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Abstract: This article proposes a novel active localization method based on the mixed polarization
multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator
target in the underwater environment by using a uniform circular antenna (UCA). The boundary
element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation.
In this method, an electric dipole source as a part of the locating system is set perpendicularly to the
plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential
of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to
obtain the field component in each direction compared with the conventional fields-based localization
method, which can be easily implemented in practical engineering applications. A simulation model
and a physical experiment are constructed. The simulation and the experiment results provide
accurate positioning performance, with the help of verifying the effectiveness of the proposed
localization method in underwater target locating.

Keywords: active electro-location; underwater; MP-MUSIC algorithm; electric dipole source; UCA

1. Introduction

Detecting and estimating the target position underwater have many important applications
including underwater localization, deep sea exploration and rescue missions in catastrophic conditions.
However, underwater localization still remains a challenge in robotics [1–3]. In the last few
decades, the acoustic-based locating method has played a main role in underwater localization [4–6].
The echolocation obtained by sonar is problematic because the varying temperature and density,
Doppler effect and background noise might cause interferences to the signal [7,8]. The light- or
map-based underwater localization method is restricted by the transparency of water, which cannot
work in a dark or turbid environment [9]. To overcome these drawbacks, in fact, nature has already
discovered an original sense to adapt well to this situation: the electric sense [1]. The electric fish has
an electric organ of discharge located at the base of its tail, which can help it detect and locate the target
in a dark and turbid environment. The electric organ of discharge generates a dipolar-shaped electric
field around the fish, which can be distorted by the surrounding objects. Then, the fish “measures”
the distortions of the electric field by using the electro-receptors distributed along its body and uses
its brain to get an image of its surroundings [10,11]. This means that understanding and imitating
the electric sense with technology would offer the opportunity to enhance the target detecting and
locating abilities of underwater robots.
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In this perspective, in [12], the authors set up an experiment by using four-point electrodes that
are placed at the apexes of a rhombus in a rigid moving frame driven by a robot. In this system, two
electrodes that are situated at the opposite apexes of the lozenge are polarized in voltage and play the
role of the electric organ of discharge, while the other two opposite electrodes play the role of receivers.
Rasnow [13] first applied a small sphere perturbation formula in a uniform electric field, which is still
very popular in the latest electro-location literature [10,14–16]. However, in this theoretical model,
the field near the target should be a uniform electric field, which means that the radius of spherical
targets should be small. Thus, the surrounding field performs as the uniform electric field. In the
works [17], an artificial electrosensory array was designed to study the feasibility in underwater robots.
The artificial electrosensory array was able to estimate the position of a plastic sphere with a diameter
of 10 mm, when the plastic sphere was 12 mm away from the electrosensory array. Their distance
estimation algorithm was realized based on the spatial distribution of the sensor measurements [18].
In Lebastard’s work [3,19], a bio-inspired method has been proposed to improve the localization
performance on the basis of the unscented Kalman filter. In Peng’s work [20], a finite element model
(FEM) of underwater an active electrolocation system based on the coupling Cole–Cole model and
Maxwell theory was built. However, in both Lebastard’s and Peng’s electro-location systems, the
electrosensory array needs to move and measure the electric field while locating the target, which is
not suitable for positioning a dangerous target in practice. In the work [21], a MUSIC-type algorithm
is proposed for locating small inclusions buried in a half-space by means of measuring the scattering
amplitude at a fixed frequency in two-dimensional space. The locating method is based on far area
theory. However, far area theory is not suitable for underwater target locating because the high
frequency radiation wave cannot be transferred a long distance.

Considering the challenges of the underwater target localization, this paper proposes a novel
solution for underwater locating based on the boundary element method (BEM) theory and mixed
polarization multiple signal classification (MP-MUSIC) algorithm. In this method, we first use the
BEM to accurately describe the induction field of the metallic target and insulator target with Poisson’s
equation. Then, a UCA system is designed, which acts as the underwater target locating sensors.
In these locating sensors, two electrodes act as the dipole source, while five electrodes situated at
the equipotential points of the dipole source play the role of receivers. One of the five electrodes is
set as the reference point, and hence, we can measure the voltage between the other four electrodes
and the reference point. Since the five electrodes of the UCA system are situated at the equipotential
points of the dipole source, they cannot receive the primary field of the dipole source. However,
they can receive the induction field from the target. In the locating procedure, we introduce the
mixed polarization MUSIC algorithm, which provides good performance and does not suffer from
the problem of non-convexity [22,23]. Different from the other MUSIC algorithms for radar, such as
root-MUSIC and beamspace MUSIC, MP-MUSIC could deal with signal polarization, which is suitable
for underwater electro-location. The position of the target can be located via finding the minimum
eigenvalue of the estimated gain matrix and the project matrix of the noise subspace by using the
MP-MUSIC algorithm [24]. We also propose a simplified locating model and introduce the Rasnow
model and canonical MUSIC for comparison in this paper. The effectiveness of the proposed method is
investigated and compared with the numerical model and simulation model. We also setup a physical
experiment to verify the proposed locating method. The results show that the proposed algorithm is
effective for underwater target locating.

2. Underwater Target Electro-Locating Method

2.1. Underwater Target Electro-Locating Model

To locate the target in the underwater environment, the electric field distribution should first be
investigated. The field distribution can be distorted by a metallic or insulator target in the underwater
environment, which is shown in Figure 1. Given the information of a target and the electric excitation
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source, the distortion can be evaluated by means of solving the forward problem model. The location
of the target can be estimated by the use of the inverse model by using the measured field data.

(a) (b)

Figure 1. (a) An example of the potential distribution distorted by the spherical metallic target;
(b) an example of the potential distribution distorted by the spherical insulator target.

For a perfect electric conductor (PEC) target located in the observation area with the boundary
∂Ω, the potential of each point in region Ω is ϕ. According to the electrostatic field theory [25], the base
Poisson equation with boundary conditions is considered, which are shown in (1), (2) and (3):

∇2 ϕ = − f , in region Ω, (1)

ϕ = ϕs, on boundary ∂Ω, (2)

∇ · ρ = 0, on boundary ∂Ω, (3)

where f is the source distribution in region Ω, ρ = ∂ϕ
∂n , and n is the norm vector on boundary surface

∂Ω pointing to the region Ω. According to Green’s function, the test function in three-dimensional
space is given in (4): 

W = 1
4πr

∂W
∂n = − 1

4πr2
∂r
∂n

r = |r− r′|
, (4)

where r is the position of the observation point and r′ is the position of the source point. Thus,
the potential ϕ on boundary surface ∂Ω can be written as:

p.v.

∫
∂Ω

Wρds− ϕs

(
1
2
+p.v.

