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Abstract: Thermal characteristic analysis is essential for machine tool spindles because sudden
failures may occur due to unexpected thermal issue. This article presents a lumped-parameter
Thermal Network Model (TNM) and its parameter estimation scheme, including hardware and
software, in order to characterize both the steady-state and transient thermal behavior of machine
tool spindles. For the hardware, the authors develop a Bluetooth Temperature Sensor Module (BTSM)
which accompanying with three types of temperature-sensing probes (magnetic, screw, and probe).
Its specification, through experimental test, achieves to the precision±(0.1 + 0.0029|t|) ◦C, resolution
0.00489 ◦C, power consumption 7 mW, and size Ø40 mm× 27 mm. For the software, the heat transfer
characteristics of the machine tool spindle correlative to rotating speed are derived based on the
theory of heat transfer and empirical formula. The predictive TNM of spindles was developed by
grey-box estimation and experimental results. Even under such complicated operating conditions as
various speeds and different initial conditions, the experiments validate that the present modeling
methodology provides a robust and reliable tool for the temperature prediction with normalized
mean square error of 99.5% agreement, and the present approach is transferable to the other spindles
with a similar structure. For realizing the edge computing in smart manufacturing, a reduced-order
TNM is constructed by Model Order Reduction (MOR) technique and implemented into the real-time
embedded system.

Keywords: Bluetooth temperature sensor module; machine tool spindle; parameter estimation;
predictive thermal characteristic; thermal network model; system identification

1. Introduction

The thermal characteristics of machine tool spindles play an important role in the development of
high-precision and high-speed machining. Many literatures about the machining error analysis had
indicated that a large amount of the total machining errors attributed to the thermal issue [1,2]. In recent
years, diagnostics and prognostics of sudden failure of machine tool spindle have drawn considerable
attention. Hence, the model-based method is the key technology for predicting the thermal behavior of
spindle. Bossmanns and Tu et al. developed a comprehensive thermo-mechanical model to characterize
the heat transfer and quantitative power flow of a high-speed motorized spindle based on Finite
Difference Method (FDM) [3–5]. On the other hand, Finite Element Method (FEM) has the advantage of
fully simulating the thermo-dynamic-mechanical behavior of the spindle. These FEM models not only
simulate the temperature distribution and the thermal deformation of machine tool, but also take the
bearing stiffness and thermal contact resistance into consideration [6,7]. Experimental and simulation
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evidence indicated that the temperature distribution of spindle is axisymmetric [8]. Meanwhile,
the thermal resistance network model was proposed considering the thermal contact resistance based
on fractal and Hertz contact theory [9,10]. Several relevant issues were widely investigated in thermal
characteristics of machine tool spindle, such as thermal contact resistance, lubricant viscosity, cooling
condition, thermally induced preload, and transient thermal behavior [6,11–13]. Heat flux is one
of the most important parameters of the thermal behavior of spindle. The heat flux of a thermal
system could be inversely predicted by recursive least squares algorithm from the thermal resistance
network model [14] or finite element model [15]. System identification techniques have drawn
much attention to many thermal predictive and control applications, such as the core temperature
real-time estimation for lithium ion batteries [16], the temperature prediction of the squirrel-cage
rotor of induction motor [17], the thermal system analysis of buildings [18], and the transient thermal
impedance of semiconductor [19]. Regarding the failure prevention of permanent magnet synchronous
motors, the grey-box system identification of the model-based lumped-parameter thermal networks
(LPTNs) has been developed to estimate the permanent magnet and winding temperature [20–22].

