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Abstract: The ring laser gyro (RLG) dither axis will bend and exhibit errors due to the specific
forces acting on the instrument, which are known as g-sensitive misalignments of the gyros.
The g-sensitive misalignments of the RLG triad will cause severe attitude error in vibration or
maneuver environments where large-amplitude specific forces and angular rates coexist. However,
g-sensitive misalignments are usually ignored when calibrating the strapdown inertial navigation
system (SINS). This paper proposes a novel method to calibrate the g-sensitive misalignments of
an RLG triad in linear vibration environments. With the SINS is attached to a linear vibration
bench through outer rubber dampers, rocking of the SINS can occur when the linear vibration is
performed on the SINS. Therefore, linear vibration environments can be created to simulate the
harsh environment during aircraft flight. By analyzing the mathematical model of g-sensitive
misalignments, the relationship between attitude errors and specific forces as well as angular
rates is established, whereby a calibration scheme with approximately optimal observations is
designed. Vibration experiments are conducted to calibrate g-sensitive misalignments of the RLG
triad. Vibration tests also show that SINS velocity error decreases significantly after g-sensitive
misalignments compensation.
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1. Introduction

Strapdown inertial navigation systems (SINS) has been widely used in many applications. In order
to improve the SINS accuracy, many techniques have been adopted, such as the zero velocity updated
(ZUPT) technique [1], the data processing technique [2], and the Kalman filter technique [3,4]. A SINS
based on Micro-Electro-Mechanical Syetem (MEMS) has also been used in some highly dynamic
environments [5]. In high accuracy applications, the ring laser gyro (RLG) has become a common
instrument in SINS for spacecraft and other aerospace systems [6]. In these applications, SINS may
be employed in harsh working environments, e.g., vibration environments, maneuver motions with
large-amplitude specific forces and angular rates, or other highly dynamic environments. The laser
block of an RLG is mounted on the inertial measurement unit (IMU) base through a dither suspension
structure. However, because the transverse stiffness of the RLG dither axis is limited [7], the RLG dither
axis will bend and exhibit errors due to the specific forces acting on the instrument, which are known as
g-sensitive misalignments of the gyros. Namely, the laser block of the RLG will tilt under the influence
of specific forces. The g-sensitive error is usually taken into consideration when calibrating MEMS
gyros [8,9]. However, the calibration of g-sensitive misalignments regarding high-accuracy RLGs is
usually ignored for general applications [10,11]. In aerospace applications, due to the presence of great
acceleration and angular rate, g-sensitive misalignments of the RLG triad will introduce equivalent gyro
drift, causing further attitude error and velocity error. Hence, g-sensitive misalignments compensation
must be taken into consideration in the SINS navigation software.
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In order to reduce the influence of g-sensitive misalignments in a vibration environment,
parameter optimization has been applied to the RLG dither suspension structure [12], and the vibration
isolation structure of the SINS has been elaborately designed [13]. However, the vibration tests
performed on the laser SINS for a Cyclone-4 launch vehicle still reveal that the performance degrades
regardless of careful vibration isolation design, and equivalent gyro drift occurs in the SINS [14].
In References [15,16], a Kalman filter and a multi-position calibration method are adopted to estimate
the RLG g-dependent biases; however, the method to calibrate g-sensitive misalignments of the
RLG triad is not discussed. The influence of g-sensitive misalignment errors upon the estimation
accuracy of SINS error parameters is verified via numerical simulations in Reference [17]. The drift
errors caused by RLG dither axis bending are analyzed in Reference [18]; however, only theoretical
and simulation results are discussed. The calibration and compensation methods are not given in
Reference [18]. A calibration method is proposed in Reference [19], in which a sequence of coning
tests on a high-precision three-axis turntable are conducted to estimate the g-sensitive misalignments
of the RLGs caused by gravity; however, the procedures are very complicated and time-consuming.
The calibration method proposed in Reference [18] is based on static tests and is only suitable in
low-g (less than 1 g) environments. In addition, actual calibration experiments and vibration tests are
not conducted.