∫
∂Ω

∂W
∂n

ds
)
=
∫

Ω
− f Wdv, (5)

where p.v. denotes Cauchy’s principal value integration. According to (3), we have:∫
∂Ω

ρds = 0. (6)

In order to solve the equation, we discretize the boundary surface into N triangular patches. Thus,
we have:

N

∑
i=1,i 6=j

Wjiρi∆si + ϕs

(
−1

2
−

N

∑
i=1,i 6=j

∂Wji

∂ni
∆si

)
=
∫

Ω
− f Wjpdv, (7)
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N

∑
i=1

ρi∆si = 0, (8)


Wji =

1
4πrji

∂Wji
∂ni

= − 1
4πr2

ji

∂rji
∂ni

rji =
∣∣rj − ri

∣∣ , (9)

where i, j = 1, 2, 3, . . . , N, ∆si denotes the i-th triangular patch of ∂Ω with the norm vector ni and σ

represents the conductivity of the material in the localization region. In this paper, the dipole source is
used as the emitter. Thus, we define rp as the position of the dipole source, and p is the dipole moment
of the dipole source. Thus, we have:

Zs
s =



0 W12∆s2 · · · W1N∆sN − 1
2 −

N
∑

i=2

∂W1i
∂ni

∆si

W21∆s1 0 · · · W2N∆sN − 1
2 −

N
∑

i=1,i 6=2

∂W2i
∂ni

∆si

· · ·

WN1∆s1 WN2∆s2 · · · 0 − 1
2 −

N
∑

i=1,i 6=j

∂WNi
∂ni

∆si

∆s1 ∆s2 · · · ∆sN 0


, (10)

Y = [ρ1 ρ2 · · · ρN ϕs]
T , (11)

Gs
p =

1
4πσ



ex ·(r1−rp)

|r1−rp|3
ex ·(r2−rp)

|r2−rp|3
· · · ex ·(rN−rp)

|rN−rp|3
0

ey ·(r1−rp)

|r1−rp|3
ey ·(r2−rp)

|r2−rp|3
· · · ey ·(rN−rp)

|rN−rp|3
0

ez ·(r1−rp)

|r1−rp|3
ez ·(r2−rp)

|r2−rp|3
· · · ez ·(rN−rp)

|rN−rp|3
0



T

, (12)

p=
[

px py pz

]T
. (13)

Then, the matrix equation resulting from (7) can be explicitly written as:

Zs
sY = Gs

pp, (14)

where Y denotes the unknowns, Gs
p represents the excitation of the electric dipole source on the

boundary surface, (·)T denotes the transpose operation and ex, ey and ez are the unit vectors in the x, y
and z directions, respectively. By solving the matrix equation, the unknowns Y are obtained:

Y = (Zs
s)
−1Gs

pp. (15)

In order to measure the potential in the locating area Ω, we assume that (K + 1) electrodes are set
at points rrec

k in the water, which act as the receiving antenna where k = 1, 2, 3, . . ., K + 1. Additionally,
we refer to the (K + 1)-th electrode as reference point. The potential of each receptor can be denoted
as follows:

ϕrec
k =

∫
Ω

f Wrecdv +
∫

∂Ω
Wrecρds− ϕs

∫
∂Ω

∂Wrec

∂n
ds. (16)

We then discretize (16), yielding:

ϕrec
k =

∫
Ω

f Wrec
kp dv +

N

∑
i=1

Wrec
ki ρi∆si − ϕs

N

∑
i=1

∂Wrec
ki

∂ni
∆si. (17)
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The matrix expression is obtained:

Ψ = Gpp + Zs (Zs
s)
−1Gs

pp, (18)

Ψref = Gref
p p + Zref

s (Zs
s)
−1Gs

pp, (19)

where:
Ψ = [ϕrec

1 ϕrec
2 · · · ϕrec

K ]T , (20)

Gp = − 1
4πσ



ex ·(rrec
1 −rp)

|rrec
1 −rp|3

ex ·(rrec
2 −rp)

|rrec
2 −rp|3

· · · ex ·(rrec
K −rp)

|rrec
K −rp|3

ey ·(rrec
1 −rp)

|rrec
1 −rp|3

ey ·(rrec
2 −rp)

|rrec
2 −rp|3

· · · ey ·(rrec
K −rp)

|rrec
K −rp|3

ez ·(rrec
1 −rp)

|rrec
1 −rp|3

ez ·(rrec
2 −rp)

|rrec
2 −rp|3

· · · ez ·(rrec
K −rp)

|rrec
K −rp|3



T

, (21)

Gref
p = − 1

4πσ


1
1
...
1


K×1

[
ex ·(rrec

K+1−rp)

|rrec
K+1−rp|3

ey ·(rrec
K+1−rp)

|rrec
K+1−rp|3

ez ·(rrec
K+1−rp)

|rrec
K+1−rp|3

]
, (22)

Zs =



Wrec
11 ∆s1 Wrec

12 ∆s2 · · · Wrec
1N ∆sN −

N
∑

i=1

∂Wrec
1i

∂ni
∆si

Wrec
21 ∆s1 Wrec

22 ∆s2 · · · Wrec
2N ∆sN −

N
∑

i=1

∂Wrec
2i

∂ni
∆si

· · ·

Wrec
K1 ∆s1 Wrec

K2 ∆s2 · · · Wrec
KN∆sN −

N
∑

i=1

∂Wrec
Ki

∂ni
∆si


, (23)

Zref
s =


1
1
...
1


K×1

[
Wrec

(K+1)1∆s1 Wrec
(K+1)2∆s2 · · · Wrec

(K+1)N∆sN −
N
∑

i=1

∂Wrec
(K+1)i
∂ni

∆si

]
, (24)


Wrec

ki = 1
4πrki

∂Wrec
ki

∂ni
= − 1

4πr2
ki

∂rki
∂ni

rki =
∣∣rrec

k − ri
∣∣ . (25)

For the dielectric target, the matrices Zs
s, Y, Gs

p, Gp, Gref
p , Zs and Zref

s have different expressions
because of the boundary condition, ρ = 0. Thus, the expression of matrices is directly given by:

Zs
s =



1
2

∂W12
∂n2

∆s2
∂W13
∂n3

∆s3 · · · ∂W1N
∂nN

∆sN
∂W21
∂n1

∆s1
1
2

∂W23
∂n3

∆s3 · · · ∂W2N
∂nN

∆sN
∂W31
∂n1

∆s1
∂W32
∂n2

∆s2
1
2 · · · ∂W3N

∂nN
∆sN

· · ·
∂WN1

∂n1
∆s1

∂WN2
∂n2

∆s2
∂WN3

∂n3
∆s3 · · · 1

2

 , (26)

