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Abstract: High-performance oscillators, atomic clocks for instance, are important in modern
industries, finance and scientific research. In this paper, the authors study the estimation and
prediction of long-term stability based on convex optimization techniques and compressive
sensing. To take frequency drift into account, its influence on Allan and modified Allan variances
is formulated. Meanwhile, expressions for the expectation and variance of discrete-time Hadamard
variance are derived. Methods that reduce the computational complexity of these expressions are also
introduced. Tests against GPS precise clock data show that the method can correctly predict one-week
frequency stability from 14-day measured data.

Keywords: frequency stability; drift; power-law noise; convex optimization; compressive sensing

1. Introduction

Timing technology is important in modern finance [1], industries and scientific research [2].
High frequency trading, real-time navigation and the verification of relativistic effects require
accurate and high-resolute time and/or frequency information. Timing information is given by
counting the periodic signals of referenced oscillators. Meanwhile, frequencies of the timing signal are
multiples of the referenced oscillator period. A time-scale is accurate only if the participant oscillators
produce frequencies consistent with their nominal values or are stable enough to be predictable.
Furthermore, high resolution requires, in turn, a short period of oscillator output signal frequencies.
Unfortunately, no high-performance oscillator produces constant and high-resolution signals.

The difference between an oscillator’s output signal from its nominal value can be divided
into deterministic and random parts. The oscillator’s random behavior is well-documented by
a class of noise processes called power-law noise (PLN) [3]. While the random variations are
defined in the frequency domain, it is often measured in the time domain by a class of structure
functions and referred to as the frequency stability of the oscillator. For example, Allan (AVAR),
modified Allan (MVAR) and Hadamard variance (HVAR) are commonly-used methods. These statistics
can be improved by using a ‘total approach’ [4]. Recently, Thêo- [5] and parabolic variances [6]
were also proposed. The authors proposed an oscillator noise analysis method called stochastic
ONA [7]. The method predicts long-term frequency stabilities using convex optimization techniques.
Specifically, the confidence regions of long-term Hadamard variances (HVAR) predicted from 14-day
GPS precise clock data include HVAR estimated from 168-day measured data and are smaller than
those estimated from 84-day time derivations.

On the other hand, distinctions between deterministic and random behavior are blurry [8]. It is
often difficult to differentiate drift from frequency noises [9]. A main drawback of stochastic ONA is its
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requirement for drift-free input variances. For example, cesium frequency standards are conventionally
believed to be free from drift [10]. However, analysis of historical data and current practice show that
the performance of TAI (International Atomic Time) improved when taking the frequency drifts of
participant cesium clocks into account [11].

This paper studies the estimation of oscillator stability under the influence of frequency drift.
In Section 2, the basic concepts and methods of time domain stability have been reviewed. Although
time domain stability is related to the frequency domain, discrete sampling has different impacts
on the two. The influence of discrete sampling on both domains has also been reviewed in this
section. In Section 3, we introduce a method called stochastic ONA, which extends the oscillator noise
analysis problem to the prediction of long-term stability. In the following section, we describe methods
to compute coefficient matrices used in stochastic ONA. We also introduce a method that greatly
reduces the computational complexity of Walter’s characterization of AVAR and MVAR. From these
works, we can then predict long-term frequency contaminated by deterministic linear frequency
drift. The proposed model is tested against GPS precise clock data in Section 5. The one-week AVAR,
MVAR and HVAR predicted by stochastic ONA from 14-day measured data are consistent with those
estimated from 84-day data. In addition, the fifteen-day variances predicted by stochastic ONA have
more compact confidence regions than those estimated from 42–60-day data.

