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Abstract: In recent years, video target tracking algorithms have been widely used. However,
many tracking algorithms do not achieve satisfactory performance, especially when dealing with
problems such as object occlusions, background clutters, motion blur, low illumination color images,
and sudden illumination changes in real scenes. In this paper, we incorporate an object model based
on contour information into a Staple tracker that combines the correlation filter model and color
model to greatly improve the tracking robustness. Since each model is responsible for tracking
specific features, the three complementary models combine for more robust tracking. In addition, we
propose an efficient object detection model with contour and color histogram features, which has good
detection performance and better detection efficiency compared to the traditional target detection
algorithm. Finally, we optimize the traditional scale calculation, which greatly improves the tracking
execution speed. We evaluate our tracker on the Object Tracking Benchmarks 2013 (OTB-13) and
Object Tracking Benchmarks 2015 (OTB-15) benchmark datasets. With the OTB-13 benchmark
datasets, our algorithm is improved by 4.8%, 9.6%, and 10.9% on the success plots of OPE, TRE and
SRE, respectively, in contrast to another classic LCT (Long-term Correlation Tracking) algorithm.
On the OTB-15 benchmark datasets, when compared with the LCT algorithm, our algorithm achieves
10.4%, 12.5%, and 16.1% improvement on the success plots of OPE, TRE, and SRE, respectively. At the
same time, it needs to be emphasized that, due to the high computational efficiency of the color
model and the object detection model using efficient data structures, and the speed advantage of the
correlation filters, our tracking algorithm could still achieve good tracking speed.

Keywords: multi-complementary model; object detection map; detection module; scale calculation
optimization

1. Introduction

Video tracking is an important part of computer vision and is widely used across a variety of fields
including intelligent transportation, man-machine interaction, and military guidance [1,2]. This paper
focuses on how to quickly and effectively address the tracking drift problem in object tracking processes
when confronted with similarly colored backgrounds, object occlusions, low illumination color images,
and sudden illumination changes.

In recent years, correlation filters have attracted more attention for their advantages in efficiency
and robustness. In [3], a video tracking algorithm was proposed based on the sum of the mean
square error of the minimum output of a correlation filter. Subsequently, Henriques et al. [4] proposed
a tracking algorithm based on the circulant structure of tracking-by-detection with kernels (CSK)
that used cyclic structure coding to densely sample and train the Regularized Least Squares (RLS)
of a nonlinear classifier. Later, CSK was improved with a Kernel Correlation Filter (KCF [5]) that
used a Histogram of Oriented Gradients (HOG [6]) features tracking algorithm. Danelljan et al. [7]
introduced space regularization in the filter learning and penalized the filter coefficients according
to their spatial position. Danelljan et al. [8] used the multi-channel color features to extend CSK
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and obtained a good performance. Sui et al. [9] greatly improved the filter tracking performance by
introducing three sparse correlation-related loss functions into the training of the filter. Convolutional
neural network (CNN) features have also demonstrated outstanding results in object classification,
image identification, and so on [10–14]. Ma et al. [12] exploited the complementary nature of features
extracted from three layers of CNN and used the coarse-to-fine translation estimation for object
tracking. Danelljan et al. [14] went beyond the conventional correlation filter framework and learned
the correlation filter in the continuous spatial domain of various features, which achieved good
tracking performance. However, their algorithm greatly reduced the tracking speed of the correlation
filter. In terms of scale calculation, two consistent and relatively independent correlation filters
were designed in [15], which achieved object position tracking and scale conversion, respectively.
Huang et al. [16,17] integrated the class-agnostic detection proposal method [18] into the correlation
filters tracking framework to solve the target scale and aspect ratio of the target deformation problem.

For different models of fusion and different fusion methods, however, tracking performance has
not been so good. Kwon et al. [19,20] used complementary trackers to combine different observation
and motion models, then integrated their estimation results into a sampling framework. Based on a
historical frame and Multiple Experts using Entropy Minimization (MEEM) [21], different Support
Vector Machine (SVM) classifiers selected the classifier with the strongest object recognition capacity to
decide the tracking result. Using global search, Smith et al. [22] located potential candidate samples
marked by contour features, having first obtained better positive and negative samples using weaker
classifiers. Classifier tests and updates were then undertaken using stronger detectors. This helped to
reduce the classifier search space and false object interference. Similar to the Correlation Filter Based
Tracking Algorithm, the color-based tracking algorithm has achieved good performance in terms of
speed and performance [23,24]. In the Sum of Template and Pixel-wise Leaners tracker (Staple [25]),
Bertinetto et al. took advantage of the complementary sample information by fusing the predictions of
the filter model and the color model, therefore showing good performance in handling deformation and
fast motion. However, it drifted when target objects underwent heavy illumination variation, occlusion,
and background clutters. To further enhance the Staple tracker’s robustness, we not only studied
a correlation filter model and a color model, but also integrated an object model based on contours
features, which was proposed in Edge Boxes [18], into tracker to generate a multi-complementary
model for more robust tracking. Among them, the filter model relies on the spatial distribution of
the target object and is relatively sensitive to the deformation. However, the color regression model
and the contour-based detection model have good global characteristics and good adaptability to
the target deformation. The color model is sensitive to the illumination transformation, but the filter
regression and contour-based detection models are adaptable to the illumination changes of the target.
The detection model relies only on the edge information of the image and the current size of the online
learning ability is poor, but the good online learning ability of the color regression model and the
filter regression model are a good supplement to the detection model, and less learning information
also reduces the likelihood of elegant filter and color models. Since each model is responsible for the
tracking of specific features, the three complementary models are then combined to form a more robust
tracking algorithm. At the same time, using efficient data structures, the scores of tens of thousands of
candidate boxes can be evaluated in a thousandth of a second [18], and the object detection response
scores can be efficiently calculated.

Currently, tracking detection frameworks are also very popular, playing a key role among
numerous recent tracking methods [26–28]. To mitigate the stability-plasticity dilemma of online model
updating for visual tracking, Kalal et al. [26] decomposed the tracking tasks into Tracking, Learning and
Detecting (TLD), where tracking and detecting were mutually promoted. The tracking results provided
training data to update the detector, and the detector re-initialized the tracker whenever it failed. This
mechanism works well for long-term tracking [26,29,30]. In [31], a long-term filter was proposed that
used stochastic sampling to solve the model drifting problem. Predicting objects in combination with
multiple estimations can effectively complement each of the tracking methods to deliver a more robust



Sensors 2018, 18, 527 3 of 25

performance. Long-term correlation tracking (LCT) [30] is a classic long-time tracking algorithm,
which solves the problems of target deformation, abrupt motion, and heavy occlusion that appear in
long-time tracking. In the LCT algorithm, in addition to training the translation filter and the scale
filter, a confidence detection filter is also trained from the reliable tracking results. The confidence
detection filter can be a good measure of the confidence of the tracking results of the tracking module
and the detection results in the detector module. Our algorithm is similar to the LCT algorithm,
but we did not retrain an independent confidence filter same as the LCT algorithm. We improved
the filter in the tracking module by high confidence updating to obtain our confidence detection filter.
Furthermore, we also used the Average Peak-to Correlation Energy (APCE) [32] to determine if the
tracking results were reliable at the same time. To improve the robustness of the tracking, the LCT
algorithm re-detected the target by training an online random fern classifier after the target tracking
failed. In this paper, by combining the object detection model with the edges model and the color
model-based histogram feature, we proposed a new detection method algorithm, which not only had
good detection accuracy, but also had better detection efficiency than the traditional classifier-based
detection method.