Y = [ϕ1 ϕ2 · · · ϕN ]
T , (27)
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Gs
p =

1
4πσ



ex ·(r1−rp)

|r1−rp|3
ex ·(r2−rp)

|r2−rp|3
· · · ex ·(rN−rp)

|rN−rp|3
ey ·(r1−rp)

|r1−rp|3
ey ·(r2−rp)

|r2−rp|3
· · · ey ·(rN−rp)

|rN−rp|3
ez ·(r1−rp)

|r1−rp|3
ez ·(r2−rp)

|r2−rp|3
· · · ez ·(rN−rp)

|rN−rp|3



T

, (28)

Gp =
1

4πσ



ex ·(rrec
1 −rp)

|rrec
1 −rp|3

ex ·(rrec
2 −rp)

|rrec
2 −rp|3

· · · ex ·(rrec
K −rp)

|rrec
K −rp|3

ey ·(rrec
1 −rp)

|rrec
1 −rp|3

ey ·(rrec
2 −rp)

|rrec
2 −rp|3

· · · ey ·(rrec
K −rp)

|rrec
K −rp|3

ez ·(rrec
1 −rp)

|rrec
1 −rp|3

ez ·(rrec
2 −rp)

|rrec
2 −rp|3

· · · ez ·(rrec
K −rp)

|rrec
K −rp|3



T

, (29)

Gref
p =

1
4πσ


1
1
...
1


K×1

[
ex ·(rrec

K+1−rp)

|rrec
K+1−rp|3

ey ·(rrec
K+1−rp)

|rrec
K+1−rp|3

ez ·(rrec
K+1−rp)

|rrec
K+1−rp|3

]
, (30)

Zs = −


∂Wrec

11
∂n1

∆s1
∂Wrec

12
∂n2

∆s2 · · · ∂Wrec
1N

∂nN
∆sN

∂Wrec
21

∂n1
∆s1

∂Wrec
22

∂n2
∆s2 · · · ∂Wrec

2N
∂nN

∆sN

· · ·
∂Wrec

K1
∂n1

∆s1
∂Wrec

K2
∂n2

∆s2 · · · ∂Wrec
KN

∂nN
∆sN

 , (31)

Zref
s = −


1
1
...
1


K×1

[
∂Wrec

(K+1)1
∂n1

∆s1
∂Wrec

(K+1)2
∂n2

∆s2 · · ·
∂Wrec

(K+1)N
∂nN

∆sN

]
, (32)

Now, we obtain the potential matrix expression for a PEC target or dielectric target in the
underwater environment with a dipole source. The voltage between the receiving electrodes and the
reference point can be represented as:

Φ = Ψ−Ψref = G1p + G2p, (33)

where:
G1 = Gp −Gref

p , (34)

G2 =
(

Zs − Zref
s

)
(Zs

s)
−1Gs

p. (35)

It can be seen from (33) that G1 and G2 are the gain matrices [26], which correspond to the
dipole source of the receiving antenna and the induced field of the target, respectively. From (34)
and (35), it can be seen that only G2 contains the position information of the target. The manifold
G1 has no effects on the locating results, which can be regarded as the redundant item. In order to
reduce the influence of G1, an improved UCA system is designed, in which the electrodes are set
at the equipotential points for a given electric dipole source. As a result, the energy that the UCA
system received from the electric dipole source ‖G1p‖2

F would be zero in the ideal situation. Thus,
Equation (33) is simplified as:

Φ = G2p. (36)

We refer to (36) as the BEM model. It should be noted that the prior information, the radius of the
spherical target, should be known before locating by using the BEM model. As the UCA can only sense
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the field induced by the target in the observation area, the target in the BEM model can be simplified
as an equivalent dipole source. Hence, we also have the simplified model:

Φ = G3p′ =
(

Gt −Gref
t

)
p′, (37)

Gt =
1

4πσ



ex ·(rrec
1 −rt)

|rrec
1 −rt|3

ex ·(rrec
2 −rt)

|rrec
2 −rt|3

· · · ex ·(rrec
K −rt)

|rrec
K −rt|3

ey ·(rrec
1 −rt)

|rrec
1 −rt|3

ey ·(rrec
2 −rt)

|rrec
2 −rt|3

· · · ey ·(rrec
K −rt)

|rrec
K −rt|3

ez ·(rrec
1 −rt)

|rrec
1 −rt|3

ez ·(rrec
2 −rt)

|rrec
2 −rt|3

· · · ez ·(rrec
K −rt)

|rrec
K −rt|3



T

, (38)

Gref
t =

1
4πσ


1
1
...
1


K×1

[
ex ·(rrec

K+1−rt)

|rrec
K+1−rt|3

ey ·(rrec
K+1−rt)

|rrec
K+1−rt|3

ez ·(rrec
K+1−rt)

|rrec
K+1−rt|3

]
, (39)

where rt is the position of the equivalent dipole source. p′ denotes the dipole moment of the equivalent
dipole source. It can be seen that the simplified model does not need the prior information, the radius
of the spherical target, which is more flexible for estimating the position of the target. However, the
simplified model would result in higher locating error because it is an equivalent model.

2.2. Localization Based on the MP-MUSIC Algorithm

In order to estimate the position of the target, the MP-MUSIC algorithm is introduced, which
is a kind of subspace-based, high-resolution locating algorithm [23,27]. The polarization of the
incident signals does not need to be known, which is suitable for underwater target locating. For the
canonical MUSIC algorithm in direction-of-arrival (DOA) estimation, it is mainly used to estimate
the one-dimensional direction of the arriving wave, in which the phase of the wave is the main
argument of the array manifold. Different from the canonical MUSIC algorithm, in this paper, we
estimate the three-dimensional position of the target based on the voltage amplitude in each channel
in the UCA antenna, which means that the gain matrix or the array manifold is associated with the
voltage amplitude. The electric dipole source in the UCA system is associated with direct current (DC)
excitation, since the electric dipole source is a controllable source. We assume that the orientation of
the UCA system is quasi-static to the target during the measurements. During the locating process, the
localization system should measure the voltage between the receiving electrodes and the reference
point with M snapshots. Thus, the data in (36) and (37) are acquired by:

Φ(t) = Gp(t) + e(t) (40)

where Φ(t) and e(t) are K×M dimensional signal and noise matrices. The noise matrix e(t) is assumed
to be zero mean with covariance of E

{
eteH

t
}
= σe

2I, where E {·} denotes the expected value of the
argument, (·)H is the Hermitian transpose operator and I denotes the identity matrix. p(t) is a 3×M
matrix. First, MP-MUSIC estimates the array covariance matrix Φ(t) under the zero-mean white
noise assumption:

RΦ = E
{

Φ(t)Φ(t)H
}
=GE

{
p(t)p(t)H

}
GH+σe

2I. (41)

RΦ is a Hermitian matrix of full rank K. By using eigen decomposition, we have:

RΦ = UΣUH. (42)
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where Σ is the diagonal matrix with the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0. U are the corresponding
eigenvectors. According to the MP-MUSIC principle and the number of targets in this paper, the
vector space spanned by the first eigenvector is the signal subspace US. The vector space spanned by
the last (K − 1) eigenvectors is defined as the noise subspace UN. Thus, we have U=

[
US UN

]
.