2. Review of Time Domain Stability

It is well documented that high performance oscillators are influenced by power-law noises (PLN).
PLN processes are conventionally defined by their power spectral densities (PSD):

Sy( f ) =
Nh

∑
i=1

hαi f αi = (2π f 2)Sx( f ) (1)

where Sy( f ) is the PSD of oscillator fractional frequency y(t), Sx( f ) PSD of time deviations x(t),

x(t) =
∫ t

0
y(t)dt.

f (Fourier) frequency and hα noise intensity coefficient, α = α1, α2, · · · , αNh . Often, α = 2 (white phase
modulation, WHPM), 1 (flicker PM, FLPM), 0 (white frequency modulation, WHFM), −1 (flicker FM,
FLFM), −2 (random walk FM, RWFM) [12]. However in Global Positioning System (GPS) master
control station (MCS) clock prediction, α = 2, 0, −2 and −4 (random run FM, RRFM), and the hα

coefficients are replaced by qi [4]:

qi =

{
h2/

(
8π2τ0

)
, i = 0,

(2π)2(i−1)h2(1−i)τ0, i = 1, 2 or 3.

However, PSD measured from an oscillator signal is not used solely in practice. Since the PSD
estimates are “noisy” [13], time domain statistics are often used instead. For instance, AVAR [13]:

σ̂2
y (τ) =

1
2(N − 2m)τ2

N−2m

∑
i=1

[xi+2m − 2xi+m + xi]
2 , (2)

MVAR:

Modσ̂2
y (τ) =

N−3m+1

∑
j=1

[
∑

j+m−1
i=j (xi+2m − 2xi+m + xi)

]2

2m2τ2(N − 3m + 1)
, (3)

and HVAR:

σ̂2
z (τ) =

N−3m

∑
i=1

[xi+3m − 3xi+2m + 3xi+m − xi]
2

6(N − 3m)τ2 . (4)
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A time-domain variance σ2
k (τ) can be related to its PSD:

σ2
k (τ) =

∫ ∞

0
Sy( f ) |Hk( f )|2 d f =

Nh

∑
i=1

Φk(αi, τ)hαi . (5)

Here, τ = mτ0 is the averaging time, τ0 sampling period and Hk( f ) the transfer function of σ2
k (τ)

defined in [12]:

Φk(α, τ) =
∫ ∞

0
f α |Hk( f )|2 d f . (6)

Here, subscript k is used as a generic form of different variances. The majority of measured data
nowadays are digital. σ2

k (τ) estimated from finite data may have different values for Equation (5).
The former is usually denoted as ˆσ2

k (τ), and it can be viewed as a realization of sample variance variable
Σk(τ) [14]. The distribution function F

(
Σk(τ) ≤ σ̆2

k (τ)
)

(F
(
σ̆2

k (τ)
)

for short) of random variable Σk(τ)

can be formulated as:

F
(

σ̆2
k (τ)

)
=
∫ σ̆2

k (τ)

0

uEDFk(τ)/2

ue−uΓ (EDFk(τ)/2)
du, (7)

for arbitrary positive real number σ̆2
k (τ), where e is Euler’s number, Γ(·) the Gamma function,

EDFk(τ) the equivalence degrees of freedom (EDF):

EDFk(τ) =
E
[
σ̂2

k (τ)
]2

Var
[
σ̂2

k (τ)
] , (8)

E [·] variance is estimated from infinite samples and Var [·] variance of the random variable σ̂2
k (τ).

If we denote:

E
[
σ̂2

k (τ)
]
=

Nh

∑
i=1

Φk(αi, τ)hαi , (9)

where variance σ̂2
k (τ) is estimated from x[t] and x[t] the discrete sampling of time deviations x(t),

then Φk(αi, τ) does not equal Equation (6). Instead of PSD, Kasdin shows that it is the symmetric
two-time autocorrelation function:

Rx(t, τ) ≡ 〈x(t− τ/2)x(t + τ/2)〉 , (10)

which directly samples the continuous-time function [15]. For example, instead of Equation (1),
Walter shows that PSD measured from discrete sampled time deviations x[t] relates to Sy( f ) in the
following way [16]:

Sx( f ) =
hα

4π2

[
sin(π f τ0)

πτ0

]α−2

=
τ2

0 Sd
y ( f )

4 sin2(πτ0 f )
. (11)