Based on the above issues, this paper proposed MMLT (Multi-Complementary model for
Long-term Tracking), a long-term object tracker that combines a multiple complementary model.
The main goal was to solve the difficulties in real scenes such as object occlusions, background clutters,
motion blur, low illumination color images, and sudden illumination changes. The main contributions
of our work are as follows.

1. By incorporating the object response model into the Staple algorithm, which combines a
correlation filter and color model, the tracking robustness was greatly improved. Each model is
responsible for the tracking of specific features and then combined three complementary models
for robust visual tracking.

2. Unlike traditional classifier-based object detection, an efficient object detection model with
contour features and color histogram features is proposed for the first time, which significantly
improved detection efficiency and detection speed.

3. The redundancy aspect of the calculation of image features within each scale of the correlation
filter module is optimized in this paper to improve the execution speed of the algorithm.

2. Multi-Complementary Model Tracking

Our baseline was the Staple (Sum of Template and Pixel-wise Leaners) algorithm. The Staple
algorithm divides the tracking into the translational tracking phase and scale tracking phase.
The translation tracking gives the position estimation and the scale tracking phase computes the
target scale using a 1D correlation filter. During the translational tracking phase, Staple incorporates
the response scores of the color model and correlation filter model (using HOG features) to achieve
a good tracking performance. However, as the color information is easily disturbed by factors
such as the environment and light, the performance of the tracker is limited. Thus, it is desirable
that other additional features should be used as a complement to the color feature to improve the
performance of the tracker. In this paper, the proposed MMT (Multi-Complementary Model Tracking),
which incorporates the object model based on Edge Boxes [18] in the translational tracking phase of
Staple. Edge Boxes [18] is based on the characteristics of the object contour edges information and
has good adaptability to light and background changes. By fusing the multi-channel complementary
feature response scores, the diversity of the sample information and discriminant can be utilized to a
greater extent. This improves the generalizability of the tracker. In addition, we optimize the method
of scales calculation, greatly reducing redundant operations and increasing the tracking speed.

Staple adopts the tracking-by-detection paradigm. As the location estimation and scale estimation
are separate, they are responsible for their own work. In frame t + 1, translation tracking obtains the
new target position based on the fix size of target size st of the previous frame, then scale tracking
updates the new scale with the new position computed by translation tracking. Therefore, in translation
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tracking of frame t + 1, given a search patch dt+1 extracted around the previous target position, and
the fix target size st, the Staple chooses the target bounding box pt+1 that gives the target location from
a set Υ =

{
Π : li,j(Π) ∈ r, ϑ(Π) = st

}
to maximize fusing scores:

pt+1 = argmaxΠ∈Υ γM0 f0(T0(dt+1, Π); M0,t) + γM1 f1(T1(dt+1, Π); M1,t) (1)

where r is a valid inner region; r ⊂ pt+1, li,j(Π) ∈ r represents each bounding box Π‘s location (i, j) in
the region r; and ϑ(Π) = st represents the size of the Π is equal to the fix size st. The functions T0 and
T1 are the image transformation such that f0(T0(pt+1, Π); M0,t) and f1(T1(pt+1, Π); M1,t) assign scores
to the bounding box Π according to the color model parameters and M0,t filter model parameters M1,t,
respectively. In addition, color model parameters M0,t and filter model parameters M1,t are all trained
from the previous target state and images, and parameters γM0 and γM1 represent the combination
coefficients of the color model and filter model, respectively.

In this paper, by incorporating the object model to the Staple algorithm, we obtain the target
bounding box pt+1 to maximize a new fusing score of the three complementary models. The scores
function can be represented by:

pt+1 = argmaxΠ∈Υ

Nm

∑
i=1

γMi fi(Ti(dt+1, Π); Mi,t) (2)

where Nm, which is three in this paper, is the number of models; the function Ti is an image
transformation such that fi(Ti(dt+1, Π); Mi,t) assigns a score to the bounding box Π according to
the models parameters Mi,t trained from the previous target state and images; and γM0 , γM1 and γM2

are the combination coefficients of the color model, filter model, and object model scores, respectively.
Moreover, they are renamed τc, τf , and τo, respectively, in this paper.
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which will be used in the three models based on a tracking-by-detection principle. Given a search 
area of +1td  for tracking and a bounding box with a fixed size for the sliding window-based 
detection method, all the bounding boxes that center at different positions in a detection area of +1td  
cannot be used to detect. As shown in Figure 1, the bounding box 2Π  centered the position so that 
it exceeded the yellow area, which has many pixels out of the overall detection area +1td , so the 
bounding boxes will not be detected. We named the position set consisting of all the center positions 
of these bounding box as the outer region, and the region at which the bounding box center can be 

Figure 1. Inner region and outer region of search patch. The region inside the yellow box is the inner
region. The region outside of the yellow box and inside the search patch is the outer region.

Before we introduce specific models, we first introduce the detailed concept of the inner region,
which will be used in the three models based on a tracking-by-detection principle. Given a search
area of dt+1 for tracking and a bounding box with a fixed size for the sliding window-based detection
method, all the bounding boxes that center at different positions in a detection area of dt+1 cannot be
used to detect. As shown in Figure 1, the bounding box Π2 centered the position so that it exceeded
the yellow area, which has many pixels out of the overall detection area dt+1, so the bounding boxes
will not be detected. We named the position set consisting of all the center positions of these bounding
box as the outer region, and the region at which the bounding box center can be detected was named
as the inner region in this paper. This is labeled with yellow in Figure 1. In addition, the set Υ ={

Π : li,j(Π) ∈ r, ϑ(Π) = st
}

was represented in all boxes (with the fix size of st) centered at different
positions in the region r, which was all of the search sample space. Then, we use Multi-Complementary
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model to calculate the combination scores of all the bounding boxes in Υ and then estimate the target
location at the max value of the combination scores.

Below, we introduce the filter model and color model used in Staple, as well as the object model
that we have incorporated in Staple. In Sections 2.1 and 2.2, we briefly introduce the filter model and
color model used in Staple, and, in Section 2.3, we introduce the object detection model based on Edge
Boxes [18] that we incorporated in Staple. In Section 2.4, we describe the method of fusing the multiple
model predictive response scores, which was used in Staple. Section 2.5 presents how we optimized
the scales calculation to significantly improve the speed of the algorithm.

2.1. Learning of Filter Model

In Staple, the filter model is a type of tracking-by-detection model. During the training process,
Td,t is a rectangular patch which is sampled from (t)-th frame, and the corresponding l dimension
Histogram of Oriented Gradients (HOG) feature map f l , l ∈ (1, · · · , d) is extracted from Td,t. Then,
by minimizing the objective function, a set of filters h for d dimensional features are trained. The loss
function is then:

ε = ‖g−
d

∑
l=1

hl ∗ f l‖
2

+ λ
d

∑
l=1

∥∥∥hl
∥∥∥2

(3)

where * represents the circular correlation; hl is the corresponding feature filter for each l dimension;
and g is the desired correlation output, which generally selects the Gaussian function with a maximum
value of 1. The second parameter λ ≥ 0 represents the coefficient of the regularization term. We then
use Parseval’s Theorem for the frequency domain to obtain a fast solution, thus obtaining:

Hl =
Nl

t
Dt

,

Nl
t = GFl , Dt =

d
∑

k=1
FkFk + λ.

l = 1, . . . , d (4)

where G is the DFT conjugation of the Gaussian response g; and Fk and Fk are the dot-product
operations of the frequency domain of the k-dimensional features map corresponding to the image
patch Td,t and the corresponding conjugate operation, respectively.

Based on the above model, we rename the filter Hl , (l = 1, . . . , d) used in the translation phase to
the translation filter Rc, with the corresponding numerator A and denominator B, respectively.