This paper presents a novel method to calibrate the g-sensitive misalignments of an RLG triad
in linear vibration environments. The g-sensitive misalignments of the RLG triad is deduced and
the mechanism is analyzed. An equivalent gyro drift model is established to express the error
caused by g-sensitive misalignments, which builds a relationship between the equivalent gyro drift
and the specific forces as well as the angular rate. Further, the attitude error caused by g-sensitive
misalignments is analyzed, whereby a calibration method based on vibration experiments is designed.
To fully excite the errors caused by g-sensitive misalignments, vibration experiments are elaborately
designed. With the SINS attached to a linear vibration bench through outer rubber dampers, rocking
of the SINS can occur when the linear vibration bench is employed. Therefore, linear vibration
environments can be created to simulate the harsh environment during aircraft flight. In this condition,
g-sensitive misalignments of the RLG triad will cause severe attitude errors. By analyzing the
mathematical model of g-sensitive misalignments of an RLG triad, the attitude error observation
equations are deduced. With error parameter sensitivity maximized, a calibration scheme with
approximately optimal observations is designed. Experiments are also conducted to validate the
method proposed in the paper.

2. Mathematical and Model

Because of the dither suspension structure, the RLG dither axis will bend and exhibit errors due
to the specific forces acting on the instrument, which are known as g-sensitive misalignments of the
gyros. The bending of X RLG dither axis under specific forces, depicted in Figure 1, is taken as an
example to explain the mechanism of g-sensitive misalignments. As shown in Figure 1, the X RLG
body coordinate frame-bgx is defined as follows: gxx-axis coincides with the X gyro sensitive axis,
namely, the bx-axis of the SINS body frame-b; gxy and gxz-axes are parallel to the by and bz-axes of
the SINS body frame, respectively. The X RLG body coordinate frame-bgx and SINS body frame-b are
right-hand orthogonal coordinate frames. They are nominally parallel.
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Figure 1. Bending of the ring laser gyro (RLG) dither axis and corresponding g-sensitive 

misalignments. 
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Figure 1. Bending of the ring laser gyro (RLG) dither axis and corresponding g-sensitive misalignments.

In general, the frame-bgx is parallel to the SINS body frame-b. However, if the specific forces act
on the X RLG, the aforementioned two coordinate frames will no longer be parallel. There will be a
small angle between them. A rotation vector denoted by θgx can be used to express the rotation from
the frame-b to the frame-bgx , and is given by:

θgx =
[

0 −θxz θxy

]T
(1)

where θxz and θxy respectively denote the X gyro-sensitive axis misalignment toward bz and by-axes of
the SINS due to specific forces acting on the X RLG. The quantity of θgx is a small angle. The angular
rate of X RLG expressed in the frame-bgx is given by:

ω
bgx
ibgx

= C
bgx
b ωb

ib (2)

where ω
bgx
ibgx

is the angular rate of X RLG expressed in the frame-bgx , ωb
ib is the true angular rate of

the SINS expressed in the frame-b, and C
bgx
b is the direction cosine matrix from the frame-b to the

frame-bgx .
Based on small angle assumption, the direction cosine matrix from the frame-b to the frame-bgx ,

i.e., C
bgx
b , can be expressed as C

bgx
b ≈ I3 − θgx×. Hence, Equation (2) can be rewritten as:

ω
bgx
ibgx

=
(

I3 − θgx×
)
ωb

ib

= ωb
ib − θgx ×ωb

ib

(3)

where I3 denotes a unit matrix, and θgx× denotes the skew symmetric matrix of vector θgx .
Rewriting Equation (3) in components form leads to another identical expression:

ω
bgx
ibgx

=

 ωb
ibx + ωb

ibyθxy + ωb
ibzθxz

ωb
iby −ωb

ibxθxy

ωb
ibz −ωb

ibxθxz

 (4)