The autocorrelation function of PLN processes has the following asymptotic form when
t >> τ [15]:

R(t, τ) ≈ hα

2(2π)α
(log 4t− log |τ|) (12)

for α = −1, and:

Rx(t, τ) ≈
{

QΓ(α− 1)|τ|1−α

Γ(α/2)Γ(1− α/2)
+

QΓ(1− α)t1−α

Γ(2− α)Γ2(1− α/2)

}
(13)

for α 6= −1, where:

Q =
hα

2(2π)α
.
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To derive an expression for the discrete autocorrelation function, the deviation of Brownian
motion is often replaced by the discrete Wiener process in time and frequency metrology [15,17].
If, in addition, the noise process is wide sense stationary, Rx(t, τ) can be recast as [15]:

R(d)
x [m] =

QΓ(m + 1− α/2)Γ(α− 1)
τα−1

0 Γ(m− 1 + α/2)Γ(α/2)Γ(1− α/2)
. (14)

Here, τ = mτ0. From Equations (12)–(14), Walter derives Φk(αi, τ):

ΦAVAR(αi, τ) = πΓ(αi−1)
m2(2πτ0)

αi+1Γ2(αi/2)
×

[
3− 4 Γ(m+1−αi/2)Γ(αi/2)

Γ(m+αi/2)Γ(1−αi/2)

+ Γ(2m+1−αi/2)Γ(αi/2)
Γ(2m+αi/2)Γ(1−αi/2)

] (15)

and Var
[
σ̂2

k (τ)
]
:

Var
[
σ̂2

y (τ)
]
=

h2
αΓ2(α− 1) sin2(απ/2)

(2πτ0)2α+2(N − 2m)m4 ×
N−2m−1

∑
`=−N+2m+1

(
2− 2|`|

N − 2m

)
×
{

3Γ(|`|+ 1− α/2)
Γ(|`|+ α/2)

− 2Γ(|m + `|+ 1− α/2)
Γ(|m + `|+ α/2)

− 2Γ(|m− `|+ 1− α/2)
Γ(|m− `|+ α/2)

(16)

+
Γ(|2m + `|+ 1− α/2)

2Γ(|2m + `|+ α/2)
+

Γ(|2m− `|+ 1− α/2)
2Γ(|2m− `|+ α/2)

}2

for Allan variance (AVAR) [16]. It should be noted that variances estimated from discrete sampled
data may be distorted when the averaging time τ = mτ0 is near sampling period τ0. The distortions
are caused by alias and measurement noise [15]. Equations (15) and (16) do not take the distortions
into account. Furthermore, the influences of frequency drift are not included in these equations.
As a development of Walter’s work, we will formulate the effect of deterministic linear frequency drift
in AVAR estimates and derive Φk(αi, τ) and Var

[
σ̂2

k (τ)
]

for HVAR in Section 4.
On the other hand, if σ̂2

k (τ) is a measurement of the time-domain variance σ2
k (τ), we can estimate

the hα coefficients from σ̂2
k (τ). It can be formed as a least square problem:

minimize (Φh− σ)TW(Φh− σ), (17)

and called oscillator noise analysis. Suppose there are M different input variances. Therefore, the coefficient
matrix Φ can be divided into M blocks:

Φ =
[
ΦT

k1
· · ·ΦT

k · · ·Φ
T
kM

]T
,

whose k-th block Φk, k = k1, k2, · · · , kM,

Φk =


Φk(α1, τ0) · · · Φk(αNh , τ0)

Φk(α1, 2τ0) · · · Φk(αNh , 2τ0)
...

. . .
...