This article presents a simplified and reduced-order thermal model for a machine tool spindle,
which can predict the thermal response of certain crucial points within the spindle. Though FEM and
FDM are great approaches to analyze the thermal characteristic of the spindle; however, they require
a large amount of numerical computation. These methods are unsuitable for in-situ application due to
their high demand of numerical computation. Instead of comprehensively analyzing the heat transfer
equations, this article establishes a lumped-element Thermal Network Model (TNM) that effectively
reduces the computation load while retaining the predictive performance. The TNM consists of
the parameters of thermal resistances, thermal capacitances, and heat sources. The assumptions and
simplifications of those parameters are made based on the theory of heat transfer and empirical formula.
Note that the global and local solutions of the parameters are solved from the measured temperature
data by means of nonlinear least square method and grey-box system identification method. The TNM
is verified by self-validation as well as external-validation. Moreover, the Short-Circuit Time Constant
(SCTC) method is applied to approximate the low-frequency band limitation. Also, the Model Order
Reduction (MOR) techniques allow for reducing the order of the estimated model while retaining the
performance. Furthermore, Bluetooth Temperature Sensor Module (BTSM) is developed that provides
high accuracy, high stability, and five-channel temperature measurement. Three types of temperature
sensing probes (magnetic, screw, and probe) based on Resistance Temperature Detector (RTD) are
constructed in this work, those are suitable for being placed at some characteristic locations such as
into the outer-ring of bearings, approaching to the spindle, and on the surfaces of the housing.

2. Theoretical Background

2.1. Thermal Characteristics of Spindle

Many researchers have comprehensively investigated the thermal characteristics of machine
tool spindle, including heat generation, forced heat convection over rotating shaft and annulus, heat
conduction, heat radiation, and heat capacity. The primary concern is the speed-related influence,
hence, the degree of each leading term related to the rotating speed should be determined especially.
The frictional torque of the angular contact ball bearings causes the major heat generation of the
externally driven spindle. Harris proposed that the heat sources were mainly caused by three factors:
applied load (Ql), viscous shear (Qv), and spinning motion (Qs) [23].

Q f = Ql + Qv + Qs = 1.047× 10−4 × [n(Ml + Mv) +
Z

∑
j=1

nsi Msi,j + nso Mso,j] (1)

where Ml is the applied-load-dependent term, Mv is the viscous-shear-dependent term, and Msi and
Mso are the spinning-motion-dependent terms, n denotes the rotational speed of bearing, nsi and nso
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denotes the spin speeds of the inner and outer rolling element, respectively, and Z is the number of
rolling elements.

Stein and Tu modified Palmgren’s equation for specifying the thermally induced preload of
bearing [24]. The bearing friction torque due to applied load (Ml) is obtained by Equation (2). In their
research, the predicted thermally induced preload would reach steady over time and its magnitude
grew with the rotational speed. The nonlinear relationship between thermally induced preload and
rotational speed is like the power function.

Ml = µl fl(Fn + Ft)(ri + rb) (2)

where Ft is the thermally induced preload, Fn is the contact force from external load, ri and rb is
the radius of inner ring and rolling element, µl is the friction coefficient due to load. The empirical
Equation (3) explains the frictional torque that is caused by lubricant shear viscosity (Mv) within
the bearing.

Mv = 10−7 f0(νLn)2/3dm
3, for νLn ≥ 2000

Mv = 160× 10−7 f0dm
3, for νLn < 2000

(3)

where f 0 is a factor depending on bearing type and lubrication, νL is lubricant kinematic viscosity.
For angular contact ball bearing, the gyroscopic moment of the rolling elements necessarily leads to
boring motion that would cause the friction torque on the contact surface, and thus also introduce heat
generation. The friction torque related to spinning motion (Ms) is obtained by Equation (4) [25].

Ms =
3µsFrollae

8
(4)

where Froll is the contact load, a represent the major axes of the elliptical contact area, e is the elliptical
integral of the second kind, and µs is the friction coefficient.

The primary concern is to evaluate the heat source within the spindle thermal system associated
with the spindle rotational speed (ω). Many researchers had indicated that the viscous friction has
the influential contribution in total frictional torque within the bearing [12]. As for simplification, due
to the power function trend of thermally induced preload influence, the polynomial-like function
might have the ability to predict the heat generation of bearing. As mentioned above, substituting
Equations (2)–(4) into Equation (1), the authors conclude that the heat source can be expressed as
a function of the viscous-related term (ω5/3) and the remaining term (ω), as described in Equation (5).

Q f ∼ f (ω, Ft)
(1)→ f (ω5/3, ω1)

(1)Ft ∼ f (ωc0)
(5)

An analytical solution describes the forced convective heat transfer over rotating shaft [26].
The average Nusselt number (Nu), Reynolds number (Re), and Prandtl number (Pr) are determined by
the following equations.