In fact, only the first component of Equation (4) can be sensed by X RLG. The term
ωb

ibyθxy + ωb
ibzθxz denotes the equivalent gyro drift caused by the g-sensitive misalignments of X

RLG. To clarify, we use ω̃b
ibx to represent the angular rate sensed by X RLG, i.e., the first component of

ω
bgx
ibgx

. Hence, we obtain:

ω̃b
ibx = ωb

ibx + ωb
ibyθxy + ωb

ibzθxz (5)
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Analogously, the angular rates sensed by Y RLG and Z RLG are respectively given by:

ω̃b
iby = ωb

iby + ωb
ibxθyx + ωb

ibzθyz (6)

ω̃b
ibz = ωb

ibz + ωb
ibxθzx + ωb

ibyθzy (7)

where ω̃b
iby and ω̃b

ibz respectively denote the angular rate sensed by Y RLG and Z RLG, and θij (i = x, y, z;
j = x, y, z; i 6= j) denotes the i gyro misalignment toward the j-axis due to specific forces acting on the
i gyro.

According to Equations (5)–(7), the mathematical model for the g-sensitive misalignments of an
RLG triad can be represented as:

δωb
ib = ω̃b

ib −ωb
ib = Mωb

ib (8)

with

ω̃b
ib =

 ω̃b
ibx

ω̃b
iby

ω̃b
ibz

, M =

 0 θxy θxz

θyx 0 θyz

θzx θzy 0

 (9)

where δωb
ib denotes the equivalent gyro drift of the RLG triad expressed in the body frame-b, ω̃b

ib
denotes the angular rate sensed by the RLG triad, and M denotes the g-sensitive misalignments matrix
of the RLG triad.

As shown in References [18,19], the g-sensitive misalignments in Equation (9) are proportional to
the amount of specific force acting on the RLG, which can be expressed as:[

θxy

θxz

]
=

[
f b
x τxyx + f b

y τxyy

f b
x τxzx + f b

z τxzz

]
,

[
θyx

θyz

]
=

[
f b
x τyxx + f b

y τyxy

f b
y τyzy + f b

z τyzz

]
,

[
θzx

θzy

]
=

[
f b
x τzxx + f b

z τzxz

f b
y τzyy + f b

z τzyz

]
(10)

where f b
i (i = x, y, z) denotes the i-axis specific force sensed by accelerometer triad, and τijk (i = x, y, z;

j = x, y, z; k = x, y, z; i 6= j) denotes the flexure coefficient which accounts for i gyro misalignment toward
the j-axis due to specific force along k-axis, whose unit is rad/(m/s2) or arc-second/g (1 g ≈ 9.8 m/s2).

Substituting Equations (9) and (10) into Equation (8) leads to:

δωb
ib =

 0 f b
x τxyx + f b

y τxyy f b
x τxzx + f b

z τxzz

f b
x τyxx + f b

y τyxy 0 f b
y τyzy + f b

z τyzz

f b
x τzxx + f b

z τzxz f b
y τzyy + f b

z τzyz 0

ωb
ib (11)

where ωb
ib can be expressed in components form as ωb

ib =
[

ωb
ibx ωb

iby ωb
ibz

]T
.

Equation (11) is the equivalent gyro drift induced by the g-sensitive misalignments of an RLG
triad. Twelve flexure coefficients notated as a vector τ are contained in Equation (11), and τ is given by:

τ =
[

τxyx τxyy τxzx τxzz τyxx τyxy τyzy τyzz τzxx τzxz τzyy τzyz

]T
(12)

The task of this paper is to estimate these parameters and compensate the corresponding errors.
Substituting Equation (12) into Equation (11) and rearranging Equation (11) leads to:

δωb
ib≈Γ(t)τ (13)
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with

Γ(t) =


Γ1 01×4 01×4

01×4 Γ2 01×4

01×4 01×4 Γ3


Γ1 =

[
ωb

iby f b
x ωb

iby f b
y ωb

ibz f b
x ωb

ibz f b
z
]
, Γ2 =

[
ωb

ibx f b
x ωb

ibx f b
y ωb

ibz f b
y ωb

ibz f b
z

]
Γ3 =

[
ωb

ibx f b
x ωb

ibx f b
z ωb

iby f b
y ωb

iby f b
z

]
(14)

3. Calibration Method

In this section, a calibration algorithm based on vibration tests to estimate unknown parameters
in Equation (13) is introduced, followed by a calibration scheme designed with approximately
optimal observations.