Φk(α1, mkτ0)· · ·Φk(αNh , mkτ0)

 , (18)

Φk(α, τ) is defined in Equation (9). Φ can be formed by using the method we proposed in Section 4.
Similarly, the column vector of input variances σ can be partitioned into M blocks:

σ =
[
σT

k1
· · · σT

k · · · σ
T
kM

]T
,
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the k-th block:
σk =

[
σ̂2

k (τ0)· · · σ̂2
k (mτ0)· · · σ̂2

k (mkτ0)
]T

,

is comprised of σ̂2
k (mkτ0), m = 1, · · · , mk estimated from time deviations x[i], i = 1, 2, · · · , N. h is

a column vector of noise intensity coefficients and W the weight matrix. The works in [18,19] give
different ways to compute W.

3. Stochastic ONA

We extended the oscillator noise analysis problem to the prediction of long-term stability. Since the
likelihood (or conditional probability) of:

σ2
k (τ) = specified positive real number

is zero, we estimate a 1− 2ε confidence region of σ2
k (τ) instead. This extension is realized by using

convex optimization techniques (Appendix A.2), and we call it stochastic ONA [7].
The basic idea of stochastic ONA is:

F

(
σ2

k (τ) <
Nh

∑
i=1

Bk(αi, τ, 1− ε)hαi

)
→ 1

and:

F

(
σ2

k (τ) <
Nh

∑
i=1

Bk(αi, τ, ε)hαi

)
→ 0

when ε→ 0, where F(·) is the chi-square distribution function defined in Equation (7), ε > 0,

Bk(α, τ, ε) =
F−1(ε)×Φk(α, mτ0)

EDFk(τ)|α
. (19)

Clearly,
B(ε)h ≤ σ ≤ B(1− ε)h

when ε is small enough. The matrices B(ε) and B(1 − ε) are obtained by substituting Φk(α, τ)

in the coefficient matrix Φ with Bk(α, τ, ε) and Bk(α, τ, 1 − ε). This can be cast into the following
optimization problem:

minimize (Φh− σ)TW(Φh− σ), (20)

where the Nh-dimensional column vector of the noise intensity coefficients h subject to: B(ε)h− σ

−B(1− ε)h + σ

−h

 ≤ 0. (21)

In practice, it is not always easy to find such an ε. In addition, Equation (21) does not model
the uncertainty of input variances completely. For example, neither the correlations among the different
averaging time, nor those among different variances calculated from the same underlying time series
are taken into account. We therein prescribe a lower bound ε l as a threshold. Equation (21) will be
replaced by an alternative model if stochastic ONA fails to find an ε ≥ ε l that holds for the inequalities.
While different variances estimated from the same time series are correlated, they contain independent
pieces of information. It is difficult to formulate the correlations of structure functions precisely.
It is even more difficult to solve stochastic programming under complex probabilistic constraints.
When unformulated information only has a strong impact on a small population of the whole input
variances, they can be treat as ‘violations’ using the techniques of compressive sensing. The auxiliary
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variables µ and ν are used as indicators for the violations. Specifically, the ∑M
i=1 mi-dimensional

non-negative vector variable µ and ν are defined such that:

B(ε)h ≤ diag(1 + µ)σ,

B(1− ε)h ≥ diag(1− ν)σ.

Since B(ε)h ≤ E [σ] ≤ B(1− ε)h,

E [‖µ‖+ ‖ν‖] = 0 ≤ min {‖µ‖+ ‖ν‖}

for any norm ‖·‖ of µ and ν. We choose the `1-norm (see Appendix A.1 for details):

‖ν‖1 ≡
∑M

j=1 mj

∑
i=1

|νi| (22)

where νi is the i-th component of ν, and |νi| returns the absolute value of νi. The probabilistic fact that
only a minority of input variances violate Equation (21) can be formulated using the property of `1:
the minimum of the `1 norm is approximately sparse when we have more variables than problem data.
Therein, the optimization problem can be formulated as:

minimize ‖µ‖1 + ‖ν‖1, (23)

where optimization variables (h, µ, ν) subject to:

B(ε)h− diag{σ}µ− σ

−B(1− ε)h− diag{σ}ν + σ

−µ

−ν

ν− 1
−h


≤ 0.