Rc is updated with a learning factor η f :

Al
t =

(
1− η f

)
Al

t−1 + η f GFl
t

Bt =
(

1− η f

)
Bt−1 + η f

d
∑

k=1
Fk

t Fk
t

(5)

where t is the index of the frame.

Calculating the Filter Scores

Given a search patch dt+1, which has a size of ĉ × l̂ and its inner region r in (t+1)-th frame,
the HOG feature map of dt+1 is extracted. When the l-th dimension of the rectangular features map is
marked as zl

t+1, and its frequency domain is Zl
t+1, the correlation scores S( f ,t+1) of search area dt+1 is

obtained by convolving features map zt+1 and correlation filter RC, which is obtained in the previous
frame with Equation (5). The specific formula is as follows:

S( f ,t+1) = F−1

(
∑d

l=1 Al
t Zl

t+1
Bt + λ

)
(6)
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where Al
t and Bt are the numerator and denominator of the translation filter Rc obtained in the previous

frame, respectively. F−1 represents the inverse Discrete Fourier Transform (DFT) operator.
As the filter model is based on the tracking-by-detection principle, the scores value of a position

in the response map can represent the score of the bounding box centered at different positions in
search patch dt+1 to the object. Unlike the sliding-window-based detection of color and object model,
the filter model uses the same properties as the circular convolution, forming the response shares the
same size with the feature template (with the same size of dt+1). In Figure 1, we show that the inner
region r is in the area of search patch dt+1, therefore the filter response y f

t+1 of the inner region r can
be obtained by cropping the filter response S( f ,t+1) of a search patch dt+1, which corresponds to the
scores of all the bounding box in set Υ =

{
Π : li,j(Π) ∈ r, ϑ(Π) = st

}
.

2.2. Learning of Color Model

The color model is also based on the widely used tracking-by-detection principle, which selects the
bounding box (gives the target position) with the highest score from the bounding box set as the final
test result to localize the object of interest within a new frame. As with other classifier-based approaches,
color models obtain parameters by learning both the positive and negative samples simultaneously.

We follow Staple, where the color features are based on RGB colors, and the bins color histograms
are computed in a 32× 32× 32 bins space. To have the sparse features to speed up the calculation,
in the color model, the Staple algorithm maps each pixel u represented by the RGB space into an index
feature j = φ(u) in a 32 × 32 × 32 bins space in the image.
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Figure 2. Training patch Td,t. The region inside the green solid line is the foreground area O. The region which
is outside of the green box (solid line) and inside of the blue box (dashed line) is the background area B.

As shown in Figure 2, during the model training phase in frame t, given as a rectangular
patch Td,t which is sampled around the estimated location from frame t, Staple divided Td,t into
the foreground area O (shares the size with the estimated target of previous frame) and background
area B. Additionally, they were used to calculate the proportion of each index feature (32 × 32 ×
32 bins space) in the foreground area O and the background area B, respectively. Suppose Ω is a
region, Ω ∈ {O, B}, the proportion of each index feature j (32 × 32 × 32 bins space) in area Ω can
be represented by ρj(Ω) = N j(Ω)/|Ω|, where N j(Ω) = |{u ∈ Ω : φ(u) = j}| represents the number
of index feature j in area Ω and |Ω| represents the total number of pixels in area Ω. Therefore, for an
online model, ρj(O) and ρj(B) can be followed by the following formula:

ρt(O) = (1− ηc)ρt−1(O) + ηcρ′t(O)

ρt(B) = (1− ηc)ρt−1(B) + ηcρ′t(B)
(7)

where ρt(A) is the vector of ρ
j
t(A), j = 1, . . . M. M is the dimension of the mapped space (32 × 32 × 32

bins), and ηc is a learning rate parameter.
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When calculating the proportion of each index feature j in the foreground area O and background
area B, respectively, the weight coefficient β

j
t for each index feature j is updated by the following equation:

β
j
t =

ρ
j
t(O)(

ρ
j
t(O) + ρ

j
t(B) + λ

) , j = 1, . . . M. (8)
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Figure 3. The color response calculation process of color model.

Given a RGB search patch dt+1 (shown in Figure 3a) in frame t + 1, first, per-pixel scores St+1,β
(shown as heat map in Figure 3b) of search patch dt+1 is obtained by looking up the table. Then, the
score matrix yc

t+1 named color response (shown as heat map in Figure 3c) of inner region r is obtained.
The dotted yellow box region of search patch dt+1 represents the inner region r, and the red box used
to generate all of the boxes center at inner region r of dt+1 in Figure 3b is the slide bounding box Π.

Given a search image dt+1 =


u11 u12 · · · u1l̂
u21 u22

...
. . .

uĉ1 uĉl̂

, which (with a magnification relative to

target bounding box pt) is extracted around pt and has a size of ĉ× l̂, as well as the target size st,
which is given for fixed-size target detection, we can obtain its inner region r and a bounding box set
Υ =

{
Π : li,j(Π) ∈ r, ϑ(Π) = st

}
corresponds to r in frame t + 1. From Equation (2), we know that

our goal is to calculate the response color scores of all bounding boxes in Υ. However, first we need to
calculate a score matrix which represents the score of different pixels u in search image patch dt+1, and
the score matrix is also named per-pixel scores in Staple. The calculation process is as follows.

From the above training process, we know that the score (weights β
j
t) of each index feature

j has been obtained in the previous frame t, therefore the score β
φ(u)
t of each pixel u (RGB space)

in dt+1 is obtained directly by looking it up in the table, therefore the score matrix St+1,β =
β

φ(u11)
t β

φ(u12)
t · · · β

φ(u1l)
t

β
φ(u21)
t β

φ(u22)
t

...
...

. . .

β
φ(uc1)
t · · · β

φ(ucl)
t

 named per-pixel scores is formed. The example of a per-pixel

score is shown as the heat map in Figure 3b.
Then, we begin to calculate the color score of each bounding box Π in set Υ. The color score

of bounding box Π is a pixel-based average score, that is, the color score (Sc(Π)) of each bounding
box Π is the average of the weight scores of all the pixels

({
β

φ(u)
t , u ∈ Π

})
in the bounding box Π.

The calculation formula is as follow:

Sc(Π) =
1
|Π| ∑

u∈Π
β

φ(u)
t (9)
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Then, by sliding the bounding box with fix-size st on score matrix St+1,β, we can calculate all
the color scores of bounding boxes in Υ with Equation (9). Therefore, the other score matrix yc

t+1

=


Sc(1, 1) · · · Sc

(
1, ŵp

)
...

. . .

Sc

(
ĥp, 1

)
Sc

(
ĥp, ŵp

)
 is obtained. Element Sc(i, j) in yc

t+1 represents the color score of

bounding box centered at position (i, j) in inner region r, which is computed in Equation (9). yc
t+1 shares

the same size ĥp × ŵp with inner region r and is shown with the heat map in Figure 3c. Additionally,
supposing the size of st is ĥs × ŵs, we have ĥp = ĥ− ĥs + 1 and ŵp = ŵ− ŵs + 1.

The fractional response of the sliding window can be accelerated by convolving the image in
Staple. For more details, one can refer to the code of the Staple algorithm.

2.3. Learning of Object Model

Similar to the filter model and color model, the object model is also based on the
tracking-by-detection principle to locate the target. In Section 2.2, we find that, in the color model,
the score of each bounding box is calculated based on the average of all pixel weight scores in the
bounding box. In this section, we describe another approach, which is based on contour information
to measure the probability score of the bounding box as a target.