Nu = 0.6366(RePr)1/2 (6)

Re =
ωd2

2νair
,Pr =

νair
αair

(7)

Assume constant material properties, the rotational speed dominates the forced heat convection.
This implies that the forced convection coefficient is a speed-related term being proportional to ω0.5.
In this case, we take the rotational speed as the leading term and express the thermal resistance of
forced convection around moving surface as a function of ω−0.5.

h f orced =
Nu× kair

d
∝ Re0.5 ∝ ω0.5 (8)
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R f orced =
1

h f orced A
∼ f (ω−0.5) (9)

The forced heat convection over the surfaces of rotating annulus can be determined by the
following Equations (10) [27]. Taylor number (Ta) and the geometry factor (Fg, P) are obtained. Note
that the geometry factors (Fg and P) depend on the inner and outer radius of annulus only; therefore,
it can be viewed as a constant value.

Nu = 0.409(
Ta2

Fg
)

0.241

, for 104 <
Ta2

Fg
< 107 (10)

where

Ta =
ω[ (ro+ri)

2 ]
0.5
(ro − ri)

1.5

ν
; Fg = (

π4

1697
)(1− (ro − ri)

(ro + ri)
)
−2

P−1;

P = 0.0571{1− 0.652(
ro − ri

ri
)}+ 0.00056{1− 0.652(

ro − ri
ri

)}
−1

and ri and ro are the inner and outer radius. Namely, the coefficient of forced heat convection can
be derived in Equation (11), which is proportional to ω0.482. Thus, it is appropriate to formulate the
thermal resistance of forced convection near annulus as a function of ω−0.482 in Equation (12).

hannulus ∝ Nu ∝ Ta0.482 ∝ ω0.482 (11)

Rannulus =
1

hannulus Aannulus
∝ ω−0.482 (12)

According to [28], free convection around a horizontal cylinder and stationary ambient can be
estimated by the following Equation (13).

Nu = {0.6 + 0.387[
GrPr

[1 + (0.559/Pr)9/16]
16/9 ]

1/6
}

2

f or 10−5 < GrPr < 1012 (13)

where
Pr = νair

αair
; Gr = gβ(Ts−Ta)D3

ν2
air

(1)
= g(Ts−Ta)D3

Tf ν2
air

(1)β ∼ 1
Tf
(idea gas approximation); Tf =

Ts+Ta
2

Except for the material properties and geometry factor, the free convection coefficient is dependent
on the spindle surface temperature (Ts) and ambient temperature (Ta) particularly. It would be difficult
to simulate the free convective phenomenon according to the temperature difference. Alternatively,
the rotational speed has strong correlation to the temperature difference. We assume that the free
convective coefficient can be expressed as the function in Equation (14). Hence, the free convective
thermal resistance can be derived as two terms, a constant term and a speed-related term. Especially,
all of the assumptions must be verified by experimental results, and it will be further discussed in
Section 5.

h f ree = h f ree,c + h f ree,sωn

R f ree =
1

h f ree,c A+h f ree,sωn A = R f ree,c ‖ R f ree,s
(14)

In general, the radiative thermal resistance can be expressed as Equation (15). It indicates that the
resistance of thermal radiation depends on surface temperature (Ts) and ambient temperature (Ta).
Due to the extremely tiny value of Stefan-Boltzmann constant (σ) and the emissivity (ε), the influence
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of surface temperature variation would be limited. Consequently, the radiative thermal resistance can
be considered as a constant value, which would be further verified by experiment.

Rrad =
1

εσA(T2
s + T2

a )(Ts + Ta)
(15)

The thermal capacitance is directly determined by the element properties (volume, heat capacity,
density) through Equation (16). It represents the store of energy that is required to increase the
temperature. In other words, the thermal capacitance value is determined once the spindle structure
is designed in practice. Thereby, it is assumed as a constant, when considering that the material
properties remain relatively the same under different operating conditions. The estimated value of
each thermal capacitance has the decisive influence on the thermal time constant.