We adjust the values of input variance according to the result of Equation (23).
Consequently, we can find that h holds for Equation (21) with the adjusted variances. Suppose
(h∗, µ∗, ν∗) is the optimum of Equation (23). We label an input variance σ̂2

k (τ) as an ‘outlier’ when:

• case I:
Nh

∑
i=1

Bk(αi, τ, ε)h∗αi
> σ̂2

k (τ);

• case II:
Nh

∑
i=1

Bk(αi, τ, 1− ε)h∗αi
< σ̂2

k (τ).

An outlier will be adjusted in the following way:{
∑Nh

i=1 [(1− ψ)Bk(αi, τ, ε) + ψΦk(αi, τ)] h∗αi
, case I;

∑Nh
i=1 [(1− ψ)Bk(αi, τ, 1− ε) + ψΦk(αi, τ)] h∗αi

, case II,
(24)

where 0 < ψ < 1. We set ψ = 0.5 in this article.
By then, we can either minimize or maximize the values of:

Nh

∑
i=1

Φk′(αi, τ)h∗αi
, (25)
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under the restriction of Equation (21). Here, k′ is not necessarily any of k1, k2, · · · , kM. Neither τ should
be smaller than Nτ0, where τ0 is the sampling interval and N number of time deviations. If we denote
the minimum and maximum of Equation (25) as σ2

k′(τ) and σ̄2
k′(τ), respectively,

[
σ2

k′(τ), σ̄2
k′(τ)

]
can be

approximately considered as an 1− 2ε confidence region of σ2
k′ . This is the predictive model used in

stochastic ONA.

4. Models for Discrete-Time Variances

In this section, we introduce a way to compute coefficient matrices Φ, B(ε) and B(1− ε) used
in stochastic ONA. Because B(ε) and B(1 − ε) can be computed from Φ and the inverse of the
chi-square distribution function (7). Equation (7) is well-defined if the degrees of freedom EDFk(τ)

is known. EDFk(τ), in turn, can be determined by Φ and Var
[
σ̂2

k (τ)
]
. Specifically, we: (i) formulate

the influence of deterministic linear frequency drift on Allan (AVAR) and modified Allan (MVAR)
variance; (ii) derive expressions for Φk(α, τ) and Var

[
σ̂2

k (τ)
]

of discrete-time Hadamard variance
(HVAR). Computing the values of Φk(α, τ) and Var

[
σ̂2

k (τ)
]

for discrete-time AVAR, MVAR and HVAR
is a daunting task, since we need to compute the gammafunctionsO(mN) (O

(
mN2) for MVAR) times.

We reduce the computation of gamma functions to three times per f α noise in the end of this section.

4.1. Drift Model

To formulate the influences of deterministic linear frequency drift on AVAR and MVAR, we first
assume the oscillator output signal to be contaminated by drift. Suppose its time derivations x[i] can
be separated as:

x[i] = x′[i] + a(t + iτ0)
2, i = 1, 2, · · · , N,

where x[i] and x′[i] are discrete sampling of the continuous-time signals x(t) and x′(t), respectively.
We also denote the AVAR and MVAR estimated from x′[i] as σ̂2

y (x′, m) and Modσ̂2
y (x′, m),

respectively. Apparently,

E
[
σ̂2

y (x′, m)
]
=

Nh

∑
i=1

ΦAVAR(αi, τ)hαi

and:

E
[
Modσ̂2

y (x′, m)
]
=

Nh

∑
i=1

ΦMVAR(αi, τ)hαi .