In Edge Boxes [18], the likelihood of the bounding box containing an object is based on the number
of contours that are wholly contained in a bounding box. Using efficient data structures, millions of
bounding boxes can be evaluated in a fraction of a second. Furthermore, this model does not require
additional training process; given the location and size of bounding box and the image, the score of
the target box can be calculated efficiently. Edge Boxes [18] is introduced below.
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Figure 4. The calculation process of object model. For a given search patch dt+1 (a), first, the edge
response (b) and the edge groups (shown with the heat map in (c)) of search area dt+1 is computed
with the method in Edge Boxes [18], respectively. Finally, the object response yo

t+1 (shown with the heat
map in (d)) of inner region r is obtained, which represents the scores of all the boxes in set Υ. The red
box in (c) is the slide bounding box used to generate the center of all the bounding boxes at inner region
r of dt+1.

Given a search area dt+1, which (with a magnification relative to target bounding box pt) is
extracted around pt and has size of ĉ× l̂, as well as the target size st, which is given for a fixed-size
target detection, similar to the color model, we can obtain its inner region r and a bounding box set
Υ =

{
Π : li,j(Π) ∈ r, ϑ(Π) = st

}
that corresponds to r in frame t+1. Again, similar to the color model,

our goal is to calculate the response scores of all bounding boxes in Υ. However, before calculating the
scores of the bounding boxes in Υ, we should obtain the edge response and edge groups of search area
dt+1 in turn, with the method in Edge Boxes. Examples of edge response and edge groups are shown
in Figure 4b,c, respectively. Specific calculations can be found in Edge Boxes.



Sensors 2018, 18, 527 9 of 25

After all the edge groups have been calculated, from Edge Boxes, we know that the object score
So(Π) of each bounding box Π can be expressed as:

So(Π) =
∑i ςimi

2(bw + bh)
v −

∑r∈bin mr

2(bw + bh)
v (10)

where bw and bh are the width and height of the bounding box Π, respectively; bin represents a central
region of the Π; r is an edge (corresponding to a pixel) which has an edge magnitude mr, and mi is
the sum of the edge magnitude mr for all edges r in

_
g i; ςi ∈ [0, 1] is a continuous value to indicate the

probability that
_
g i belongs to a fixed bounding box Π; and v is the penalty coefficient of the size of Π.

For more details, one can refer to the code of the Edge Boxes algorithm.
Therefore, we can calculate the object scores of each bounding box in Υ by sliding the bounding

box. Then, the other score matrix yo
t+1 =


So(1, 1) · · · So

(
1, ŵp

)
...

. . .

So

(
ĥp, 1

)
So

(
ĥp, ŵp

)
, named the object response

of inner region r, is obtained, which shares the same size ĥp × ŵp with inner region r and is shown
with the heat map in Figure 4d, where So(i, j) computed with Equation (10) is the object score of a
bounding box in Υ, which has the position (i, j) in region r and the size of st.

2.4. Final Response Scores Calculation of MMT

Given a search area dt+1, which has size of ĉ× l̂, and the fixed target size st of the previous
frame, similar to the color and object models, we can obtain its inner region r and a bounding box set
Υ =

{
Π : li,j(Π) ∈ r, ϑ(Π) = st

}
that corresponds to r in frame t + 1. From the above, we know that

we can obtain three scores including the color score Sc(Π), filter score S f (Π), and object score So(Π)

computed by the color model, filter model, and object model, respectively, and the three response
scores all represent the possibility of all the bounding boxes (with the fixed size of st and contains our
search space) centered at different positions in inner region r by different model parameters. Since the
three response scores were all between 0 and 1 (1 to the object and 0 to other), the magnitude of the
response scores was compatible. Therefore, we followed the Staple algorithm and fused the three
response scores by linear weighting. For each Π ∈ Υ, we obtained three scores Sc(Π), So(Π), and
S f (Π) from three models, respectively. Finally, according to Equation (2), the final fusing score of
bounding box Π was calculated by weighting Sc(Π), So(Π) and S f (Π) as:

S(Π) = (τc)Sc(Π) + (τo)So(Π) + (1− τc − τo)S f (Π) (11)

where τc and τo are the merge coefficients of the score of the color model and object detection,
respectively, and the sizes set in the experiment were 0.2 and 0.25, respectively. Specific parameters
of the experiment are presented below. When the fusing scores of all the bounding boxes centered

in inner region r are computed, a fusing scores matrix yt+1 =


S(1, 1) · · · S

(
1, ŵp

)
...

. . .

S
(

ĥp, 1
)

S
(

ĥp, ŵp

)
, named

the final response, is obtained, where S(i, j), computed with Equation (11), is the fusing score of a
bounding box in Υ, which has the position (i, j) in region r and the size of st. After selecting the target
bounding box pt+1 with the largest corresponding score of the final response yt+1, the target scale is
calculated by the scale filter. The transition tracking part of the MMT algorithm, which incorporates the
object model to Staple, is shown in Figure 5 (learning procedure) and Figure 6 (evaluation procedure).
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Figure 5. Transition tracking framework of multi-complementary model tracker (learning procedure).
In the (t)-th frame, a training patch is extracted at the location of for updating the denominator, and the
numerator of the translation filter with Equation (5). The target’s foreground area and background area
are obtained from, and are used to calculate the proportion vectors and with Equation (7), respectively.
Then, the score (weights) of each index feature is updated in Equation (8).Sensors 2017, 17, x FOR PEER REVIEW  11 of 25 
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From Equation (2), we know that pt denotes the estimated position of the target in (t)-th frame and
pt+1 denotes the predicted position of the target in the (t + 1)-th frame. Given the search patch dt+1,
which (with a magnification relative to target bounding box pt) is extracted around the pt, and the size
st of the target in the previous frame, we can obtain inner region r, r ⊂ dt+1, and a box set Υ, which is
our search sample space. The purpose of the transition tracking of the multi-complementary model is
to choose the new target bounding box pt+1 with max fusing score from the box set Υ. Therefore, after
the final response yt+1, which gives the fusing scores of all the boxes in Υ calculated with Equation
(11), pt+1 is estimated at the peak of yt+1. When the new position is obtained, the scale of target
is computed by the 1D correlation filter. Specific details about scale estimation can be found in the
code of Staple. y f

t+1, yc
t+1, and yo

t+1 are computed by the filter model, color model, and object model,
respectively. These are used to obtain final response yt+1 with Equation (11) and their calculation
process will be explained below.
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(1) Filter-related. In the (t + 1)-th frame, the search patch dt+1 (with a magnification relative to target
pt) is extracted around the pt, and the search feature maps represented using HOG features
are extracted from dt+1 and then convolved with translation filter RC through Equation (6) to
calculate the filter response of dt+1. Due to inner region r ⊂ dt+1, the filter response y f

t+1 of inner

region r can be obtained by cropping the filter response (score matrix) of dt+1. y f
t+1 is a matrix

which takes the scores of all the bounding boxes (with the same size of st, ϑ(Π) = st) centered at
different positions in inner region r as elements.

(2) Color-related. In the (t + 1)-th frame, the per-pixel scores St+1,β, which represent the scores

of pixels at different positions of dt+1, are obtained by looking up the table of weight β
j
t, then

the color response yc
t+1, which represents the color scores of all the bounding boxes in set Υ, is

obtained with Equation (9).
(3) Object-related. In the (t + 1)-th frame, we calculate the edge response and the boundary group for

the search area dt+1 in turn with the method in Edge Boxes [18]. Then, the object response yo
t+1,

which represents the object scores of all the bounding boxes in set Υ, is calculated with Equation (10).

2.5. Scale Calculation Optimization

When target bounding box pt+1, which denotes the predicted position of the target in frame t+1,
is obtained by translation tracking, the object scale can be calculated using the one-dimensional scale
filter proposed in [15]. The size range selection principle is as follows:

κnwt−1 ∗ κnht−1, n ∈ {−(ν− 1)/2, . . . , (ν− 1)/2} (12)

where wt−1, ht−1 are the width and height of the object on the previous frame, respectively; κ is the
scale factor; and ν is the scale number. We followed Staple and set κ and ν to 1.02 and 33, respectively.