C = ρVcp (16)

2.2. System Identification Technique

The TNM of machine tool spindle is identified by system identification methodology based on
physical concept, namely the so-called grey-box estimation. It is utilized to predict the temperature
distribution of spindle. Figure 1 explains the system identification procedure for the TNM of machine
tool spindle comprehensively. First, through the temperature data measured at steady state, solve
for the thermal resistances of TNM at operating mode by means of the “lsqnonlin” function and
the “trust-region-reflective” algorithm; the aforesaid function and algorithm are the nonlinear least
square regression provided by MATLAB [29]. Second, solve for the thermal capacitance of TNM by
means of the “greyest” function provided by MATLAB; that function is exactly the grey-box model
identification [29]. Finally, the thermal resistances at natural cooling mode are obtained by the grey-box
model identification as well. The least square system identification problem usually exists non-unique
solutions satisfying the cost function (minimization). It is expected that some irrational solutions can
be eliminated based on physical sense, for example, the convective thermal resistance is generally
greater than the conductive one. Furthermore, it must be emphasized that while inversely estimate
the heat generation, thermal resistance, and thermal capacitance at the same time, some analogous
solutions might occur because different solutions with the same ratio among all of the parameters
might introduce the same result. Fortunately, the total thermal capacitance (∑4

j=1 Cj) is a constant
value; thus, the appropriate solution can be determined accordingly. Finally, it is necessary to verify
the performance of the estimated TNM; hence, the self-validation and external validation are further
investigated in Section 5.
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3. Parameterization Methodology for the Thermal Network Model of Spindle

3.1. Parameterization Strategy

The assumptions for modeling the TNM are listed as follows:

(1) lumped element model assumption is valid, Bi << 0.1;
(2) temperature distribution of spindle is axisymmetric;
(3) heat generation and forced convective resistance are assumed according to the theoretical and

empirical Equations (5), (9), and (12);
(4) heat transfer through radiation and conduction are considered as a constant thermal resistance,

including thermal contact resistance; and,
(5) free convection coefficient is assumed as a function of h f ree,c + h f ree,sω−0.5.

According to previous research, the temperature distribution of spindle is almost axisymmetric.
For this reason, the two-dimensional heat equation with internal heat generation can be implemented
to describe the three-dimensional thermal behavior. Furthermore, based on the assumption of lumped
element model, the TNM can characterize the heat transfer inside the spindle.
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3.2. Estimated Thermal Network Model in State-Space

While the spindle operates at a constant rotational speed, the frictional heat generation are
assumed to be a constant source, denoted as Qf1, Qf2. As a result, the heat balance equation with
internal heat generation is expressed as

[C]
∂{T}

∂t
= [K]{T}+ [Ka]{Ta}+ {QH} (17)

The authors define the temperature difference (θ) with respect to the ambient temperature.

{θ(t)} ≡ {T(t)} − Tatm (18)

Substituting it into Equation (17) gives the heat balance equations

[C]
∂{θ}

∂t
= [K]{θ}+ {QH} (19)

Consider the physical insight and geometry of the spindle; we construct the lumped-parameter
TNM of the spindle with four nodes, illustrated in Figure 2, which are rear bearing A (T1), midpoint
of housing (T2), front bearing D (T3), midpoint of shaft (T4), respectively. The specific locations will
be illustrated latterly in Section 4.2. TNM contains four types of components, thermal resistance,
speed-related thermal resistance, thermal capacitance, and heat source. The authors classify the
thermal behavior of spindle into two modes, operating mode and natural cooling mode. At operating
mode, the spindle is operated at a constant rotation speed and the initial temperature is equal to the
ambient temperature, illustrated in Figure 2a. At natural cooling mode, the spindle is stopped and
releases the heat that is stored during operating mode, as illustrated in Figure 2b. The state-space
representation of the TNM at operating mode is expressed as{ .

x(t) = Aopx(t) + Bopu(t)
y(t) = Copx(t) + Dopu(t)

(20)
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According to the assumptions, the convective resistance coefficient (ravj, r24) and the heat
generation coefficient (qf1–qf4) are unknown parameters needed to be solved.