Since x′[i] is unknown, AVAR and MVAR can only be measured from x[i]. We denote them as
σ̂2

y (x, m) and Modσ̂2
y (x, m), respectively. It can be shown, from Equations (2) and (3), that:

E
[
σ̂2

y (x, m)
]
= E

[
σ̂2

y (x′, m)
]
+ 2(mτ0a)2 (26)

and:
E
[
Modσ̂2

y (x, m)
]
= E

[
Modσ̂2

y (x′, m)
]
+ 2(mτ0a)2. (27)

In other words, the drift-free AVAR and MVAR can be divided from the influence of drift theoretically.
To predict long-term stability, the sign of a makes no difference. We can therein treat a2 as a

component of h. The column vector h of a rubidium frequency standard, for instance, is:[
a2 h2 h1 h0 h−1 h−2 h−4

]T
,

where hα, α = 2, 1, 0, −1, −2 and −4 are noise intensity coefficients of white and flicker PM,
white, flicker, random walk and random run FM, respectively. Accordingly, the m-th row of Φk
and Bk(ε) can be cast as:[

2(mτ0)
2 ΦAVAR(2, mτ0) ΦAVAR(1, mτ0) ΦAVAR(0, mτ0) ΦAVAR(−1, mτ0) ΦAVAR(−2, mτ0) 0

]
(28)
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and: 

2(mτ0)
2 · F−1(ε)/ EDFAVAR(τ)|α=2

ΦAVAR(2, mτ0) · F−1(ε)/ EDFAVAR(τ)|α=2
ΦAVAR(1, mτ0) · F−1(ε)/ EDFAVAR(τ)|α=1

...
ΦAVAR(−2, mτ0) · F−1(ε)/ EDFAVAR(τ)|α=−2

0



T

(29)

for AVAR, respectively. Here, we use the subscript α = 2, 1, 0, −1, −2 or −4 to indicate the
dominant PLN process; other PLN processes will be ignored in the computation of the inverse
chi-square distribution function. While ΦAVAR(α, mτ0) is given in Equation (15) and Var

[
σ̂2

AVAR(τ)
]

in
Equation (16) explicitly, it is a daunting task to compute Φk and Bk(ε) from these equations. As we
show at the end of this section, the computation can be greatly shortened by taking the properties of
the gamma function into account. Especially, we can simplify Equation (15) in the case of GPS MCS
clock prediction:

E
[
σ̂2

y (x, m)
]
= 2(mτ0a)2 +

3q0

m2τ2
0
+

q1

mτ2
0
+

q2(2m2 + 1)
6m

. (30)

On the other hand, the simplified expression for Var
[
σ̂2

AVAR(τ)
]

depends on the ratio of m to N.
When m ≤ N/4,

Var
[
σ̂2

y (mτ0)
]
=

q2
0(35N − 88m)

(N − 2m)2(mτ0)4 (31)

for α = 2,

Var
[
σ̂2

y (mτ0)
]
= q2

1

5
3 N + 4

3 m2N − 7
2 m− 1

2 m2 − 3m3

4(N − 2m)2m3τ4
0

, (32)

for α = 0, and:

Var
[
σ̂2

y (mτ0)
]
=q2

2

302
35 m6N + 4m4N + 14

5 m2N + 18
7 N − 101

5 m7 − 34
5 m5 − 19

5 m3 − 26
5 m

144(N − 2m)2m3 . (33)

for α = −2. Simplified expressions for Var
[
σ̂2

y (mτ0)
]
, m > N/4, will be given in Appendix B.

4.2. Hadamard Variance

To differentiate the influence of frequency drift from the random behavior of an oscillator,
for example RWFM or RRFM, we can combine AVAR with some statistics, which are convergent
for RRFM and free from drift. We choose HVAR among those statistics. In order to form coefficient
matrices Φ, B(ε) and B(1− ε), we derive here Φk(α, τ) and Var

[
σ̂2

k (τ)
]

of discrete-time HVAR.
Since discrete-time PSD is not a direct sampling of the corresponding continuous-time PSD,

the discrete-time HVAR is not a discrete sampling of the continuous function defined by Equation (5).
On the other hand, the discrete-time symmetric two-time autocorrelation function is a direct sampling
of its continuous counterpart (10). If we can recast the continuous-time HVAR as a combination
of autocorrelation functions, the discrete-time HVAR can be derived from directly sampling the
autocorrelation function. Equivalently, if the discrete-time HVAR can be expanded as a combination
of autocorrelation functions, an explicit expression of the variance can be derived by replacing the
autocorrelation functions with Equations (12)–(14).
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From Equations (4) and (10),