The projection matrix of the noise subspace can be written as P⊥ = I−USUH
S . Then, the MP-MUSIC

spectrum can be represented as:

P =
1

λmin(GHP⊥G, GHG)
(43)

where λmin(·) indicates the minimum eigenvalue. According to the MUSIC theory, the target can be
located by finding out the peak of the spectrum P.

According to [23,26,28], we give the algorithmic steps for locating the target from the original
measured voltage data based on the BEM model:

• Step 1: Discretize the boundary of the target and calculate the boundary matrix Zs
s according to

the prior information about the target. By inversing the boundary matrix, we have (Zs
s)
−1

.
• Step 2: Measure the voltage by using the UCA; the matrix Φ(t) is formed with the size of K×M.
• Step 3: According to (41), the covariance matrix RΦ can be constructed.
• Step 4: Obtain the eigenvalues λi of the matrix RΦ via eigen decomposition, which are arranged

in decreasing order, λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0.
• Step 5: Obtain the required signal subspace US, which is the eigenvector corresponding to the

maximum eigenvalue λ1.
• Step 6: Calculate the orthogonal projector for US as P⊥ = I−USUH

S .
• Step 7: Scan the observation area where the target exists with a series locating hypothesis

rt1, rt2, · · · , rtL.
• Step 8: According to (35), calculate the matrix G2(i) for each spatial points rti, i = 1, 2, · · · , L.
• Step 9: Obtain the spectrum P(i) = 1

λmin(GH
2(i)P

⊥G2(i),G
H
2(i)G2(i))

via the generalized eigen

decomposition.
• Step 10: Find out the global maxima of Pmax = P(j). Then, the target position is estimated by rtj.

In order to express the locating processes based on the MP-MUSIC algorithm more clearly, we also
give the pseudocode in Algorithm 1.

Algorithm 1 Locating the target based on the MP-MUSIC algorithm.

Input: Zs
s, Φ(t),rt1, rt2, · · · , rtL; % input the raw data and information of the environment

Output: restimate; % output the target estimation position
1: RΦ = E

{
Φ(t)Φ(t)H};

2: [U, Σ] = eig (RΦ);
3: [λ, index_λ] =max (diag (Σ));
4: US=U (:, index_λ);
5: P⊥ = I−USUH

S ;
6: for i = 1 to L do

7: G2(i)=G2 (rti);
8: [V, D] = eig

(
GH

2(i)P
⊥G2(i), GH

2(i)G2(i)

)
;

9: P(i) =
1

min(diag(D))
;

10: end for
11: [Pmax,j] = max (P);
12: restimate=rtj;

The locating steps based on simplified model are similar to the BEM model. As the locating
method based on simplified model does not need the prior information of the target, Step 1 in BEM
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model can be neglected, and the gain matrix G2(i) in Step 8 and Step 9 is replaced by G3(i) according
to (37).

In this section, the locating methods based on the BEM model and simplified model are given
in detail by using the MUSIC algorithm. From previous analysis, the locating method based on the
BEM model needs prior information, which can accurately describe the induction field of the target.
The locating method based on the simplified model is an equivalent model, which considers the
induction field of a dipole that is close to the position of the target, making it easier to implement.

3. Numerical Examples

In this section, we present a numerical example and a simulation model to illustrate the features
of our proposed localization method. The conductivity of the locating area is σ = 4 S/m, which is the
same as the seawater. A UCA system is designed, which consists of two parts. The first part is the
emitter, which is an ideal electric dipole source. The electric dipole source is situated at (0, 0,−1) m
with the dipole moment 1 A ·m along the z-axis. The second part is the receptor, which is the ideal
points in this simulation model. The electrodes positions in the UCA system are listed in Table 1 and
shown in Figure 2. The electrodes Index Numbers 1–4 are uniformly distributed on a circle of radius
0.1 m, and the fifth electrode is set as the reference electrode. We define the output data of channel k as
the voltage between the k-th electrode and the reference electrode, k = 1, 2, 3, 4. Additionally, the five
electrodes are set at the equipotential points of the electric dipole source, which means that the voltage
from channel k should be zero when there is no target in the observation area. Then, a spherical target
with a radius of 0.05 m is discretized into 3004 triangular patches. In this locating system, we hold the
number of time samples constant at 200 for one locating operation, yielding M = 200 in (40).

Table 1. The positions of the five electrodes in the UCA system.

Index 1 2 3 4 5

x (m) 0.1 0.0 −0.1 0.0 0.0
y (m) 0.0 0.1 0.0 −0.1 0.0
z (m) 0.0 0.0 0.0 0.0 0.0075

2

4
3

5

electric dipole source

1
z

x

y

O

1 m

Figure 2. The improved UCA system with the electrodes being settled at the equipotential surface.

When the target is located near the UCA system, the voltage of each channel of the UCA system
can be obtained. Figure 3a shows the obtained voltage of each channel when the conductor target
is set at position (x, 0, 0.1). Figure 3b shows the obtained voltage when the insulator target is set
at position (x, 0, 0.1). From Figure 3, it can be seen that the voltage amplitude in Channel 1 has a
different property from the other three channels. That is because the distance between the target and
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Electrode 1 decreases as x increases when 0 ≤ x ≤ 0.1, and it increases when x ≥ 0.1. Electrodes 2
and 4 are symmetric about the x-axis, yielding that Channels 2 and 4 have the same voltage curves
when the target is located on the x-axis. The voltage of each channel contains the position information
of the target, which allows the electric-locator to estimate the target position based on the BEM and
MP-MUSIC algorithm.

(a) (b)

Figure 3. The the voltage of each channel of the UCA system when the target is set at position (x, 0, 0.1).
(a) Conductor target; (b) insulator target.

