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Abstract: Clutters caused by multipath have been widely researched in through-the-wall radar
imaging (TWRI). The existing research work of multipath only consider reflections from the wall,
while in the condition of a small scene, with the increasing number of targets, multipath from targets
to targets, named interaction multipath, usually generates ghosts, which degrades the performance
of TWRI. In order to mitigate the effect of interaction multipath, considering fast data acquisition and
measurement reduction, we made use of the propagation characteristic of interaction multipath to
build the sparse model of the target scene and developed a compressive sensing (CS)-based method,
which is referred to as ‘interaction CS’. For the number of point targets increasing from 5-8, intensive
evaluation and direct comparison of the imaging results with existing methods are conducted to
show that the proposed interaction CS performs better at ghost suppression in the same condition of
the signal-to-noise ratio (SNR).

Keywords: compressive sensing; interaction multipath; ghost suppression; through-the-wall
radar imaging

1. Introduction

Due to the potential of revealing targets behind an opaque obstacle, the technology of
through-the-wall radar imaging (TWRI) has attracted much interest for public safety and defense
applications [1-6]. TWRI is especially useful in behind-the-wall reconnaissance, law enforcement
and various earthquake and avalanche rescue missions [7-10]. Existing research of TWRI aims at
improving the quality of radar images.

In the theory of TWRI, the interference of clutters is known to be a great challenge for improving
the quality of the radar image. As one kind of clutter, the strong reflections of the front wall lead
to missed detections of targets behind the wall. Meanwhile, the multiple reflections within the wall
result in wall residuals along the range dimension. Another kind of clutter is the multipath caused
by multiple reflections off the targets in conjunction with the walls. Multipath delayed returns may
generate ghosts, which may be confused with the real targets. Meanwhile, high-resolution imaging
demands large aperture and bandwidth; thus a large amount of data needs to be acquired, stored
and processed.

Partly in prior work, the challenges mentioned above have been addressed. Clutters caused by
the front wall can be addressed by emitting more power, as well as refocusing and wall mitigation
techniques [11-14]. Multipath has been considered as an inverse scattering problem in [15,16].
To address the problem of the large data amount in TWRI, compressive sensing (CS) was first applied
by Yoon and Amin [17]. It was shown in [16] and in subsequent publications [17-19] that CS is effective
in TWRLI, if the scene is sparse or can be expressed in a sparse basis. Multipath exploitation with CS was
addressed in [20,21], where ghosts caused by interior wall multipath and wall ringing multipath were
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eliminated. However, the above research work on TWRI only focused on the multipath for reflections
from the wall. If there are many strong scatterers with unknown scattering properties in a small scene
of interest, interaction multipath, which means the kind of multipath from targets to targets, should
also have a greater effect on generating ghosts. In this case, interaction multipath should reduce the
quality of TWRI and could not be ignored.

In this paper, we aim at the effect of interaction multipath in TWRI. We made use of the theory of
CS for fast data acquisition and measurement reduction and proposed a method for mitigating the
effect of interaction multipath. For processing the received signal measurement, we first mitigated
the clutters of the front wall with the technique of spatial filtering [11], then modeled the interaction
multipath in the over-complete dictionary of the target scene and developed a CS-based method
(referred to as ‘interaction CS’) to reconstruct the scene of targets.

In Section 2, the theory of interaction multipath in TWRI is introduced. Subsequently, in Section 3,
the method of interaction CS is described. Simulation results are shown in Section 4, and we conclude
the paper in Section 5.

2. Theory of Interaction Multipath in TWRI

We use the stepped-frequency signal that consists of uniformly-spaced frequencies {fy},
where m = 0,1,..., M — 1. A linear array aperture, constituted by N wide-band transceivers, is placed
parallel to the x-axis. Suppose there is a regular grid in the target scene, with the number of grid points,
Ny and N, representing the cross-range and down-range, respectively. A front wall is at a standoff
distance from the array, with thickness 4 and dielectric constant . Assume that mono-static operation
is adopted and there are two targets, p; and p», in the scene of interest, with the locations of i and
j, respectively, where i,j € {0,1, ..., NyN; — 1}. The round-trip of interaction multipath is illustrated
in Figure 1.

Figure 1. Propagation model of interaction multipath.