E
[
σ̂2

z (τ)
]

=
1

6τ2 [Rx(t + 3τ, 0) + 9Rx(t + 2τ, 0) + 9Rx(t + τ, 0) + Rx(t, 0)

−6Rx(t +
5
2

τ, τ) + 6Rx(t + 2τ, 2τ)− 18Rx(t +
3
2

τ, τ) (34)

−2Rx(t +
3
2

τ, 3τ)− 6Rx(t +
1
2

τ, τ) + 6Rx(t + τ, 2τ)

]
.

By substituting autocorrelation functions in the equation above with Equations (12) and (13), we attain:

E
[
σ̂2

z (τ)
]
=


σ2

wα Γ(α−1)(τ/τ0)
1−α

τ2Γ(α/2)Γ(1−α/2) (22−α − 5− 3−α) +O(t−α−5), α 6= −1,
σ2

wα
3(τ0τ)2

[
10 ln |τ| − ln 64

3

]
+O(t−6), α = −1.

(35)

Obviously, Equation (35) converges when α > −5. Because all of the power-law noises (PLN)
mentioned before have a power index α > −5, Equation (35) holds for the problem discussed.

In addition, t ≥ τ0, the sampling interval τ0 ranges from several minutes to days, and HVAR
is approximately independent of t (We assume here that the random behaviors of an oscillator is
unchanged. Otherwise, HVAR is either divergent or changes with time t). Hence, we replace the
symmetric two-time autocorrelation function in Equation (35) with Equation (14). The expression for
Φk(α, τ) of discrete-time HVAR is therein derived:

Φz(α, τ) = Γ(α−1)
6m2(2π)ατα+1

0 Γ(α/2)Γ(1−α/2)
×
[
10 Γ(1−α/2)

Γ(α/2) −
15Γ(m+1−α/2)

Γ(m+α/2)

+ 6Γ(2m+1−α/2)
Γ(2m+α/2) −

Γ(3m+1−α/2)
Γ(3m+α/2)

]
.

(36)

autocorrelation functions in the equation above with Equations (12) and (13).
Likewise, we expand Var

[
σ̂2

z (τ)
]

with the symmetric two-time autocorrelation functions:

Var
[
σ̂2

z (τ)
]
= ∑N−3m−1

`=−N+3m+1
N−3m−|`|τ0

18(N−3m)2(mτ0)4

{
Rx(t + 3mτ0, |`|τ0)− 3Rx(t + 5

2 mτ0, |m + `|τ0)

−3Rx(t + 5
2 mτ0, |m− `|τ0) + 9Rx(t + 2mτ0, |`|τ0) + 3Rx(t + 2mτ0, |2m + `|τ0)

+3Rx(t + 2mτ0, |2m− `|τ0)− Rx(t + 3
2 mτ0, |3m + `|τ0)− Rx(t + 3

2 mτ0, |3m− `|τ0)

−9Rx(t + 3
2 mτ0, |m + `|τ0)− 9Rx(t + 3

2 mτ0, |m− `|τ0) + 9Rx(t + mτ0, |`|τ0)

+3Rx(t + mτ0, |2m + `|τ0) + 3Rx(t + mτ0, |2m− `|τ0)− 3Rx(t + 1
2 mτ0, |m + `|τ0)

−3Rx(t + 1
2 mτ0, |m− `|τ0) + Rx(t, |`|τ0)

}2

(37)

by assuming the third order differences of x(t),

[x(t + 3m)− 3x(t + m) + 3x(t + m)− x(t)] /τ,

m fixed, are normally distributed. It is easy to see that Equation (37) holds for α > −5 after substituting
the autocorrelation functions in the above equation with Equations (12) and (13). Furthermore,
Var