The proposed UCA system can reduce the influence of the electric dipole source. Figure 4 shows
the comparison between the magnitude of the primary energy generated by the emitter Epri and the
secondary energy reflected by the spherical target Esec. From Figure 4, it can be seen that Esec plays
the main role when 0 ≤ x ≤ 1.3 m for the conductor target and 0 ≤ x ≤ 1.0 m for the insulator target,
where the contribution of Epri can be neglected. However, for the conductor target, the Epri will not be
neglected, when the target lies in x > 1.3 m. For the insulator target, the Epri will not be neglected,
when the target lies in x > 1.0 m. In the practical scenario, the reference point is close to, but not at the
equipotential point, which causes the primary energy Epri not to be zero. Moreover, the secondary
energy Esec will decrease as the target gets far from the UCA, which results in the decrease of the ratio
of Esec

Epri
, where:

Epri = ‖G1p‖2
F , (44)

Esec = ‖G2p‖2
F . (45)

According to the measured voltage obtained from each channel of the proposed UCA system,
the spectrum can be obtained, with which the electro-locator can estimate the position of the target.
The additive white Gaussian noise is added to all measured voltage data, where the squared Frobenius
norm of the noiseless signal matrix ‖Gp(t)‖2

F is one hundred times that of the squared Frobenius
norm of the noise matrix ‖e(t)‖2

F. As a result, the signal-to-noise ratio (SNR) is 20 dB [29,30]. Figure 5
gives the spectrum images of an insulator with the radius of 0.05 m when it is situated at points
(0.1, 0, 0.1) m, (0.3, 0, 0.1) m and (0.8, 0, 0.1) m, respectively. The real position of the target is marked
with a blue point, and the highlighted spots in the spectrum images indicate the estimated positions
of the target. The peaks of the spectrum images are (0.101, 0, 0.102) m, (0.303, 0.005, 0.096) m and
(0.801,−0.004, 0.089) m, which are the estimated positions by the use of the proposed electro-locator.
The corresponding location errors are 0.003 m, 0.007 m and 0.012 m, which shows that the proposed
locating method can be applied in underwater target locating. Next, we will study the locating
performance in detail.
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Figure 4. The ratio of the magnitude of the primary energy and the secondary energy Esec
Epri

when the
target is in a different position.

(a) (b)

(c)

Figure 5. The spectrum images are given based on the MP-MUSIC for SNR = 20 dB. The real position
of the insulator target is marked with a blue point, and the highlighted spots in each of the spectrum
images indicates the estimated position of the target. (a) The spectrum image of the insulator target
whose true localization is (0.1, 0, 0.1) m; (b) the spectrum image of the insulator target whose true
localization is (0.3, 0, 0.1) m; (c) the spectrum image of the insulator target whose true localization is
(0.8, 0, 0.1) m.
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In the practical situation, the noise can affect the locating performance. Generally, the noise power
of each channel in the UCA system is constant. Thus, we add the additive white Gaussian noise to all
measured voltage data, yielding the SNR of 20 dB, when the conductor target is located at (0.8, 0, 0.1)
m. We refer to the noise as the background noise. Figure 6 shows the root mean square (RMS) errors for
locating the conductor target, which is situated at the continuous positions (x, 0, 0.1) m. From Figure 6,
it is obvious that the simplified model has the same locating performance as the Rasnow model, when
x ≤ 1.4. The reason is that both the simplified model and the Rasnow model consider the spherical
target as an equivalent electric dipole. It can also be seen that the RMS error of the three models first
decreases as x increases. The UCA system and the conductor target are both symmetrical structures,
which means that the voltage data of the four channels in the UCA system will be similar as the target
gets close to the z-axis. As a result, the simplified model, Rasnow model and BEM model have lower
locating accuracy, when the target gets close to the center of the UCA system. When the target gets far
from the center of the UCA system, the localization method can give the voltage difference between
each channel by using the three models, resulting in a decrease of the locating RMS error. However, the
secondary energy will decrease when the target is getting far from the UCA system and the energy of
the background noise remains constant. Thus, the RMS error increases when x ≥ 0.4 for the simplified
model and Rasnow model and x ≥ 0.1 for the BEM model. It should be noted that the BEM model
shows better locating performance compared with the simplified model and Rasnow model in most
cases. However, the simplified model and Rasnow model provide better locating performance when
0.3 ≤ x ≤ 0.7.

Figure 6. The locating RMS errors by using the boundary element method (BEM) model, the simplified
model and the Rasnow model.

The locating results are obtained by the use of the BEM-based model and simplified model and
compared under the same SNR. Figure 7 shows the 200-times independent locating operation by
using the BEM model and the simplified model with SNR = 20 dB when the target is situated at
(0, 0, 0.1), (0.3, 0, 0.1) and (0.8, 0, 0.1). The blue scatters in Figure 7 are the estimated positions by
using the simplified model, and the red ones are the estimated positions by using the BEM model.
In Figure 7, the average estimated positions by using the simplified model are (−0.015,−0.004, 0.215),
(0.299, 0, 0.101) and (0.816, 0, 0.102). The average estimated positions by using the BEM model are
(0.004,−0.011, 0.163), (0.305, 0, 0.100) and (0.800, 0, 0.101). It can be seen from Figure 7a that the
distribution of the blue scatters is sparser than that of the red scatters, but not obviously, which means
that the proposed localization methods have comparable localization performance, when the target
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gets close to the center of the UCA system. In Figure 7b,c, we can see that the locating method based
on the simplified model and BEM model provides better locating performance in the y-direction.

(a) (b)

(c)

Figure 7. The 200-times independent locating operation by using the BEM model and the simplified
model with SNR = 20 dB. The black cross indicates the real position of the target. (a) The estimated
position of the conductor target whose true localization is (0, 0, 0.1) m; (b) the estimated position of the
conductor target whose true localization is (0.3, 0, 0.1) m; (c) the estimated position of the conductor
target whose true localization is (0.8, 0, 0.1) m.

In order to evaluate the accuracy of the proposed localization method when the target is situated
at the continuous positions (x, 0, 0.1), the RMS errors of the estimated position by using the simplified
model and BEM model at the same SNR are given and compared in Figure 8 and Table 2. For the
simplified model, the RMS error curves are close to the others when x ≤ 0.2 and x ≥ 0.8, which means
that the RMS errors would not decrease obviously as the SNR increases. The RMS errors decrease
significantly as the SNR increases by using the BEM model. Furthermore, the BEM model provides
more accurate estimation of the position compared with the simplified model with the same SNR when
x ≤ 0.2 and x ≥ 0.8. It should be noted that the simplified model shows good locating performance
when 0.2 < x < 0.8. For example, when the target is located at (0.3, 0, 0.1), the RMS errors are 0.008 m
and 0.002 m by using the simplified model at 15 dB and 30 dB, respectively; whereas the RMS errors
are 0.012 m and 0.004 m by using the BEM model.
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Figure 8. The RMS errors of the position estimated by using the simplified model and the BEM model,
when the target is set at different positions.