Ravj = ravj(ω/ω0)
−0.5, R24 = r24(ω/ω0)

−0.482

Q f 1 = q f 1(ω/ω0)
5/3 + q f 3(ω/ω0)

1

Q f 2 = q f 2(ω/ω0)
5/3 + q f 4(ω/ω0)

1

(21)

where ω0 is 5000 rpm, thus the unit of the coefficients can be meaningful. At steady state, the thermal
capacitances can be ignored due to the temperature derivative terms decay at steady state. Therefore,
rewriting the heat balance equation as:

Astdθ + Bstdθω0.482 + Cstdθω0.5 + Dstdω5/3 + Estdω1 = 0 (22)

Equation (22) is a Single-Input-Multiple-Output (SIMO) system whose input is the spindle rotation
speed (ω) while the spindle temperatures (θ) are the outputs. As the speed-related parameters varying
with different spindle rotation speeds, the thermal response of TNM would change as well; therefore,
these nonlinear behaviors make the TNM more complicated. Likewise, the state-space representation
of the TNM at natural cooling mode is expressed as:

.
x(t) = Ancx(t) + Bncu(t), xi(0−) = θi(0−)

y(t) = Cncx(t) + Dncu(t)
(23)

The specific system parameter matrices are shown in Appendix A.

4. Experiment Setup

4.1. Self-Made Bluetooth Temperature Sensor Module

The performance (accuracy, resolution, stability . . . ) of the sensor is one of the key points directly
affecting the quality of the system identification results. Due to the high stability and accuracy of
RTD, the authors develop a BTSM that provides multi-channel temperature measurement with high
precision. Figure 3a shows the circuit design of BTSM, it is implemented with a Bluno Beetle [30] as
the microcontroller, a 24-bit AD7794 [31] as the analog-to-digital converter, a reference resistor with
low temperature coefficient of resistance, 4-wire Kelvin measurement, and the Printed Circuit Board
(PCB) Layout (Figure 3b). After several versions of evolution, the BTSM (Figure 4a) has achieved
with high accuracy of ±(0.1 + 0.0029|ϑ|) ◦C, the resolution of 0.00489 ◦C, and the module size is only
Ø40 mm × 27 mm. The specification is listed in Table 1. As the front-end temperature acquisition
element, three types of temperature probe (screw type, magnetic mount type, and probe type) are
fabricated by platinum RTD (PT1000) and sealed with thermal conductive Gel (Figure 4a). Magnet
type probe is made for surface temperature measurement, and the other types are made for the shaft,
housing, bearing temperature measurement. The fabrication process of the temperature probe is shown
in supplementary materials Figure S1. It should be mentioned here that, to improve the precision of
the BTSM, the Kalman filter is used to filter the noise from the measured temperature signal.
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Table 1. BTSM Specification.

Sensor
Element Accuracy [◦C] Resolution

[◦C]
Measurement

Range [◦C]
Power
[mW]

Module Size
[mm3]

RTD ±(0.1 + 0.0029|ϑ|) 0.00489 −40~150 7 Ø40×

4.2. Experiment Setup

For validating the commercial application of the present TNM and BTSM, the authors purchased
a customized, but without loss of generality, spindle warm-up system. Illustrated in Figure 4b,
it contains a spindle driven by a 7.5 kW motor through belt, a controller accompanying with a PC being
used to conduct the programmable control of motor, a commercial thermocouple device being used to
verify the feasibility of the self-made BTSM, etc. The embedded locations of the temperature probes
are designed based on the thermal characteristic of machine tool spindle. Specifically illustrated in
Figure 5, the temperature sensors are strategically located at 12 nodes near the front and rear bearings,
spindle housing, shaft, spindle surface, and ambient temperature, respectively.
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5. Results

The transient temperature distribution of spindle is measured by BTSM at various rotation speeds.
Figure 6a shows a typical temperature rise curves at the rotation speed of 6021 rpm. Note that,
at operating mode is similar to the charging mode of R-C circuit, more specifically, the zero-state
response. Likewise, the temperature fall behavior at the natural cooling mode is similar to the
discharging mode of R-C circuit, more specifically, the zero-input response. Turn off the spindle right
after reaching its steady state, meanwhile insert the temperature probe into the shaft. Consequently,
the complete steady-state temperature distribution of spindle can be measured. Zoom in the region of
the rectangular frame line of Figure 6a, namely the transition from operating mode to natural cooling
mode, Figure 6b reveals that the uneven temperature distribution accumulated at operating mode
will gradually reach the thermal equilibrium in nearly 1000 s. After that, the entire spindle behaves
relatively as a homogeneous temperature element and cools through free heat convection and radiation
heat transfer. It implies that the thermal convective resistances are greater than the thermal conductive
resistances. As a result, it further proves that the lumped element assumption is valid. Following the
system identification procedure, as mentioned in Section 2.2, the estimated parameters of the TNM are
listed in Tables 2 and 3, and the value of the thermal parameters are calculated at the rotational speed
of 5000 rpm.
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Table 2. Estimated thermal parameters of TNM on operating mode.