Due to the classical scale calculation method in [15] (which is also used in Staple), we needed to
calculate the HOG feature maps of 33 scale image blocks during training and testing, which is very
complicated. In frame t, the feature map of the scale testing and the scale training were all based on
the same coordinates, which were obtained from the transition tracking of frame t. The scale testing
needs to extract the 33-scale image patch features relative to the target scale of the (t − 1)-th frame and
scale training needs to extract the 33-scale image patch features relative to the target scale of the (t)-th
frame, respectively, as the two-frame scale change is usually small or even the same. In the case where
the scale of the two frames before and after the change is n, the image features of the 33− n sample
blocks are repeatedly calculated, resulting in significant complexity. In this paper, we therefore reused
the features of the scale image patch that were obtained in the process of doing the scale calculations
during scale updating. This optimization method greatly improved the execution speed of the tracker.

3. Multi-Complementary Model for Long-Term Tracking

With the MMT tracker and the new proposed detection method, we constructed the MMLT
(Multi-Complementary Model for Long-term Tracking) tracker. In the following, we introduce the
online detection module in detail. In Section 3.1, we describe the proposed online detector method
used to get the candidate bounding boxes. In Section 3.2, we present how we evaluated the confidence
score of the candidate bounding box. In Section 3.3, we present how we obtained the redetected target
and how we decided whether to use it to reinitialize the tracker. In Section 3.4, we introduce how the
MMT tracker and online detection module worked together in MMLT comprehensively and introduce
the detection module’s high confidence update mechanism in this paper.

3.1. The Online Detector

It is common sense that the detection module is necessary for a long-term tracking method to
redetect the target in case of failed tracking when long-term occlusion or out-of-view arise. In addition,
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the detection method of learning a classifier online and using a classifier to search by sliding the
window has high time complexity. Different from previous works [26,30] where the online classifier
needs to be trained, in this paper, we combined an object detection method based on object contour [18]
and the color detection method [25] to generate a fractional prediction response of the search area
to redetect the target p̃t+1. Due to the diversity of the sample, information and discriminant can
be utilized to a greater extent. By integrating the dual prediction scores, we could form the fusing
prediction response score for an object with greater confidence, resulting in better detection. This
greatly improves the generalizability of the tracker.

Give a detection area Xt+1 =


ũ11 ũ12 · · · ũ1ĉ

ũ21 ũ22
...

...
. . .

ũâ1 · · · ũâĉ

, which (with a magnification relative to

target pt) is extracted around pt, it has a size of ã × c̃ and the fix target size st obtained from the
previous frame. Similar to the tracking module, we can also obtain its inner region r̃ and a bounding
box set Υ̃ =

{
Π : l(Π̃) ∈ r̃, ϑ

(
Π̃
)
= st

}
corresponding to r̃. In addition, our goal is still to calculate

the response scores of all bounding boxes in Υ̃ by the color and object parameters.
For the object detection model, according to the method in Section 2.3, the edge response

and edge groups of qo,t+1 are computed in turn. Then, we obtain object response do,t+1 =
So(1, 1) · · · So

(
1, w̃p

)
...

. . .
...

So

(
h̃p, 1

)
· · · So

(
h̃p, w̃p

)
 with Equation (10), which presents the object scores of all the

bounding boxes centered in inner region r̃. At the same time, the per-pixel scores matrix

St+1,β̃ =


β̃

φ(ũ11)
t β̃

φ(ũ12)
t · · · β̃

φ(ũ1c̃)
t

β̃
φ(ũ21)
t β̃

φ(ũ22)
t

...
...

. . .

β̃
φ(ũã1)
t · · · β̃

φ(ũãc̃)
t

 is obtained using β̃
j
t, and the color response dc,t+1 =


Sc(1, 1) · · · Sc

(
1, w̃p

)
...

. . .
...

Sc

(
h̃p, 1

)
· · · Sc

(
h̃p, w̃p

)
 that represents the color scores of bounding boxes (with the same

size of st) centered at different positions in inner region r̃ is also computed efficiently through the
integral images (Equation (9)).

After we obtain the predicted response scores of different models, the approach of fusing the
predictions of the multi-complementary detection model is as follows.

Let us assume that the prediction results of different models are independent. Π̃ ∈ Υ̃ is chosen
from a box set Υ̃, and υ ∈ {−, +} denotes a foreground-background label. M̃θ is the parameter
corresponding with different models, which depends on the previous object state and previous frame.
The likelihood of the candidate bounding box Π̃ belongs to the object under the model parameter
M̃θ , which can be expressed as p

(
Π̃ = +; M̃θ

)
, θ = 1, . . . n, where n is the total number of models.

Suppose the models are independent of each other, then we have the following decomposition:

p(Π̃ = +; M̃1 . . . M̃θ . . . M̃n) = ∏
θ

p(Π̃ = +; M̃θ), θ = 1, . . . n (13)
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Now, we have two independent model parameters: the color model parameter M̃0 and the object
model parameter M̃1. According to the color model parameter M̃0, the probability that candidate
bounding box Π̃ is the object can be calculated by

p
(

Π̃ = +; M̃0

)
= So

(
Π̃
)

(14)

Likewise, according to the object detection model parameter M̃1, the probability that the candidate
bounding box Π̃ is the object can be calculated by

p
(

Π̃ = +; M̃1

)
= Sc

(
Π̃
)

(15)

Therefore, according to Equation (13), we have the following formula to fuse the predictions of
the different independent models for calculating the score of each bounding box Π̃:

p
(

Π̃ = +; M̃0, M̃1

)
= So

(
Π̃
)
× Sc

(
Π̃
)

(16)

When we get the scores of all the bounding boxes in Υ̃, from Equation (16), we know the final
response matrix dt+1 can be obtained by:

dt+1 = do,t+1 � dc,t+1 (17)

where � represents dot multiplication operations. dt+1 represents the final response scores of all the
bounding boxes Π̃ (with the same size of st, ϑ

(
Π̃
)
= st) centered at different positions in the inner region r̃.

In general, the probability of Π̃ to the object is large when both the color score and the object
detection score of Π̃ are high. If the Π̃ gets a low score from any one model, it is considered as not
likely to be the target. Therefore, in this paper, the color score and the object detection score are merged
by multiplication to obtain more reliable detection results.

Having calculated the final response dt+1 of inner region r̃ (in detection area Xt+1),
the corresponding peaks of dt+1 could be used to obtain the possible object location. Then, the purpose
of the detector is to detect the top-w (w = 10) confident detection bounding boxes from Υ̃ (corresponding
to inner region r̃). First, we select the bounding box lmax centered at the peak (with the largest response
score Ms in the final response dt+1) to the candidate bounding boxes set T. When the ratio between
the response score of the bounding box centered at other peaks to Ms is greater than a threshold ξ,
the corresponding bounding box is also added to T. Similar to CCT, the bounding box l0 centered
at the position in the previous frame is also added to T as a candidate bounding box for evaluation.
At the same time, we limited the total number of candidate bounding boxes so that it does not exceed
w = 10. Finally, we obtain the candidate bounding box set T = {l0, l1, l2, · · · , lk}.

3.2. Candidate Bounding Box Evaluation

After the detection module detects the candidate bounding box set T, a robust mechanism is needed
to measure the confidence score of each candidate bounding box li ∈ T. However, to effectively measure
the confidence score of each bounding box, we follow the Collaborative Correlation Tracker (CCT) [31]
and consider not only the target area corresponding to the bounding box, but also the information of
its background area. That is, for each candidate bounding box li, we extract the image region samples
EB-patch l̃i, which centers at the location of li and has the same magnification relative to the candidate
bounding box as transition filter Rc. The EB-patch l̃i is measured by a well-trained filter R̃c (similar to Rc)
to obtain the confidence score s̃i of the corresponding candidate bounding box li.