3.1. Calibration Algorithm

Based on the attitude update algorithm, the direction cosine matrix expressing the rotation from
the body frame-b to the inertial frame-i can be updated by the gyro output ωb

ib. The attitude update
algorithm is given by:

C
i
b = Ci

b[ω
b
ib×], Ci

b(t0) , Cb(t0)
b(t0)

= I3 (15)

where t0 is the start time of vibration, and the inertial frame-i is formed by fixing the b-frame at the
time t0 in the inertial space, namely, i , b(t0).

If there is no vibration acting on the SINS, the calculated attitude according to Equation (15) is
without error. However, due to the linear vibration acting on the SINS, g-sensitive misalignments
will occur. As a result, the attitude calculated by Equation (15) will exhibit great error introduced by
equivalent gyro drift. The time derivative of attitude error is given by:

φ
i
= −Ci

bδωb
ib (16)

where φi denotes the attitude error expressed in the inertial frame-i.
Substituting Equation (13) into Equation (16), taking the integral of Equation (16) from time t0 to

time tk, and rearranging it leads to:

φi(tk) =

[
−

w tk

t0
Ci

b(t)Γ(t)dt
]

τ (17)

where tk is the end time of the vibration. Here, the initial attitude error in Equation (17) is ignorable,
namely, φi(t0)≈ 03×1. According to Equation (17), τ can be estimated with attitude error observations.
Calibration experiments can be conducted through following steps:

• Step 1: The SINS is first at rest for a certain time to carry out static self-alignment. The static
self-alignment phase provides the initial attitude, which is essential information to make the SINS
work. The initial attitude is not influenced by g-sensitive misalignments.

• Step 2: The linear vibration is applied to the SINS following the static period, and lasts a few
minutes, e.g., 8–10 min. The SINS works on inertial navigation mode. Based on the initial attitude
calculated by Step 1, the SINS attitude is updated to the end of vibration. During this period, by an
elaborately designed fixed device, the attitude error of SINS is stimulated under the influence of
g-sensitive misalignments.

• Step 3: The SINS returns to the stationary state and performs static self-alignment again.
This phase is only employed to provide the correct attitude reference of SINS. Based on the
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attitude reference calculated in Step 3, the error of attitude calculated by Step 2 can be observed
and is given by: [

φi
O(tk)×

]
= I3 − C̃i

b(tk)Cb
i (tk) (18)

with
Cb

i (tk) , Cb(tk)
b(t0)

= Cb(tk)
n(tk)

Cn(tk)
n(t0)

Cn(t0)
b(t0)

(19)

Cn(tk)
n(t0)

= I3 − sin[ωie(tk−t0)]
ωie(tk−t0)

[
(ωn

ie(tk − t0))×
]
+ 1−cos[ωie(tk−t0)]

[ωie(tk−t0)]
2

[
(ωn

ie(tk − t0))×
]2

=


cos[ωie(tk − t0)] sin(L) sin[ωie(tk − t0)] − cos(L) sin[ωie(tk − t0)]

− sin(L) sin[ωie(tk − t0)] sin2(L) cos[ωie(tk − t0)] + cos2(L) sin(L) cos(L)[1− cos[ωie(tk − t0)]]

cos(L) sin[ωie(tk − t0)] sin(L) cos(L)[1− cos[ωie(tk − t0)]] cos2(L) cos[ωie(tk − t0)] + sin2(L)