Parameter Value Parameter Value Parameter Value

R12 [KW−1] 0.1263 Ra1 [KW−1] 0.884 Rav3 [KW−1] 1.0032
R14 [KW−1] 0.1537 Ra2 [KW−1] 1.393 qf1 [W] 37.162
R23 [KW−1] 0.5954 Ra3 [KW−1] 3.071 qf2 [W] 28.406
R24 [KW−1] 3.609 Rav1 [KW−1] 1.498 qf3 [W] 0.0043
R34 [KW−1] 0.48 Rav2 [KW−1] 0.303 qf4 [W] 0.0073

Table 3. Estimated thermal parameters of TNM on natural cooling mode.

Parameter Value Parameter Value Parameter Value

R12 [KW−1] 0.1263 R′a1 [KW−1] 18.765 C1 [JK−1] 5375.8
R14 [KW−1] 0.1537 Ra2 [KW−1] 1.393 C2 [JK−1] 3545.8
R23 [KW−1] 0.5954 R′a3 [KW−1] 6.496 C3 [JK−1] 10,931.7
R′24 [KW−1] 6.737 R′a4 [KW−1] 2.497 C4 [JK−1] 625.4
R34 [KW−1] 0.48

To verify the assumptions of the free convective and radiative heat transfer, the measured
temperature of rear bearing (T1) at steady state is used to simulate hfree and hrad. Due to the temperature
of rear bearing is the highest one among all of the other positions, the simulation results can indicate
the significant influence. In Figure 7a, the approximate computation of Rrad (the purple dashed
line) from Equation (15) is almost a constant value. As for free convective heat transfer coefficient,
the authors consider the spindle to be a homogeneous cylinder with the diameter (D) of 0.135 m
and length (L) of 0.278 m, and its other material properties are based on 25 ◦C. Consequently,
the approximately calculated Rfree (green dotted line) from Equation (13) can be curve-fitted with

the formula 1/A
(

h f ree,c + h f ree,sω−0.5
)

. For this reason, it is appropriate to adopt these assumptions.
Figure 7b shows the predicted heat generations of rear and front bearings. One can estimate the
dissipated heat through radiation (Qrad.approx.) and free convection (Qfree.approx.) by means of the
preceding approximated hfree and hrad. Furthermore, Figure 7a shows the speed-dependent parameters
with respect to the rotational speed. It indicates that the nonlinear behavior is more significant under
lower rotational speed. For this reason, it is necessary to take the speed-dependent thermal behavior
into consideration. In other words, due to the varying of the thermal parameters, the poles of the
estimated TNM would slightly change with different operating speeds, which will be discussed latterly
in Section 5.4.
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5.1. Steady State Self-Validation

After applying the nonlinear least square estimation to find the minimum 2-norm solution of the
overdetermined system in state space representation, the global solutions at steady state can be found,
which represent the sets of the optimized thermal resistance value. First, the model is self-validated at
steady state through a mutual comparison of the predicted and measured temperature at five different
rotation speeds, say 4006, 5013, 6021, 7023, and 8028 rpm, as shown in Figure 8a. The predicted and
measured temperatures agree very well with each other, and the maximum mean average percentage
error (MAPE) is only 5.54%. Moreover, it should be emphasized that the heat generation and steady
state temperature are closely related, which is confirmed from the similarity of Figures 7b and 8b.
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5.2. Transient State Self-Validation