First, we obtain the candidate EB-patch set S =
{

l̃0, l̃1, l̃2 · · · l̃k
}

corresponding to T =

{l0, l1, l2 · · · lk}. For each EB-patch l̃i ∈ S, i ∈ (0, 1, · · · , k), its HOG features map Jli is calculated,
which convolved with confidence filter R̃c in Equation (6), to obtain the confidence filter response ŷi.
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In addition, we used the maximum score s̃i = max(ŷi) of ŷi as the confidence score of the candidate
bounding box li. Finally, the candidate confidence scores S̃ = {s̃0, s̃1, s̃2 · · · s̃k} are also obtained.
The calculation of R̃c is given in Section 3.3.

3.3. Redetected Result Decision

When the candidate confidence scores S̃ is obtained, the final redetected target can be calculated as:

_
i = argmax

i
(δ ∗ s̃0, s̃1, s̃2 · · · s̃k) (18)

Then, the bounding box l_
i

is the final redetected target p̃t+1. When ĩ 6= 0 and s̃ĩ is higher than a

certain threshold χ, p̃t+1 is accepted, and is then used to initialize the tracker. When ĩ = 0 or s̃ĩ is lower
than χ, we consider p̃t+1 is not correct, and it is not accepted.Sensors 2017, 17, x FOR PEER REVIEW  15 of 25 
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3.4. Multi-Complementary Model for Long-Term Tracking

Clearly, a robust long-term tracking algorithm requires a re-detection module in case of tracking
failure. Similar to LCT, we use the threshold τm as the activation confidence to activate the detector.
First, MMT performs the target tracking process in each frame. When the activation confidence
max(yh

t ) < τm, the detector is activated to redetect the target, where yh
t is the filter response

of the transition tracking, which is computed in Equation (6). For the detection process, first,
the detector has to compute the possible candidate bounding box set T = {l0, l1, l2 · · · lk}, and
then the candidate EB-patch set S =

{
l̃0, l̃1, l̃2 · · · l̃k

}
corresponds to set T. Then, the confidence score
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set S̃ = {s̃0, s̃1, s̃2 · · · s̃k} is obtained by calculating the confidence score of each EB-patch in S with
the confidence filter R̃C and Equation (6). Then, the redetected result decision module computes the
redetected target p̃t+1 and decides whether to use it to reinitialize the tracker. The overall procedure of
the online detection module is shown in Figure 7.

Similar to LCT, our confidence filter model is only updated when the tracking results are reliable.
LCT uses the response value of the confidence filter to measure the reliability of the tracking results.
We follow LMCF (Large Margin Object Tracking with Circulant Feature Maps) [32] and considered
whether the object tracking results are reliable depending on both the maximum response value and
the response map’s APCE (Average Peak-to Correlation Energy) [32]. LCT trained an independent
confidence filter to evaluate the confidence score of each candidate box in the detector. However,
this adds extra time complexity to the algorithm. CCT uses the filter used in the tracking process to
evaluate the confidence score of each candidate bounding box; thus, as the tracking model drifted,
the detection model also drifted. Therefore, the reliability of the re-detection result obtained by the
detection module could not be guaranteed. In this paper, we use a copy version R̃c of translation filter
Rc in the tracking process to measure each EB-patch to obtain the confidence score of each candidate
bounding box; however, to prevent drift occurring in the detection model, as in the tracking model,
different from Rc, which is updated each frame, the filter R̃c is updated only when the tracking result
is reliable. Therefore, we update the numerator Ãl

t and denominator B̃t of the confidence filter H̃l
t(R̃c)

when Equation (22) is satisfied. The formula is as follows:{
Ãl

t =
(

1− η f

)
Ãl

t−1 + η f GFl
t if Equation (22) is satisfied

Ãl
t = Ãl

t−1 else
(19)

 B̃t =
(

1− η f

)
B̃t−1 + η f

d
∑

k=1
Fk

t Fk
t if Equation (22) is satisfied

B̃t = B̃t−1 else
(20)

H̃l
t =

Ãl
t

B̃t
l = 1, 2, · · ·N. (21)

where GFl
t and

d
∑

k=1
Fk

t Fk
t are polynomials that have been calculated in the updating of numerator Al

t

and denominator Bt of transition filter Rc in the transition tracking process with Equation (5).
Following the updating mechanism of filter R̃c, ρ̃t(O) and ρ̃t(B) are also the copy versions of

ρt(O) and ρt(B) for detecting in the detector, which are updated with Equation (7) only when Equation
(22) is satisfied. Similar to β

j
t, the updating of β̃

j
t is in Equation (8). The high confidence update

mechanism that represents a reliable tracking in detection model is as follows.
In the (t)-th frame, we follow LMCF [32] and use the maximum filter response value y f

t (pmax) =

max
(

y f
t

)
and the APCE (Average Peak-to Correlation Energy) [32] of the filter response map y f

t as a

reference for updating the model, where y f
t is the filter response of translational tracking phase, which

is obtained by Equation (6) in the (t)-th frame. The calculation method of APCE can refer to LMCF.
Then, we consider the object tracking results reliable when both criterion y f

t (pmax) and the response
map’s APCE kl are greater than their respective ∆(∆ = 5) frames historical average values ỹ f

t (pmax)
and k∗t . Thus, whether the target tracking result in the current frame is reliable can be judged by
whether the following conditions are satisfied:

y f
t (pmax) ≥ ω1 ∗ ỹ f

t (pmax)
kt ≥ ω2 ∗k∗t

(22)
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4. Performance Evaluation

We implemented our experiment on the OTB-13 [33] and OTB-15 [34] benchmark datasets. All of
the video sets with challenging factors were selected to undertake three experiments to evaluate
performance: one pass evaluation (OPE), temporal robustness evaluation (TRE), and spatial robustness
evaluation (SRE). OPE uses a traditional method of evaluation. As pointed out by [33], the traditional
one-pass evaluation cannot fully reflect the robustness of a tracker, and sometimes even a small
disturbance can lead to very different tracking results. The tracker begins tracking at the true position
of the initial frame and calculates the Precision and Success Rate (SR). The TRE and SRE are different:
the TRE randomizes the start frame to run the tracker on the rest of the sequence; and the SRE verifies
the performance of a tracker by tracking an object after shifting and scaling the initial object box. These
three kinds of evaluation monitor performance by indicating the accuracy and success rate of the
generated graph, which indicates the percentage of the number of frames that the tracker has been
able to track under different thresholds.

In this section, we first evaluate MMLT with the improvements from the online detector and
multi-complementary model on OTB-13. Then, we compare MMLT with nine of the most related
and state-of the-art trackers on the OTB-13 and OTB-15 benchmark datasets. Finally, we analyze the
effect of different merge parameters on the tracking performance. All of the tracking results used the
reported results to ensure a fair comparison.

4.1. Experimental Configuration and Parameter Settings

To evaluate the performance and efficiency of the proposed algorithm, our tracker was
implemented in Matlab software with a Core i7 4.0GHz CPU and 8GB RAM. MMLT runs faster
than 50 frames per second (FPS). The color model used a 32-bit RGB channel color model. HOG
features were selected as the features of interest, the cell size was set to four, and the number of
statistical gradient directions was nine. As in [25], the translation filter image block parameter had a
fixed area to achieve standardization. The parameter was set to 150 × 150.