The round-trip consists of path P; from the n-th antenna to target p1, path P, from target p, to
the n-th antenna and path P; from p; to p;. Therefore, the round-trip delay 7, of the signal can be
calculated as:

T = Py (P2)  (Bs) (1)

 ijn ijn ijn
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It is obvious that if i = j, 7, represents the round-trip of one target; if i # j, Tjjn = Tjin-
We assume the thickness and the permittivity of the wall are estimated accurately; therefore, 7; ; , can
be calculated from geometric considerations.

Thus, the corresponding ideal received signal y[m, n] is the superposition of all the delayed and
weighted transmitted signals via i, j, yielding:

NyN;—1 NyN;—1

ylmmnl= Y. Y ojexp(—27fuTijn), )
iz =0

where 0; ; means the complex reflectivity of the target pair (py, p2) in the location of i, j. If there exists
one target on both i and j, respectively, 7i # 0; else, ij = 0.

For notational convenience, we use the measurement vector y € CMN*1 instead of y[m,n],
where y is composed by all the measurements y[m, n| and is written as:

y = [y[0,0], ..., y[M —1,0],... y[M —1,N —1]]". ©)
Thus, 0; j can be vectorized as:

T
8 = [00,0/ -+ OO,N;N,—1, 01,0, -+» ONy N, —1,N; N, —1] " - 4)

It is obvious that there is only a small number of nonzero elements in s, which means s is sparse
and can be reconstructed with CS.

3. Method of Interaction CS

Based on the above-mentioned theory, the model of interaction multipath is feasible to build.
First, we need to build the dictionary matrix ® € CMNxNENZ , which can be defined as:

@ N Noitj+1 = OXP(— 27T fmTijn), 5)

where m = kmod M, n = |k/M]|,k=0,1,.., MN — 1.

It is certain that the dimension of ® is too huge, which leads to a large computational complexity.
In this paper, we only take (i,j), for which i > jand r(i,j) < a, into consideration, where r(i, j)
means the distance of (i, j) and 4 is a constant. Because as mentioned in Section 2, Tijn = Tjin, and if
r(i, j) is too large, 0; ; is usually too small to be concerned. Thus, we delete the column vectors of ®:
{®. NoNeigjr1l7(if) > ay U{®, NonLivj+1]i < j} to get the dimension-reduced dictionary matrix ®,,
which significantly reduces the computational complexity. Now, Equation (2) can be written as:

Y= (I)dS. (6)

It should be clarified that the threshold a can be determined according to the current circumstance
or be selected empirically. The larger a is, the more effectively we mitigate the interaction multipath;
the smaller a is, the more the computation complexity reduces. With the mentioned method, the amount
of the column vectors in ®; can be approximately 0.57a2/ A, of that in ®, where A, is the area of the
target scene.

For stepped-frequency operation, we can use D € {0,1}/*MN where D is ] rows of an MN x MN
identity matrix. Thus, y can be sampled as:

y =Dy = As, @)

where A = D®,;. We need to reconstruct the reflectivity vector s from measurement Model (7) and use
{0ili = j} for imaging the target scene.
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It can be observed that the model of our proposed method is similar to the model of the
conventional CS method in TWRI. However, the main difference between these two methods is
the dictionary matrix. In conventional CS, the dictionary matrix only contains column vectors,
each of which has the information of one grid point in the target scene. For interaction CS, based on
conventional CS, we have added column vectors, which have the information of considered target pairs,
to the dictionary matrix of conventional CS. It is certain that interaction CS with a larger dictionary
matrix indeed needs more execution time than conventional CS. In this paper, s is reconstructed by
solving the basis pursuit problem [22,23]:

min |s||; subjectto ¥ = As. 8)
S
For noisy measurements, (7) can be rewritten as:
y=As+u, 9)

where u is the received measurement noise. From [24,25], robust reconstruction of (9) can be achieved
by solving the Dantzig selector:

msin|s||1 subject to ||AT(F — As) e < 6, (10)

where 4§ is a small tolerance error. In this paper, /;-magic [26] is employed for solving (10).

4. Simulation Results

Assume we have an eross X qown = 4m X 3m room, which has several static point targets
with scattering directions uniformly. The scattering coefficients of all targets obey a Gauss random
distribution. A uniform linear mono-static array of 77 elements, with an inter-element spacing of 1.9 cm,
is posed on the x-label; the origin of the coordinate system is at the center of the array. The concrete
front wall, with the thickness d = 20 cm and the relative permittivity e = 7.6632, is located parallel to
the array at 1 m downrange. The number of grid points Ny = N, = 41, and the threshold a = 0.75
in the simulation. We use a stepped-frequency signal, which consists of 81 equally-spaced frequency
steps and covers the 1-3 GHz band. Meanwhile, 1/4 of array elements and 1/8 of frequency bins are
used in our experiments, i.e., the compressive ratio is 1/32. The reflections of the front wall, as well
as interaction multipath returns are calculated ideally and added to the received signals. It should
be clarified that to highlight the interference of the front wall, the reflectivity of the front wall is
determined to be 2 in the simulation, and then, the imaging results are normalized.