The grey-box model identification technique is implemented to estimate the remaining parameters
of the TNM at both operating and natural cooling modes. The transient self-validations are obtained by
comparing the transient temperatures rise estimated by TNM with the measured ones. Five transient
states are validated; namely, the spindle runs from stationary to five different steady speeds, say
4006, 5013, 6021, 7023, and 8028 rpm. Figures 9 and 10 show promising validation with the minimum
normalized mean square errors (NMSE) of 94.2% at operating mode and 95.8% at natural cooling mode.
When the spindle operates at operating mode, the spindle shaft rotates at a constant speed; hence,
the temperature probe is not able to contact the shaft. For this reason, the experimental temperature
of spindle shaft (T4) cannot be obtained, and the T4-est represents the estimated shaft temperature,
as shown in Figure 9d.
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5.3. External Validation

To verify the performance and robustness of the TNM, the external validation is necessary.
The experiment under stepwise rotational speed (3001, 5018, 7028 rpm) is utilized especially. The results
(Figure 11) reveal that the predicted temperature is in satisfactory agreement with the experimental
results. As a result, this TNM methodology is appropriate to implement to the machine tool spindle as
a simplified thermal model.
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Figure 11. External validation between measured temperature and predicted temperature of estimated
TNM under stepwise rotational speed (3001, 5018, 7028 rpm).

5.4. Model Order Reduction

To implement the system parameter estimation into a micro control unit for real-time onboard
application on edge computing, the order of TNM model should be further simplified to reduce the
load of computation and data storage. MOR technique is an excellent approach for reducing the
complexity of the estimated TNM. Balanced realization method is proposed to reduce the 4th-order
TNM into 1st-order truncated model, which is a simplified realization with equal controllability and
observability. Figure 12a shows the Hankel singular values of the estimated TNM; it points out that
there exists a leading state with the larger value than other states. For this reason, we remove the less
three states (2, 3, 4) and apply the first dominant state to reconstruct the 1st-order truncated TNM.
The pole location of the estimated TNM and truncated model are shown in Figure 12c. In addition,
the Bode diagram illustrates the relationship between the input heat generation (Qf1, Qf2) and the
output temperature T1 to T4 at rotational speed of 6000 rpm. It indicates that the truncated model
has equivalent performance to the original estimated TNM under low frequency (<10−3) condition,
as shown in Figure 13.
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The Short Circuit Time Constant (SCTC) method provides an approximation of the poles of the
estimated TNM. Each pole can be calculated according to each thermal capacitance multiplied by the
nearby equivalent parallel thermal resistance while the other capacitances are short circuited, refer to
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Figure 12b. As the aspect of system degradation, we can simply recognize the time-varying trend by
examining the variation of the time constant instantly by applying SCTC method.

6. Conclusions

In this article, we investigate the possibility of simplifying the spindle thermal behaviors
by estimating the lumped-parameter TNM with system identification technique. We classify the
spindle heat transfer condition into two modes, the operating mode and the natural cooling mode.
The predicted thermal response of TNM agrees well with the experimental temperature results,
verified by self-validation and external validation. In the aspect of the real-time onboard application,
the reduced-order model by balanced realization has successfully lowered the computational
complexity. In practice, the spindle warm-up procedure is essential to all of the machine tool spindles,
especially for the new spindle. By operating at step-wise speeds, the lubricant within the spindle
bearings can be evenly spread. The modeling methodology in this research can be appropriately
integrated with the warm-up procedure and establish the estimated TNM for further operation.
Figure 14 summarizes that the TNM methodology has the ability to predict the spindle thermal
behavior; and the BTSM provides real-time monitoring the spindle temperature distribution. In that
case, the vision of edge computing within a minimize temperature sensor module can be realized by
integrated with the estimated TNM performed as the thermo-feature identification system (TID-sys),
which can be customized for each machine tool spindle. Figure 15 demonstrates the real-time user
interface of TID-sys on smartphone and PC. On the right-hand side, the TID-sys diagnosis the state
(normal or alarm) of the machine tool spindle displayed through the terminal App [32] on smartphone.
On the left-hand side, the measured temperature (black dot) of rear bearing (T1), midpoint of housing
(T2), and front bearing (T3) attempt to grow along with the curve predicted by the estimated TNM.
The TID-sys ensure that the machine tool spindle runs under normal condition. Once the significant
temperature variation or abnormal temperature rise is detected, the operator can slow down the
spindle or even stop for early protection. The full demonstration video is shown in supplementary
materials Video S1.
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Appendix A. System Parameter Matrices