We, following Staple, only searched in the area around the previous position for both translation
and scale in the tracking module, and adopted the translation filter RC scale filter for tracking using
a Hann window during the search as well as for training. Additionally, also following the Staple,
we normalized the translation search patch by a parameter’s fixed area, and weighted the extracted
feature channels patch of the target and context by a cosine window. Thirty-three scales with a scale
factor of 1.02 were used in the scale model in this paper. In this paper, all search patches extracted
around the previous position included both the target and surrounding context. In addition, we also
adopted the confidence filter R̃C in the candidate detection EB-patch evaluation using a Hann window
during confidence evaluation as well as for training and normalized the EB-patch by the parameters
fixed area. The specific parameters can be seen in Table 1. More detailed parameters setting about the
Staple algorithm can be seen in the code of Staple.

Table 1. The parameters for our experiments.

Learning Rate (Filter) ηf 0.01 Activation Threshold σ 0.2

Learning rate (color) ηc 0.04 ξ 0.7
Learning rate scale filter 0.035 χ 0.2

Color features RGB δ 1.3
Bins color space 32× 32× 32 k (object model) 1.5

Weighting coefficient (color) τ1 0.2 ω1 0.7
Weighting coefficient (object) τ2 0.25 ω2 0.45

Fix area 1502 HOG cell 4
τc 0.2 τo 0.25
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4.2. Analysis of MMLT Improvement

To validate the tracking aspect of the object detection and the effectiveness of the detection module,
we also compared several baselines of MMLT on the OTB-13 with all 51 videos. The MMLT-NN in
Table 2 is an accelerated version of the Staple algorithm that incorporated our scale optimization.
We named the tracker that had an object model in transition tracking but had no online detector
module as MMT. The tracker that had no object model in transition tracking but had an online detector
module was named MMLT-N1. The specific tracking performance in the OTB-13 benchmark datasets
are shown in Table 2, where the average FPS is the average FPS for the tracker. To more fully measure
the execution efficiency of the tracking algorithm, the tracking speed of the tracker listed in Table 2 was
the average of the tracking speed of 51 videos in the OTB-13 benchmark datasets. It is worth noting
that the performance in Table 2 of the Staple algorithm was based on the source code provided by the
author and the parameters given in Staple [25].

Table 2. Tracking results for different trackers.

Trackers Detection Object Model OPE TRE SRE
Mean FPS

Precision Success Precision Success Precision Success

Staple No No 0.766 0.582 0.786 0.603 0.755 0.553 103
MMLT-NN No No 0.766 0.582 0.786 0.603 0.755 0.553 135

MMT No Yes 0.832 0.633 0.844 0.646 0.789 0.591 70
MMLT-N1 Yes No 0.835 0.629 0.840 0.641 0.809 0.584 47

MMLT Yes Yes 0.866 0.658 0.867 0.664 0.834 0.611 50

As seen in Table 2, MMLT’s tracking accuracy and tracking success rate were superior to all other
tracker versions in all three metrics of OPE, TRE, and SRE. At the same time, it was seen that the average
tracking accuracy and the average success rate of MMLT had more than 10% hits against with Staple,
and real-time tracking of 50 FPS was achieved at the same time. For Staple, the tracking performance
was much weaker than other versions of trackers in this paper since only the filter model and the color
model were integrated into the translation tracking stage and there was no detection model. As shown
in Table 2, the MMLT-NN algorithm with the tracking speed of 135 FPS was greatly improved when
compared to Staple due to the optimization of scale calculation. At the same time, MMT had an
average of 6% and an average of over 7% improvement in tracking precision and tracking success rate,
respectively, when compared with Staple due to the inclusion of the object detection model during the
translational tracking phase. The MMLT-N1 tracker also had good performance due to the detection
mechanism added in the case of tracking failure. Compared with the Staple, the MMLT-N1 tracker
also improved the tracking precision and tracking success rate by 6% and 7%, respectively. At the
same time, in Table 2, we can see that the tracking speed of the MMLT-N1 was lower than that of the
MMLT, which adopted the target detection model and the object model in transition tracking. Without
the object model in transition tracking, the tracking robustness of MMLT-N1 was relatively low, and
the target tracking was prone to drift, which led to the MMLT-N1 tracker needing more re-detection
processes and a decrease in tracking speed. At the same time, it could indirectly reflect the importance
of integrating the object detection model in the translation tracking phase. In summary, from the
experimental results, the multi-complementary model tracking algorithm proposed in the translation
phase or the proposed target re-detection algorithm both provided a significant improvement in the
performance of the algorithm.

4.3. MMLT Experiment

We compared our algorithm with some state-of-the-art methods including, SRDCF (Spatially
Regularized Discriminative Correlation Filter Tracker [7]), DeepSRDCF (Spatially Regularized
Discriminative Correlation Filter Tracker Based Deep Features [7]) with added deep features, DSST
(Discriminative Scale Space Tracker [15]), MEEM (Multiple Experts Using Entropy Minimization
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tracker [21]), Staple (Sum of Template and Pixel-wise Leaners tracker [25]), LCT (Long-term Correlation
Tracking [30]), LMCF (Large Margin Object Tracking with Circulant Feature Maps [32]), ECO-HC
(Efficient Convolution Operators for Tracking based HOG and CN Features [35]), SAMF (Scale
Adaptive with Multiple Features tracker [36]) and DLSSVM (Dual Linear SSVM [37]). The tracking
success rate for the top 10 trackers was evaluated on all 51 videos the in the OTB-13 [33] and all
100 videos in the OTB-15 [34] benchmark datasets. These results are shown in Figure 8. As shown,
MMLT performed well across the OPE, TRE, and SRE indicators. When the Staple algorithm was first
proposed, it performed very well in comparison to other algorithms. Our approach achieved a 9.7%
improvement on the success plots of OPE, a 7.8% improvement on the success plots of TRE, and an
8% improvement on the success plots of SRE over Staple on OTB-13, whilst also showing a similar
improvement on the OTB-15 dataset relative to the Staple algorithm. We need to emphasize that our
approach also ran at a significantly higher speed with 50 FPS. In addition, MMLT performed as well as
DeepSRDCF with deep features. However, DeepSRDCF tracked less than 1 FPS while MMLT tracked
at approximately 50 times the DeepSRDCF tracking speed. At the same time, whil using the same
detection mechanism as the LCT algorithms, an average improvement of 10% on the success plots
is achieved. In the meantime, our approach had an average of 1% improvement over the ECO-HC
algorithm which also does not use depth features but has excellent tracking performance. Furthermore,
it needs to be stressed that we compared the tracking performance with the published data where the
average FPS of different trackers in the legend was the average of the tracking speed of 100 videos in
the OTB-15 benchmark datasets, which was tested on our computer.
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In summary, the MMLT algorithm performed well against the listed trackers, both in tracking
performance and in tracking speed.

4.4. Attribute Based Evaluation

The video set provided in [33] contained a selection of 11 attributes including object deformation,
occlusions. These allowed for further analysis of tracker performance. Figure 9 shows the results for
the eight most challenging video attributes in OTB-13 [33]. As shown, the DeepSRDCF algorithm
demonstrated comprehensive performance against the existing tracking algorithms outside of trackers
with depth information, i.e., in-plane rotation (59.6%), out-of-plane rotation (63.0%), and scale variation
(62.8%). The MMLT algorithm achieved a success rate of 60.2%, 64.1%, and 61.9% on in-plane
rotation, out-of-plane rotation, and scale variation, respectively. ECO-HC achieved the success rate
of 59.5%, 65.6% and 63.9%, on illumination variation, occlusion and out of view, respectively, while
MMLT achieved the success rate of 62.3%, 64.3% and 64.0%, respectively. LMCF offered a 62.5%
performance on background clutter, which was matched by MMLT. LCT offered a 66.8% performance
on deformation, while MMLT performed well with a success rate of 67.5%.
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variation. The legend illustrates the ranking scores for each tracker. The proposed MMLT algorithm
has five attributes ranked first, and three attributes ranked second.

