 21 for the specific
connection between the first node and the gateway. The noise corresponds to the signal strength of
all the contributing interference networks received at the gateway position, and the signal of interest
corresponds to the signal strength received at the gateway coming only from the first node. For the
considered transmission powers, if signal and noise overlap in time and frequency, the communication
will fail as the strength of the signal of interest is lower than the noise at the gateway. The frequency
pattern of Figure 20 will be the same for all the nodes in the network, but the amplitude of the
different signals will depend on the distance between the nodes and between the nodes and the
interfering networks.
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cumulative metric (blue) derived from the power metric (green) to select the best channels. In all the case, the selected channels are represented as vertical black lines.
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metrics result in different frequency patterns for the signal of interest. The overlapping of the noise and signal of interest is represented in black.
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Figure 21. Strength of signal and noise for different hopping techniques and quality metrics. The interfering noise is represented in red and the signal of interest in
green. The noise is the sum of all the interfering networks as received at the gateway. The signal of interest is the signal strength received at the gateway coming from
the first node.
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For each possible bidirectional connection between nodes of the network under study, the PER is
calculated from the number of interferences during the operation time. The result will be a matrix for
each quality metric and hopping technique as represented in Figure 22.
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performance level of the other hopping techniques. Among the other hopping techniques, it cannot 
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Figure 22. Packet Error Rate for all possible node connections for different quality metrics and hopping
techniques. Each element contains the Packet Error Rate (PER) value (percentage) for the specified
connection. 1 > G, for instance, indicates the connection from node 1 to the gateway.

From the PER of each connection, the topology of the network can be determined in terms of
overall packet error rate and transmission distances. Figures 23–25 show the resulting topologies when
assigning different weights to the transmission distances and the resulting PER. Only attending to
the overall PER results in direct connections between the nodes and the gateway (Figure 23), while
minimizing the transmission distances results in multi hop transmissions (Figure 24). In both cases,
the same topologies result for all the quality metrics and hopping techniques. When assigning equal
weights to the transmission distances and the overall PER, different topologies result for different
quality metrics and hopping techniques (Figure 25). With the HGFH, for instance, hopping from node
to node in order to minimize the transmission distances does not penalize the overall PER at all, while
with the other hopping techniques, the overall PER is considerably increased as the transmission
distances are reduced.

Table 5 summarizes the overall PER results for all the quality metrics in Section 4 and all the
hopping techniques in Section 5 for equal weights of overall PER and transmission distances. For most
of the considered metrics, the RFH results to be the worst hopping technique as we could expect.
The WRFH technique significantly improves the performance of the RFH, but is still far from the
performance level of the other hopping techniques. Among the other hopping techniques, it cannot be
said that a specific technique is much better than the others, and the same happens with the quality
metrics. For the considered scenario, the combination of UBAFH technique and 95% quantile metric
results to be the best solution with a 9% of overall PER, but different interfering scenarios might result
in other quality metrics and hopping techniques being the best. Configuration parameters other than
the ones presented in Table 4 could also yield a different solution. Nevertheless, the main objective of
the method here presented is not to determine a quality metric and a hopping technique that best fits
most of the possible scenarios, but to automatically find the best solution for any specific scenario after
analysing all the possible solutions.
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Figure 23. Inferred topologies with wPER = 1 and wDIST = 0. Minimizing the overall PER results in direct connections between nodes and gateway for all the
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and quality metrics. The overall PER is considerably increased, except for the HGFH technique, which remains the same as with single-hop topology.
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Table 5. Overall PER with wPER = 0.5 and wDIST = 0.5.

HOPPING TECHNIQUES

HGFH RFH WRFH MFH CMFH AFH UBAFH SAFH

quality
metrics

mean 14% 51% 36% 22% 19% 20% 17% 27%
std 18% 52% 42% 48% 49% 23% 24% 29%

skewness 19% 50% 45% 57% 43% 53% 41% 15%
95% quantile 18% 42% 19% 23% 19% 19% 9% 24%

soth −60 dBm) 22% 49% 31% 35% 18% 20% 21% 33%

8. Conclusions

In this paper, we presented a method for selecting the best frequency hopping strategy.
The proposed method leverages a set of standard frequency hopping techniques and quality metrics
in order to homogenize and normalize them, so they can be fairly compared based on quality
and performance indicators. The main objective of the method is to provide an interference
avoidance mechanism to reduce the need for retransmissions, minimize energy consumption, avoid
the unnecessary degradation of QoS and reliability as well as protect against interference based
security attacks.

The method has the advantage of dynamically selecting the best channel quality metric and the
best hopping technique taking into account the communication channel quality and environment
interference conditions. As opposed to static and standalone solutions found in the state of the art,
in case of channel interference, the method supports the selection of the best frequency hopping
strategy to minimize the side effects of an interfered frequency and is able to dynamically adapt
to changing conditions. The final result is a subset of frequency channels, as well as a hopping
sequence, that minimizes the interference with coexisting networks and the effects of interference
based security attacks.

The method is designed to be used in two complementary scenarios: (a) as a deployment planning
supporting tool for the selection of the best frequency channels, channel quality metrics and frequency
hopping techniques given a known interference scenario and (b) as the base for the implementation of
a runtime management component for the dynamic selection of communication frequency channels
under changing interference conditions.

The method is extensible and easily accommodates additional frequency hopping techniques,
quality metrics and performance indicator approaches. Additionally, the method can also be extended
to take into account other characteristics and restrictions of constrained systems (such as processing
power or energy consumption) in order to select the most suitable solution.

A simulation tool has been developed to assist in the validation and implementation of the
method. The simulation tool allows for the definition and simulation of the interfering environment,
but the whole analysis is perfectly applicable to real environments. That is, the received signal strength
indicator (or some other channel quality indicator) in a real environment could be measured and used
as input for the method implementation, and the channel selection and the hopping sequence would
be obtained from the tool.

It is left for future work to test the implementation of a runtime channel selection component based
on the proposed method and its verification against the simulation tool. For that, a real deployment
would have to be analysed in terms of received signal strength indicator for the interfering nodes and
packet error rate for node connections in the wireless sensor network under study, and then compared
with the same simulated scenario. It is also left for future research the inclusion of additional input
parameters to the method to take into account other restrictions of the environment or the system,
such as characteristics of constrained systems.
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