 (20)

where φi
O(tk) denotes the attitude error observation at time tk, C̃i

b(tk) is the direction cosine matrix
calculated by inertial navigation, and Cb

i (tk) denotes the true direction cosine matrix at time tk

calculated by Equation (19). Cb(tk)
n(tk)

is calculated by the realignment process in Step 3, Cn(t0)
b(t0)

is

calculated by the alignment process in Step 1, and Cn(tk)
n(t0)

is calculated by Equation (20) with

ωn
ie =

[
0 ωie cos(L) ωie sin(L)

]T
being the Earth’s rotation rate, ωie the Earth rate, and L the

geographic latitude. Note that Cn(tk)
n(t0)

is determined by Earth’s rotation rate and vibration time,
and there exists an explicit relationship with them.

At least 12 different attitude error observations are required to solve the unknown parameters in
Equation (17), so several vibration experiments are needed. Figure 2 shows the calibration method
process. Considering the limitation of the north-finding accuracy, only the horizontal components of
the attitude error observations in Equation (18) are used. Equation (17) can be solved by least squares
as follows:

τ =
(

AT A
)−1

AT B (21)

with

A =



D
[
−
∫ tk

t0
Ci

b(t)Γ(t)dt
]

1

D
[
−
∫ tk

t0
Ci

b(t)Γ(t)dt
]

2
...

D
[
−
∫ tk

t0
Ci

b(t)Γ(t)dt
]

n


, B =


Dφi

O1(tk)

Dφi
O2(tk)

...

Dφi
On(tk)

, D =

[
1 0 0
0 1 0

]
(22)

where the subscript 1, 2, ..., n denotes the vibration experiment number.

Sensors 2018, 18, 601  6 of 13 

 

3( ) ( ) ( )i i b

O k b k i kt I C t C t      (18) 

with 

0

0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) k k k

k

b t b t n t n tb

i k b t n t n t b tC t C C C C  (19) 

0

2( ) 0 0

( ) 3 0 02

0 0

0 0 0

2

0

sin[ ( )] 1 cos[ ( )]
( ( )) ( ( ))

( ) [ ( )]

cos[ ( )] sin( )sin[ ( )] cos( )sin[ ( )]

sin( )sin[ ( )] sin ( )cos[

kn t n nie k ie k

n t ie k ie k

ie k ie k

ie k ie k ie k

ie k

t t t t
C I t t t t

t t t t

t t L t t L t t

L t t L

 

 

  



  
             

   

  

ω ω

2

0 0

2 2

0 0 0

( )] cos ( ) sin( )cos( )[1 cos[ ( )]]

cos( )sin[ ( )] sin( )cos( )[1 cos[ ( )]] cos ( )cos[ ( )] sin ( )

ie k ie k

ie k ie k ie k

t t L L L t t

L t t L L t t L t t L

 

  

 
 

   
 
      

 (20) 

where ( )i

O kt  denotes the attitude error observation at time kt , ( )i

b kC t  is the direction cosine matrix 

calculated by inertial navigation, and ( )b

i kC t  denotes the true direction cosine matrix at time kt  

calculated by Equation (19). ( )

( )
k

k

b t

n tC  is calculated by the realignment process in Step 3, 0

0

( )

( )

n t

b tC  is 

calculated by the alignment process in Step 1, and 
0

( )

( )
kn t

n tC  is calculated by Equation (20) with 

 0 cos( ) sin( )
Tn

ie ie ieL L ω  being the Earth’s rotation rate, ie  the Earth rate, and L  the 

geographic latitude. Note that 
0

( )

( )
kn t

n tC  is determined by Earth’s rotation rate and vibration time, and 

there exists an explicit relationship with them.  