4.5. Qualitative Comparison

We compared our proposed tracking algorithm (MMLT) with six other state-of-the-art trackers,
namely Staple (Sum of Template and Pixel-wise Leaners tracker [25]), MEEM (Multiple Experts Using
Entropy Minimization tracker [21]), LCT (Long-term Correlation Tracking [30]), TLD (Learning and
Detecting [26]), Struck (Structured Output Tracking with Kernels [38]), and KCF (Kernel Correlation
Filter [5]) on ten challenging sequences (Figure 10). The Staple algorithm takes advantage of the
complementary sample information by fusing the predictions of the filter model and the color model,
and therefore showed good performance in handling with significant deformation and fast motion
(Tiger2 and Deer). However, it drifted when the target objects underwent heavy illumination variation,
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occlusion, and background clutters (Shaking, Lemming, and Couple). As the color model is susceptible
to changes in light and motion blur, even with the filter model as a complementary model, the tracker’s
resilience was still low when the tracker encountered severe lighting changes and similar background
colors; moreover, while tracking in the event of a serious occlusion, the tracking results were also prone
to drift and did not re-detect targets in the case of tracking failure (Couple and Jogging-2). The MEEM
tracker selected the best prediction of models collected from the past for tracking according to the
minimum entropy criterion, but still did not perform well when in the presence of heavy occlusion
(Walking2) or both significant scale and fast motion (Carscale). The Struck tracker did not perform
well in background clutters (Shaking), fast motion (Deer), heavy occlusion, or out-of-view (Walking2,
Tiger2, and Jogging-2). The KCF tracker is based on a correlation filter learned from HOG features,
so drifted when the target objects underwent heavy occlusions (Lemming), and motion blur (Tiger2).
In addition, the KCF tracker failed to handle background clutter (Shaking) since it is difficult to achieve
robust tracking with a single feature classifier model in complex scenes. When tracking failed, the TLD
tracker could re-detect the target object. However, the TLD approach did not take full advantage of the
temporal movement clues and therefore did not follow targets undergoing significant deformation and
fast motion (Tiger2 and Shaking) well. Moreover, the TLD method updates its detector frame-by-frame,
leading to drifting. Overall, the proposed MMLT tracker performed well in estimating both the scales
and positions of target objects on these challenging sequences, which can be attributed to three reasons.
First, our tracker effectively combined three separate models, each dealing with different features,
each complementing each other, and taking full advantage of the diversity of sample information.
Therefore, in the target deformation or light, motion blur, etc., it can have a better tracking effect.
Second, our confidence filter was updated only when the confidence level was high, so it could restrain
the flow of the template in the detection module to a certain extent, and the object detection model
incorporated into the tracker could reduce the problem of template flowing to a certain extent. Finally,
we added a model detection algorithm based on the color model and object detection, which could
quickly re-detect the target after it failed.
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In addition, the center location errors and the average overlap rate were used to evaluate the
proposed tracker. The average center location error is the average value of all the center location errors
in all the video sequences, where the center location error represents the distance center between the
position of predicted bounding box Rt, and the ground truth Gt can be expressed by the criterion

CLE =
√(

Lt − Lg,t
)2. Lt and Lg,t represent the location of Rt and Gt, respectively. The average overlap

rate represents the average overlap between bounding box Rt and the ground truth Gt in all the video
sequences, and the overlap between bounding box Bt and the ground truth Gt can be represented
by the criterion overlap = |Bt ∩ Gt|/|Bt ∪ Gt|, where ∩ represents the intersection and ∪ represents
union. The average center location error and average overlap rate of the proposed algorithm on the
ten sequences are shown in Tables 3 and 4, respectively, which show the good tracking performance of
our proposed tracker against the other trackers. In addition, the best result and the next best result are
marked with red and blue in Tables 3 and 4, respectively.

Moreover, we report the central-pixel errors frame-by-frame on the ten sequences in Figure 11,
which shows that our tracking algorithm performed well against the existing trackers.

Table 3. Average center location errors of the proposed method compared to other trackers (pixels).

Ours Staple MEEM LCT TLD Struck KCF

Lemming 9.042 158.449 14.486 17.076 22.696 35.578 83.931
Shaking 6.568 125.060 11.179 10.357 190.684 34.825 116.893

Car4 3.013 3.071 34.829 10.388 22.160 23.231 29.131
Carscale 22.059 21.740 37.296 43.649 45.785 74.244 51.728
Couple 4.641 34.588 7.163 19.177 4.824 18.458 49.315

Deer 5.978 6.032 9.588 21.742 71.372 8.704 23.408
Jogging-2 6.156 151.059 13.192 7.467 12.386 112.456 144.996
Jumping 3.712 27.919 3.815 4.681 5.736 4.525 26.973

Tiger2 10.189 10.282 19.844 16.731 100.407 21.686 47.072
Walking2 3.115 3.178 35.236 35.706 43.908 8.793 12.797

Table 4. Average overlap rate of the proposed method compared to other trackers.

Ours Staple MEEM LCT TLD Struck KCF

Lemming 0.748 0.232 0.650 0.701 0.500 0.481 0.347
Shaking 0.777 0.057 0.652 0.704 0.129 0.310 0.041

Car4 0.872 0.867 0.357 0.689 0.537 0.441 0.412
Carscale 0.719 0.717 0.400 0.614 0.434 0.362 0.406
Couple 0.721 0.527 0.601 0.447 0.761 0.484 0.202

Deer 0.778 0.776 0.698 0.606 0.606 0.716 0.600
Jogging-2 0.706 0.124 0.547 0.671 0.626 0.172 0.113
Jumping 0.651 0.228 0.730 0.629 0.662 0.681 0.264

Tiger2 0.689 0.687 0.536 0.611 0.232 0.546 0.357
Walking2 0.758 0.756 0.269 0.354 0.299 0.504 0.482
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Figure 11. Fame-by-frame comparison of the center location errors (in pixels) on ten challenging
sequences in Figure 11. Based on the experimental results, our algorithm was able to track targets
accurately and stably.

4.6. Analysis of Merge Parameter

As shown in Figure 12, we randomly selected 25 sequences with different attributes from the
OTB-13 benchmark datasets [33] and tested the effect of different merge parameters τc and τo on the
TRE success rate by the cross-intersection method.
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We can see in Figure 12, with the color regression model, filter regression model, and object
row response model, that the tracking performance was better than the tracking performance with
only the filter model and the color model, or the filter model. The performance of the three models
weighting coefficients reaching the proper ratio tracker was the best. At the same time, it can also
be seen in Figure 12 that the tracking success rate of the tracker was relatively high in a certain area
of the optimal parameters, that is, small changes, the performance of the tracker had strong stability.
Therefore, we can see that the fusion strategy based on multiple models is a good way to improve the
performance of trackers. Clearly, the best performance was achieved at τc = 0.2 and τo = 0.25, which
were used in the rest of our experiments.
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5. Conclusions

In this paper, by incorporating the object model based on contour information into the translational
tracking of Staple (which combines a correlation filter and color model), tracking robustness is
significantly improved. Each model is responsible for tracking specific features, and then the three
complementary models are combined to form a more robust tracking model. At the same time,
we design a target detection method based on an object detection model based on contour features and
a color model based on histogram features, which has good performance in detection efficiency and
detection accuracy when compared with traditional classifier-based detection methods. In addition,
we also optimize the traditional scale calculation method. The experimental results show that the
proposed algorithm offers favorable improvements in performance with regard to efficiency, accuracy,
and robustness.
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