The input, output and state vector of TNM and linear in state space representation:

x = [ θ1 θ2 θ3 θ4 ]
T

u = [ Q f 1 0 Q f 2 0 ]
T

y = [ θ1 θ2 θ3 θ4 ]
T

(A1)

The heat balance equations of TNM:

−θ1
Ra1

+ −θ1
Rav1

+ θ2−θ1
R12

+ θ4−θ1
R14

+ Q f 1 = C1
.
θ1

−θ2
Ra2

+ θ1−θ2
R12

+ θ3−θ2
R23

+ θ4−θ2
R24

= C2
.
θ2

−θ3
Ra3

+ −θ3
Rav2

+ θ2−θ3
R23

+ θ4−θ3
R34

+ Q f 2 = C3
.
θ3

−θ4
Rav3

+ θ1−θ4
R14

+ θ2−θ4
R24

+ θ3−θ4
R34

= C4
.
θ4

(A2)
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The TNM system matrices of state-space representation at operating mode:

Aop = Aop_cond + Aop_conv

Aop_cond =



(−R−1
12 − R−1

14 )C
−1
1 R−1

12 C−1
1 0 R−1

14 C−1
1

R−1
12 C−1

2 (−R−1
12 − R−1

23 − R−1
24 )C

−1
2 R−1

23 C−1
2 R−1

24 C−1
2

0 R−1
23 C−1

3 (−R−1
23 − R−1

34 )C
−1
3 R−1

34 C−1
3

R−1
14 C−1

4 R−1
24 C−1

4 R−1
34 C−1

4 (−R−1
14 − R−1

24 − R−1
34 )C

−1
4



Aop_conv =



(−R−1
a1 − R−1

av1)C
−1
1 0 0 0

0 −R−1
a2 C−1

2 0 0

0 0 (−R−1
a3 − R−1

av2)C
−1
3 0

0 0 0 −R−1
av3C−1

4


Bop = diag(C−1

1 , C−1
2 , C−1

3 , C−1
4 );

Cop = I4×4; Dop = O4×4;

(A3)

The TNM system matrices of state-space representation at steady state:

Astd =


−R−1

a1 − R−1
12 − R−1

14 R−1
12 0 R−1

14

R−1
12 −R−1

a2 − R−1
12 − R−1

23 R−1
23 0

0 R−1
23 −R−1

a3 − R−1
23 − R−1

34 R−1
34

R−1
14 0 R−1

34 −R−1
14 − R−1

34



Bstd =


0 0 0 0

0 −r−1
24 0 r−1

24

0 0 0 0

0 r−1
24 0 −r−1

24

; Cstd =


0 0 0 0

0 0 −r−1
av2 0

0 0 0 −r−1
av3

;

Dstd =


q f 1 · · · q f 1
0 · · · 0

q f 2 · · · q f 2
0 · · · 0

; Estd =


q f 3 · · · q f 3
0 · · · 0

q f 4 · · · q f 4
0 · · · 0

;

(A4)

The TNM system matrices of state-space representation at natural cooling mode:

Anc = Anc_cond + Anc_conv

Anc_cond =


(−R−1

12 − R−1
14 )C

−1
1 R−1

12 C−1
1 0 R−1

14 C−1
1

R−1
12 C−1

2 (−R−1
12 − R−1

23 − R′−1
24 )C−1

2 R−1
23 C−1

2 R′−1
24 C−1

2

0 R−1
23 C−1

3 (−R−1
23 − R−1

34 )C
−1
3 R−1

34 C−1
3

R−1
14 C−1

4 R′−1
24 C−1

4 R−1
34 C−1

4 (−R−1
14 − R′−1

24 − R−1
34 )C

−1
4



Anc_conv =


R′−1

a1 C−1
1 0 0 0

0 −R−1
a2 C−1

2 0 0

0 0 −R′−1
a3 C−1

3 0

0 0 0 −R′−1
a4 C−1

4


Bnc = O4×4; Cnc = I4×4; Dnc = O4×4;

(A5)

Mean average percentage error:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ x f orecast,i − xactual,i

xactual,i

∣∣∣∣× 100% (A6)
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Normalized mean square error:

NMSE = 1−
‖xre f − x‖2

‖xre f − xre f ‖2 (A7)
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