For the compressed measurement vector ¥, = [y[0,0], ..., yo[M — 1,0}, ..., yw[m, 1}, ..., Y[ M —
1, N — 1]]T, which includes the front wall clutters, we use the technique of spatial filtering to mitigate
the clutters of the front wall and obtain the measurement vector y. Each element of y is expressed as:

ylm,n] = ywl[m,n] —y,,(m), (11)
where:
1 N-1
Yolm) = 55 X Yolm ] (12)
n=0

4.1. Comparison of Targets” Reconstruction by Existing Methods and Interaction CS

For comparison, we simulated the method of delay and sum beamforming (DSBF) [20] without
processing the clutters of the front wall, and the CS method with the conventional signal model (later
referred to as ‘conventional CS’) is also used in the simulation. White noise with a 5-dB signal-to-noise
ratio (SNR) is added to the simulated measurements.
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The normalized imaging results are shown in Figure 2, where the circles represent the locations of
real targets. It is observed that if the clutters of the front wall are not removed, as shown in (a),
we cannot reconstruct the targets accurately. When the clutters of the front wall are removed,
by DSBF and conventional CS, as shown in (b) and (c), all the targets can be reconstructed accurately;
however, there still exist many ghost targets in the reconstructed scene. Only by means of the proposed
method, as shown in (d), can all the targets be detected accurately, and most ghost targets are removed,
which effectively improves the quality of targets’ reconstruction. However, the execution time of (d) is
about 30 times the execution time of (c).
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Figure 2. Comparison of targets’ reconstruction by existing methods and interaction compressive
sensing (CS). (a) For the conventional delay and sum beamforming (DSBF) method without removing
any kind of clutters; (b) for the DSBF method with front wall clutters removed; (c) for conventional CS
with front wall clutters removed; and (d) for interaction CS with front wall clutters removed.

4.2. Comparison of Targets” Reconstruction by Increasing the Number of Targets

With increasing the number of point targets from 5-8, we combined the normalized imaging
results of both methods with CS, as shown in Figure 3. It can be observed that interaction CS is able
to keep a better performance for resisting ghost targets with the increasing number of point targets.
For the models of both CS methods, the same as that in Section 4.1, respectively, the difference of the
execution time between these two CS methods is similar to that in Section 4.1.

4.3. Comparison of Matching Rates in Different Conditions of SNR

Additionally, we combined the matching rates (the ratio of the number of the detected real targets
to the number of all real targets) of both methods with CS in different conditions of SNR. The results,
averaged with 100 Monte Carlo runs, are listed in Figure 4. The SNR is measured in terms of the
average power in the noisy signals, ranging from 0 dB-15 dB. As is seen, the interaction CS seems to
perform with a better matching rate.
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Figure 3. Comparison of targets’ reconstruction by conventional CS and interaction CS with different
numbers of targets. (a,d) for 6 targets; (b,e) for 7 targets; and (c,f) for 8 targets; (a—c) for conventional
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CS; and (d—f) for interaction CS. All the front wall clutters are removed.

Figure 4. Comparison of matching rates for conventional CS (referred to as ‘Conv-CS’) and interaction
CS (referred to as ‘Int-CS’) versus SNR.
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In this paper, we deal with the clutter of interaction multipath and have improved the model
of the small scene with multiple targets. We modeled this type of multipath in the over-complete
dictionary of the target scene and developed the interaction CS method to image the location of targets.
For the number of point targets increasing from 5-8, the simulation results showed that the proposed
method performs better at removing ghost targets in the same condition of SNR, thereby effectively
improving the performance of TWRI. However, the execution of the interaction CS is much slower than
that of the conventional CS, and it is not certain whether the slower execution can be compensated by
the better image quality in time-sensitive applications. Therefore, it would be useful to simplify the
model of interaction CS according to the feature of the target scene, and more efficient reconstruction
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algorithms and/or their hardware-accelerated implementations can be investigated to speed up the
CS methods, including the method of interaction CS.
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