Table 2. The RMS errors of the position estimated versus different SNRs.

x-Axis (m) 0 0.1 0.2 0.3 0.8 1.3

BEM model, SNR = 15 dB 0.238 0 0.006 0.012 0.019 0.011
BEM model, SNR = 20 dB 0.122 0 0.005 0.007 0.012 0.007
BEM model, SNR = 25 dB 0.081 0 0.003 0.005 0.008 0.004
BEM model, SNR = 30 dB 0.051 0 0.003 0.004 0.004 0.003

simplified model, SNR = 15 dB 0.235 0.004 0.009 0.008 0.025 0.137
simplified model, SNR = 20 dB 0.187 0.003 0.005 0.004 0.019 0.136
simplified model, SNR = 25 dB 0.201 0.003 0.004 0.002 0.016 0.130
simplified model, SNR = 30 dB 0.209 0.003 0.003 0.002 0.015 0.133

The locating performance of the proposed UCA is investigated when the target is situated at
different azimuths, which is shown in Figure 9. Two azimuths with different distances r from the center
of the UCA are taken into consideration when the SNR is equal to 20 dB. Table 3 shows the comparison
results by using the canonical MUSIC and MP-MUSIC locating algorithm, when the azimuths are zero
degrees (along the ex direction) and 45 degrees (along the (1, 1, 0) direction). From Table 3, we can
see that the locating method based on the BEM model and MP-MUSIC provides a similar locating
performance when the azimuths are zero degrees and 45 degrees. Additionally, the locating method
based on the Rasnow model and MP-MUSIC also provides a similar locating performance when the
azimuths are zero degrees and 45 degrees. However the locating error significantly increases when
r ≥ 0.8 m, compared to the BEM model with the MP-MUSIC algorithm. The BEM model and canonical
MUSIC algorithm-based locating method is sensitive to the azimuth, providing high locating errors
when the azimuth is 45 degrees. We can also see that the Rasnow model with the canonical MUSIC
algorithm could hardly give satisfactory localization when the azimuth is 45 degrees, which indicates
that the Rasnow model with the canonical MUSIC algorithm is not suitable for underwater target
locating. The comparison results in Table 3 indicate that the BEM model with the MP-MUSIC can
satisfy the locating resolution well when the azimuth changes.

In this paper, the receptor of the UCA system consists of five electrodes, yielding four
measurement channels. Theoretically, the reference point (0, 0, 0.008) and points on the circle l:
(x, y, 0) are of the same potential, where x2 + y2 = 0.12. We investigate the locating performance of the
UCA system with Q electrodes uniformly distributed on the circle (x, y, 0), Q = 3, 4, · · · , 16. Figure 10
shows the RMS of the estimated position versus the number of electrodes by using the simplified
model and BEM model, when the target is situated at (0.3, 0, 0.1) with SNR = 20 dB. From Figure 10,
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we found that increasing the number of electrodes will not improve the locating accuracy significantly.
It is obvious that the simplified model provides lower RMS errors compared with the BEM model
when Q = 3, 4 and 5. However, the RMS errors are large when the number of electrodes Q ≥ 6, and
the RMS errors are about 0.5 m. The simplified model provides the best locating performance when the
number of electrodes is four. For the BEM model, the RMS errors are stable as the number of electrodes
increases when Q = 3, 4 and Q ≥ 6. The BEM model shows the worst locating accuracy when the
number of electrodes is taken as five and the RMS error is greater than 0.05 m. Thus, according to
Figure 10, the optimal number of electrodes in the UCA system for the BEM model and the simplified
model is four.

2

4

3

5

1

z

x

y

O

45

target

45

Figure 9. The schematic diagram of the electro-locator when the azimuths of the target are 0 deg and
45 deg.

Table 3. The locating errors when the azimuths are 0 degrees and 45 degrees.

r (m) 0.1 0.2 0.3 0.7 0.8 1.0

BEM model, MP-MUSIC 0 deg 0 0 0 0.011 0.012 0.017
45 deg 0 0.001 0.003 0.005 0.008 0.029

Rasnow model, MP-MUSIC 0 deg 0.004 0.002 0.001 0.010 0.018 0.065
45 deg 0.002 0.002 0.002 0.010 0.019 0.065

BEM model, canonical MUSIC 0 deg 0 0 0 0.015 0.044 0.127
45 deg 0.001 0.004 0.022 0.377 0.464 0.674

Rasnow model, canonical MUSIC 0 deg 0.002 0.003 0.007 0.270 0.328 0.456
45 deg 0.066 0.127 0.156 0.279 0.397 0.733

In this section, a locating simulation scenario is proposed to analyze the performance of the
proposed localization methods and the UCA system. The simulation results show that both the BEM
model and simplified model provide acceptable locating accuracy, especially when 0.1 ≤ x ≤ 0.8,
compared with the Rasnow model. However, the proposed locating models show unsatisfactory
locating results when the target gets close to the center of the UCA system. The receptor of the UCA
system is specially designed, which can only sense the induction field of the target and cannot sense
the field from the emitter of the UCA system itself. We also find that the MP-MUSIC provides better
locating performance than the canonical MUSIC algorithm when the target is located at different
azimuths. It should be noted that increasing the number of receiving electrodes would not improve
the locating accuracy significantly. On the contrary, increasing the number of receiving electrodes
may result in performance degradation. For this locating scenario and the UCA system, the optimal
number of the electrodes on the circle l is four. Additionally, the gain matrix G3 of the simplified
model is much simpler than the gain matrix G2 of the BEM model. As a result, localization based on
the simplified model would reduce the computational burden. In the required real-time scenario, the
simplified model would provide more advantages.
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Figure 10. The RMS of the estimated position versus the number of electrodes.

4. Simulation Model

To further verify the effectiveness of proposed localization method, a simulation model is
implemented in a commercial electromagnetic simulator environment, the Computer Simulation
Technology (CST) Studio Suite. By using CST, the uncertainties in a practical environment such as
position error of the electrodes, the boundary effect of the water tank and position error of the target
can be neglected, which would give us more objective and credible results. In this simulation model,
we restructure the spherical target and UCA system in Section 3. The observation area is filled with
the seawater material whose conductivity is σ = 4 S/m. Four spherical PEC electrodes are situated
at (0.1, 0, 0), (0, 0.1, 0), (−0.1, 0, 0) and (0,−0.1, 0), respectively, and one spherical PEC electrode is
located at (0, 0, 0.0075) as the reference point. The radius of the five spherical PEC electrodes is 1 mm.
Two electrodes with a radius of 1 mm are set at (0, 0,−1.01) and (0, 0,−0.99) as the emitters of the
UCA system. The distortion of the field by the electrodes can be neglected because the volume is
small enough. We load the source excitation of 50 A on the two electrodes, resulting in a dipole
moment of 1 A·m. The spherical PEC target with a radius of 0.05 m is located in the observation area.
The simulation model is shown in Figure 11.