At least 12 different attitude error observations are required to solve the unknown parameters 

in Equation (17), so several vibration experiments are needed. Figure 2 shows the calibration method 

process. Considering the limitation of the north-finding accuracy, only the horizontal components of 

the attitude error observations in Equation (18) are used. Equation (17) can be solved by least squares 

as follows: 

 
1

T TA A A B


τ =  (21) 

with 

0

0

0

1
1

2
2

( ) ( )

( )

( ) ( ) 1 0 0( )
, ,

0 1 0

( )
( ) ( )

k

k

k

t
i

b
t i

O k
t

i i
b O kt

i

t On k
i

b
t

n

D C t t dt

D t

D C t t dt D t
A B D

D t
D C t t dt

  
      

                 
  
    

    










 




 (22) 

where the subscript 1, 2, …, n denotes the vibration experiment number.  

The SINS firstly carries out static self-
alignment to provide initial attitude reference  

The linear vibration is applied to the SINS and 
lasts 10 minutes. The attitude error is stimulated  

The SINS returns to the static state and performs 
realignment to provide attitude error observation  

If the observations are sufficient, the parameters 
can be solved. If not, repeat the previous steps   
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3.2. Optimal Observations

As mentioned in Reference [20], a good observation scheme not only allows all of the unknown
parameters to be estimated, but also improves the accuracy of estimation. It is important to maximize
the sensitivity of the attitude error observations with respect to these parameters.

Because the influence of the Earth’s rotation rate is ignorable in a short time, i.e., Cn(t0)
n(t) ≈ I3,

and the attitude change induced by linear vibration satisfies small-angle approximation, i.e.,
Cb(t0)

b(t) = Cb(t0)
n(t0)

Cn(t0)
n(t) Cn(t)

b(t) ≈ I3, Equation (17) can be simplified as:

φi(tk) ==

[
−
∫ tk

t0

Ci
b(t)Γ(t)dt

]
τ =

[
−
∫ tk

t0

Cb(t0)
n(t0)

Cn(t0)
n(t) Cn(t)

b(t) Γ(t)dt
]

τ ≈
[
−
∫ tk

t0

Γ(t)dt
]

τ (23)

Taking the partial derivatives of Equation (23) with respect to the components of τ leads to the
Jacobian matrix, given as:

∂φi(tk)

∂τ
= −

∫ tk

t0

Γ(t)dt (24)

We take X RLG as an example to illustrate how to obtain the optimal observations for its flexure
coefficients. The first four columns of Equation (24) are the partial derivatives of φi(tk) with respect to
τxyx, τxyy, τxzx, and τxzz.

∂φi(tk)

∂τxyx
=
[ ∫ tk

t0
ωb

iby f b
x dt 0 0

]T
,

∂φi(tk)

∂τxzx
=
[ ∫ tk

t0
ωb

ibz f b
x dt 0 0

]T
(25)

∂φi(tk)

∂τxyy
=
[ ∫ tk

t0
ωb

iby f b
y dt 0 0

]T
,

∂φi(tk)

∂τxzz
=
[ ∫ tk

t0
ωb

ibz f b
z dt 0 0

]T
(26)

Intuitively, if the linear vibration directions are respectively along X-axes as shown in Figure 3a,c,
both the values of Equation (25) will reach their maximums accordingly. Specifically, they are
approximately optimal observations for τxyx and τxzx. If the linear vibration direction is along the
diagonal of the YZ plane as shown in Figure 3b, both the values of Equation (26) will reach their
maximums. Namely, this is an approximately optimal observation for τxyy and τxzz.
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Figure 3. Linear vibration environments generation for the optimal observations of the g-sensitive
misalignment parameters: (a) τxyx; (b) τxyy and τxzz; (c) τxzx; (d) τyxx and τyzz; (e) τyxy; (f) τyzy; (g) τzxx

and τzyy; (h) τzxz; (i) τzyz.