Figure 11. The simulation model schematic diagram implemented by using CST. PEC, perfect
electric conductor.

Figure 12 shows the accurate position and the estimated position of the target by using the
BEM model, simplified model and Rasnow model with the measured voltage data from the UCA
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system. In Figure 12, the black crosses represent the actual position of the target, the red dots denote
the estimated positions by using the BEM model, the green box represents the estimated positions
by using the simplified model and the blue stars are the estimated positions by using the Rasnow
model. It is easy to find that the simplified model and the Rasnow model provide the same locating
performance. The comparisons between estimated positions and the actual positions are also given
in Table 4. The estimation error by using the BEM model is 0.027 m, whereas the estimation error
by using the simplified model is 0.015 m, which verify the conclusion that the simplified model and
Rasnow model show better locating performance than that of the BEM model when 0.2 ≤ x ≤ 0.8.
It should be noted that there are estimation errors in the simulation model. These may be the due
to the following reasons. Firstly, the emitter and the receiving electrodes of the UCA system in the
simulation model in CST are not ideal electrodes, which have physical dimensions in practice and
could have some influence on the induction field. Secondly, the mesh of the simulation experiment
area in CST would result in field calculation error, which can affect the voltage data measured by the
UCA system. Compared with the Rasnow model, the estimated positions are in the acceptable region
by using the proposed methods, and these results prove that the proposed localization scheme can be
used as a precise metallic target locating sensors in underwater environments.

Figure 12. The estimated position by using the BEM model, simplified model and Rasnow
model with the measured voltage data from the UCA system in the CST simulation by using the
MP-MUSIC algorithm.

Table 4. The estimated positions of the electric dipole source in different positions.

Model Actual Position Estimated Position Error (m)

BEM model

(0.1, 0, 0.1) (0.100, 0, 0.100) 0
(0.2, 0, 0.1) (0.197, 0, 0.102) 0.004
(0.3, 0, 0.1) (0.313,−0.001, 0.124) 0.027
(0.1, 0.1, 0.1) (0.108, 0.109, 0.082) 0.022
(0.2, 0.1, 0.1) (0.206, 0.101, 0.100) 0.006
(0.3, 0.1, 0.1) (0.304, 0.101, 0.100) 0.004

Simplified model

(0.1, 0, 0.1) (0.105, 0, 0.100) 0.005
(0.2, 0, 0.1) (0.195, 0, 0.101) 0.005
(0.3, 0, 0.1) (0.313, 0, 0.102) 0.013
(0.1, 0.1, 0.1) (0.102, 0.1, 0.102) 0.003
(0.2, 0.1, 0.1) (0.211, 0.099, 0.102) 0.012
(0.3, 0.1, 0.1) (0.286, 0.101, 0.104) 0.015

Rasnow model

(0.1, 0, 0.1) (0.105, 0, 0.100) 0.005
(0.2, 0, 0.1) (0.195, 0, 0.101) 0.005
(0.3, 0, 0.1) (0.313, 0, 0.102) 0.013
(0.1, 0.1, 0.1) (0.102, 0.1, 0.102) 0.003
(0.2, 0.1, 0.1) (0.211, 0.099, 0.102) 0.012
(0.3, 0.1, 0.1) (0.286, 0.101, 0.104) 0.015
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5. Experiment

In order to further verify the effectiveness of the proposed locating method in reality, a set of
physical experiments is developed in our laboratory environment. We create a UCA system with 5
electrodes and an electric dipole source. The image of the UCA system and the detailed sizes are
shown in Figure 13. A cylindrical plastic pipe is used as the frame of the UCA system, with a diameter
of 20 mm. Two metal sheets cover the end of the cylindrical plastic pipe to act as the electrodes of the
dipole source. Four plastic cylinders with diameters of 5 mm and lengths of 100 mm are fixed at the
other end of the frame. The four plastic cylinders are set at the same plane, which is perpendicular to
the frame. Four metal sheets cover the end of the plastic cylinders as the receiving electrodes. The fifth
electrode or the reference electrode is situated at the top end of the frame, which is 7.5 mm from the
plane of the four receiving electrodes. In Figure 14, the UCA system is vertically set at the center of the
water tank, the electric dipole source of which is powered by a high power amplifier. The 5 electrodes
compose the four-channel receiver, which are connected to a voltage measurement device product, the
ZOOM H6 Handy Recorder. The measured data in the ZOOM H6 Handy Recorder will be imported
into the MATLAB calculator. Then, the calculator outputs the estimated result of the target. The depth
of the water in the tank is 1.5 m, and the conductivity of the water is set to be 4 S/m, which is close to
the conductivity of sea water. A spherical target with a diameter of 100 mm is mounted on a horizontal
movable gantry workbench with a size of 3 m by 1.5 m, which allows us to move the target along the
pre-programmed trail with high geometric resolution.

(a) (b)

Figure 13. (a)The image of the UCA system with the conductor target; (b) the physical size of the UCA
system (units: mm).

In this experiment, the frequency of the electric dipole source is 8 kHz, and the impedance of
the electric dipole source is 6.53 Ω. The output voltage of the power stage is 15.5 Vrms, yielding the
output power of 36.8 W and dipole moment of 0.1 A·m. The positions of the electrodes in the UCA
system are known and fixed, which are listed in Table 1. During the measurement, we first set the
conductor target at the point (x, 0, 0.1), where x = 0.1, 0.2, 0.3 and 0.4. As the voltage of each channel
is weak in seawater, we use the ZOOM H6 Handy Recorder as the analog to digital converter (ADC)
device, which has configurable gain from −∞–55.5 dB with a 96-kHz sample rate and 24-bit precision.
We also do the same process for the insulator target. In this experiment, the measured voltage range of
each channel is within 0.1∼15.6 mV. The measured signal contains noise shown in Figure 15, where the
noise in the sea water is low, because of the high conductivity of the sea water, significantly shielding
the electric noise and interference. In order to further filter the noise and interference, the digital
filter is used in the background. The parameters of the digital filter of each channel are the same,
which will not introduce additional gain distortion compared with the hardware filter on the front
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end. In this electro-locator system, the canonical high Q bandpass filter is used. We first shift the signal
to the baseband. Then, we filter the baseband signal with a narrow band low pass filter, for which
the coefficients are designed by the use of MATLAB FDATOOL. After that, the signal is shifted to
the original frequency point. The canonical high Q bandpass filter is shown in Figure 16, with the
bandpass of 400 Hz. The filtered data are shown in Figure 17, where the noise and interference are
reduced after the digital filter.

(a) (b)

Figure 14. (a) The image of the experiment environment; (b) the amplifier of the electro-locator and the
ZOOM H6 Handy Recorder.

(a) (b)

Figure 15. (a) The measured voltage in the time domain; (b) the frequency spectrum of the
measured voltage.

Figure 16. The schematic diagram of the canonical high Q bandpass filter.
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(a) (b)

Figure 17. (a) The measured data after the high Q bandpass filter in the time domain; (b) the frequency
spectrum of the measured data after the filter.

In the practical situation, there will be position error when building the UCA system. To overcome
this drawback, we add calibration during the locating process. The calibration data are obtained
without the target in the sea water tank. Then, we measure the voltages when the target is situated in
the tank shown in Figure 18. It can be seen from Figure 18 that the voltages vary when the target is
placed at different positions in the tank. During the locating process, the input data are the difference
between the measured data and the calibration data. Here, we give an example of the location
process according to one part of the raw data, and the electro-locator will finally output the target
position result.

• Step 1: Load the boundary matrix Zs
s. Load the measured data Φm and the calibration data Φr

from the folders “./newx1CHn_ins” and “./newCHn_ref_ins”, which can be downloaded from
https://drive.google.com/open?id=15hPIKZaSmfmfFeUPHwut9Lb2EXugKXZF;

• Step 2: Calculate the input data, the matrix Φ(t) = Φm −Φr, yielding the covariance matrix

RΦ = α


0.1862 0.8761 1.0896 0.6338
0.8761 4.1213 5.1256 2.9814
1.0896 5.1256 6.3746 3.7079
0.6338 2.9814 3.7079 2.1568

, where α is a factor lager than zero;

• Step 3: Get the eigenvector U and eigenvalue Σ by eigenvalue-decomposition. Here, we have

U =


−0.0891 0.6867 0.7114 0.1204
−0.1714 −0.6354 0.4959 0.5666
−0.3745 0.3420 −0.4963 0.7046
0.9069 0.0886 −0.0413 0.4099

, Σ = β


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1.2839

, where β is a

factor lager than zero. Thus, the signal subspace is US =


0.1204
0.5666
0.7046
0.4099

, and the noise subspace

projection matrix is P⊥ =


0.9855 −0.0682 −0.0849 −0.0494
−0.0682 0.6790 −0.3992 −0.2322
−0.0849 −0.3992 0.5035 −0.2888
−0.0494 −0.2322 −0.2888 0.8320

;

• Step 4: Scan the observation area where the target exists with a series locating hypothesis and
calculate the space spectrum. Here, we give the space spectrum near the target, which is shown
in Figure 19;

• Step 5: From Figure 19, we can see that the position corresponding to the peak of the spectrum is
(0.117, 0, 0.07), which is close to the true position (0.1, 0, 0.1).

https://drive.google.com/open?id=15hPIKZaSmfmfFeUPHwut9Lb2EXugKXZF
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Figure 18. The calibration data and the measured voltages when the target is situated at points (x, 0, 0.1)
for the first receiving channel.

Figure 19. The space spectrum of the electro-locator at the hypothesis point (x, 0, 0.07).

The estimated positions and their actual positions are also given in Table 5, and we can find that
the maximum location error is 0.055 m for the conductor target and 0.069 m for the insulator target.
However, the location errors of the other points are less than 0.05 m. The estimation errors may be due
to the following reasons. Firstly, the electric dipole source in the UCA system is not an ideal dipole,
which has physical dimension errors in practice. Secondly, the frame of the UCA system can affect the
distribution of the electric field. Thirdly, the electrodes’ position deviations are introduced to build the
UCA system, resulting in locating errors. Finally, the actual positions of the target and the UCA system
may be slightly moved during measurement because of the water wave. Although some experimental
results slightly offset the center position, the localization accuracy is still good. These results prove
that the proposed localization scheme can be applied to underwater target locating.

Table 5. The estimated positions of the conductor target and insulator target in different positions.

Target Actual Position Estimated Position Error (m)

conductor

(0.1, 0, 0.1) (0.053, 0, 0.129) 0.055
(0.2, 0, 0.1) (0.181,−0.01, 0.103) 0.022
(0.3, 0, 0.1) (0.324, 0.01, 0.106) 0.027
(0.4, 0, 0.1) (0.373, 0.01, 0.102) 0.029

insulator

(0.1, 0, 0.1) (0.087, 0, 0.110) 0.016
(0.2, 0, 0.1) (0.220,−0.001, 0.105) 0.021
(0.3, 0, 0.1) (0.252, 0.001, 0.104) 0.048
(0.4, 0, 0.1) (0.331, 0, 0.104) 0.069
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6. Conclusions

In this paper, we propose a novel target locating method based on the MP-MUSIC algorithm in
the underwater environment. The BEM is introduced to discretize the continuous Green’s function and
transpose it to a matrix. By solving the matrix, the induction field of the target is accurately described.
However, locating the target by using the proposed BEM model requires prior information of the
size of the target, which may restrict the use of the locating method. To overcome this drawback, we
propose a simplified model, in which the prior information of the size of the target is not needed.
According to the comparison with the canonical MUSIC algorithm, we find that the MP-MUSIC can
provide better locating performance. A UCA system is also proposed, on which the receiving electrodes
are all situated at the equipotential points. The specially-designed UCA system provides the feature
that the receiving electrodes cannot sense the voltage from the emitter of the UCA system, but could
sense the voltage from the target. A numerical example and the corresponding simulation model via
CST are carried out. The noise, the distance between the target and the UCA system and the number
of receiving electrodes of the UCA system were investigated to analyze the effect on the locating
performance in detail by using the proposed models. According to the comparison, we found that the
simplified model has the same locating performance as the Rasnow model by using the MP-MUSIC.
The simulation results showed that the simplified model can provide better locating performance
when 0.2 ≤ x ≤ 0.8, and the BEM model can give better locating performance when x ≤ 0.2 and
x ≥ 0.8. However, both models provide unsatisfactory locating performance when the target gets
close to the center of the UCA. The numerical results also show that the locating performance is not
sensitive to the azimuth of the target when using the locating method based on the BEM with the
MP-MUSIC algorithm. In addition, the optimal number of electrodes on circle l of the UCA system
is four, which gives the best locating performance. A set of physical experiments is carried out for
locating the conductor and insulator target. The results of the experiment verified the effectiveness of
the proposed locating method. In our further work, we will deign a new UCA system and improve the
locating method to acquire much more accurate results.
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