4. Experiment Results

Linear vibration experiments are conducted to calibrate the g-sensitive misalignments of the
RLG triad of a high-precision navigation-grade SINS. The SINS is specially designed for the aircraft.
The SINS includes three mechanically dithered gyroscopes with a bias stability of 0.005 deg/h (1σ) and
three quartz accelerometers with a bias stability of 20 µg (1σ). Before the vibration experiments, we
first calibrated the scale factor constants, misalignments, and biases of gyroscopes and accelerometers
in the laboratory. The scale factor of the RLG is very stable, with an error of less than 1 ppm, and even
as small as 0.1 ppm [21]. Compared with the errors caused by g-sensitive misalignments, the scale
factor error of the RLG is so small that it can be ignored. In addition, the size effect parameters and
nonlinear coefficients including square coefficients and cross-coupling coefficients of accelerometers
should also be calibrated in advance.

As shown in Figure 4, the SINS is directly mounted to a fixture, and the fixture is mounted to
the vibration bench through four outer rubber dampers. The rubber dampers are located under the
fixture. The fixture is L-shaped, and has two planes including a horizontal plane and a vertical plane.
By fixing the SINS to the horizontal and vertical planes of the fixture, we can perform a vibration test
on each axis of the SINS. In addition, because the inertial navigation system is a strapdown inertial
navigation system, there is no special requirement for SINS installation accuracy on the vibration
bench. The vibration bench is a THV710A linear vibration table, which is electro-dynamic. The sine
trust and random trust of the vibration bench are 50.0 kN and 50.0 kN (Root Mean Square, RMS),
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respectively. The frequency range of the vibration bench is from 1 to 2500 Hz. The natural frequency of
the selected outer rubber dampers is approximately in the bandwidth of 10~20 Hz. Compared with
the SINS’s own inner vibration isolators, the selected outer rubber dampers are far softer, so there will
be a large-amplitude angular rate sensed by the RLG triad due to the vibration acceleration acting on
the SINS. Vibration experiments are performed on the SINS with approximately optimal observations,
as shown in Figure 3. In order to increase the product of specific force and angular rate regarding
parameter sensitivity, the amplitude and frequency of vibration are set as 1.5 g and 20 Hz, which is
close to the natural frequency of the outer rubber dampers.
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Figure 4. Equipment installation.

According to the above calibration steps, the unknown parameters are solved by Equation (22).
The estimates of the component values of τ are listed in Table 1. Taking τyxy as an example, whose
value is 0.5108 arc-second/g, this means that 1 g specific force along the Y-axis causes about 0.5
arc-second of misalignment angle of the Y RLG dither axis toward the X-axis. Note that coefficients
τijj (i = x, y, z; j = x, y, z; i 6= j) account for the lateral anisoelasticity of the i RLG dither axis, whose
values are close to each other. In addition, the sign of τyxx and τyzz is positive rather than negative due
to the installation relationship of Y RLG.

Table 1. Parameter estimates.

Parameter Value (Arc-Second/g) Parameter Value (Arc-Second/g) Parameter Value (Arc-Second/g)

τxyx 0.329 τyxx 0.883 τzxx −1.353
τxyy −1.679 τyxy 0.511 τzxz −0.292
τxzx −0.418 τyzy −0.401 τzyy −1.052
τxzz −1.684 τyzz 1.100 τzyz 0.237

To verify the effect of g-sensitive misalignments compensation, a linear vibration test is conducted.
The SINS first carries out the alignment process for 15 min. Then the linear vibration along the Y-axis in
the XY plane is applied to the SINS, lasting about 10 min. The SINS works on pure inertial navigation
mode during the vibration. Figure 5 shows the details of f b

y and ωb
ibx within 0.5 s. The curves in this

figure are plotted according to the IMU gyro output and accelerometer output. By inspection of the
figure, we can obtain the frequency, amplitude, and phase information of f b

y and ωb
ibx. The frequency

of f b
y and ωb

ibx is 20 Hz. The amplitudes of f b
y and ωb

ibx are about 1 g and 36 deg/s. Due to the damping
effect of the outer rubber dampers, there is a phase difference between f b

y and ωb
ibx, whose value is

about 3π/5. Hence, the representations of f b
y and ωb

ibx are given by:

f b
y ≈ g · sin(40πt), ωb

ibx ≈
π

5
sin
(

40πt− 3π

5

)
(27)
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In this condition, the equivalent gyro drift regarding f b
y and ωb

ibx is given by:

δω ≈ τyxy f b
y ωb

ibx = τyxy
1
2
× g× π

5
×
[

cos
3π

5
− cos(80πt +

3π

5
)

]
(28)

The direct component of Equation (28) is the constant equivalent gyro drift. The value is about
0.05 deg/h, which is a great value for high-accuracy SINS. The equivalent gyro drift will further
introduce great velocity error, as shown in Figure 6. After g-sensitive misalignments compensation,
the velocity error significantly decreases. The percentage of velocity error decrease is about 61%.
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In order to further verify the effect of g-sensitive misalignments compensation, other 27 sets of
vibration experiments including fixed frequency vibration and random vibration are performed on
the SINS. The amplitude and frequency of fixed frequency vibration are listed in Table 2. For random
vibration, 0.7 g root mean square (RMS) vibration acceleration is set with constant power spectral
density (PSD) in a frequency range from 10 to 60 Hz. The vibration direction is along the diagonal
of the SINS, which makes the acceleration act on the SINS’ multiple axes at the same time. The SINS
first carries out the alignment process for 15 min before the vibration test. Each vibration experiment
lasts about 10 min. For the high-accuracy SINS, compared with the error caused by g-sensitive
misalignments in vibration, the influence of other error sources, e.g., gyro bias and accelerometer
bias, can be ignored within 10 min, which is much less than the Schuler period, i.e., 84.4 min. So, the
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major errors during the vibration for 10 min are the g-sensitive misalignments. The choice of vibration
time is for error analysis. The SINS works on pure inertial navigation mode during the vibration.
The evaluation index is the percentage of velocity error decrease after g-sensitive misalignments
compensation. Figure 7 depicts the velocity error curves in one of the random vibration tests.
After g-sensitive misalignments compensation, the velocity error decreases by 66.1%.
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Figure 7. Velocity error in random vibration.

All of the percentages of velocity error decrease corresponding with the 27 sets of vibration
experiments are listed in Table 2. A corresponding statistic pie chart is shown in Figure 8. The statistical
results show that the proportion of velocity error decreasing by more than 30% in the total results reach
about 82% after g-sensitive misalignments compensation. As shown in Table 2 and Figure 8, though
the proportion of velocity error decreasing by less than 30% is about 18%, which is affected by random
measurement error to a certain extent, the systematic errors caused by g-sensitive misalignments can
be compensated for to a large extent.

Table 2. Velocity error decreases.

Amplitude and Frequency Percentage of Velocity Error’s Decrease

1 g, 10 Hz 49.5% 61.2% 22.4%
1.5 g, 10 Hz 45. 9% 41.4% 45.3%
1.5 g, 10 Hz 20.8% 77.7% 76.0%
0.5 g, 20 Hz 67.6% 88.2% 45.5%
0.5 g, 20 Hz 54.2% 52.9% 21.0%
1 g, 20 Hz 33.7% 41.9% 52.8%
1 g, 20 Hz 48.8% 31.7% 46.8%
2 g, 20 Hz 82.2% 88.7% 21.3%
Random 62.1% 29.4% 66.1%
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5. Conclusions

In this paper, a novel method to calibrate g-sensitive misalignments of an RLG triad in linear
vibration environments is proposed to improve the SINS accuracy for applications in spacecraft
and other aerospace systems. Compared with the traditional calibration method in a gravitational
field, the method presented in this paper is based on linear vibration experiments to simulate
the harsh environment during aircraft flight. The derived mathematical model of g-sensitive
misalignments can be used to relate attitude error to specific force and angular rate. With approximately
optimal observations, g-sensitive misalignments are obtained by least squares estimations. Vibration
experiments show the validity of the proposed method.
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