[
σ̂2

z (τ)
]

is approximately independent of the parameter t. Therefore, we replace the autocorrelation
functions with Equation (14). Var

[
σ̂2

k (τ)
]

of HVAR is therein cast as
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Var
[
σ̂2

z (τ)
]
=

h2
αΓ2(α− 1) sin2(απ/2)

2(2πτ0)2α+2(N − 3m)m4 ×
N−3m−1

∑
`=−N+3m+1

N − 3m− |`|
N − 3m

×
{

20Γ(|`|+ 1− α/2)
3Γ(|`|+ α/2)

− 5Γ(|m + `|+ 1− α/2)
Γ(|m + `|+ α/2)

− 5Γ(|m− `|+ 1− α/2)
Γ(|m− `|+ α/2)

+
2Γ(|2m + `|+ 1− α/2)

Γ(|2m + `|+ α/2)
(38)

+
2Γ(|2m− `|+ 1− α/2)

Γ(|2m− `|+ α/2)
− Γ(|3m + `|+ 1− α/2)

3Γ(|3m + `|+ α/2)

−Γ(|3m− `|+ 1− α/2)
3Γ(|3m− `|+ α/2)

}2

.

By then, the coefficient matrices Φ, B(ε) and B(1− ε) in stochastic ONA can be constructed in the
following way:

Φ =

[
ΦAVAR

ΦHVAR

]
, B(ε) =

[
BAVAR(ε)

BHVAR(ε)

]
, B(1− ε) =

[
BAVAR(1− ε)

BHVAR(1− ε)

]
,

where ΦAVAR is defined in Equation (28), BAVAR(ε) and BAVAR(1− ε) in Equation (29). The m-th rows of
ΦHVAR and BHVAR(ε) are defined as:[

0 ΦHVAR(2, mτ0) · · · ΦHVAR(−2, mτ0) ΦHVAR(−4, mτ0)
]

(39)

and: 

0
ΦHVAR(2, mτ0) · F−1(ε)/ EDFHVAR(τ)|α=2
ΦHVAR(1, mτ0) · F−1(ε)/ EDFHVAR(τ)|α=1

...
ΦHVAR(−2, mτ0) · F−1(ε)/ EDFHVAR(τ)|α=−2
ΦHVAR(−4, mτ0) · F−1(ε)/ EDFHVAR(τ)|α=−4



T

, (40)

respectively. When the time series contains random run FM, h−4 6= 0. While AVAR does not converge
for α = −4 PLN, the noise process has little influence on short-term AVAR estimated from real data.
In such a case, the inconsistency between Equations (29) and (40) will be treated as ‘violations’ by
the optimization problem (23). The unformulated influence of α = −4 PLN in Equation (29) will be
smoothed out by Equation (24).

In GPS MCS clock prediction, only PLN of α = 2, 0, −2 and −4 are considered. In such a case,
the flicker noise components in Φ, B(ε) and B(1− ε) should be removed. Furthermore, the remaining
components can be computed using the following simplified expression:

E
[
σ̂2

z (τ)
]
=

10q0

3m2τ2
0
+

q1

mτ2
0
+

q2

6m
(m2 + 1) +

q3τ2
0

120m
(11m4 + 5m2 − 4). (41)

If, in addition, m ≤ N/6,

Var
[
σ̂2

z (τ)
]
=

(154N − 562m)q2
0

3(N − 3m)2(mτ0)4 (42)

for α = 2,

Var
[
σ̂2

z (τ)
]
= q2

1
56m3N + 84mN − 204m4 − 288m2

144(N − 3m)2(mτ0)4 (43)
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for α = 0,

Var
[
σ̂2

z (τ)
]
= q2

2
62m6N + 92m4N + 98m2N + 108N − 1557

7 m7 − 312m5 − 309m3 − 2496
7 m

4320(N − 3m)2m3 (44)

for α = −2, and:

Var
[
σ̂2

z (τ)
]
=

τ4
0 q2

3
4147200(N − 3m)2m3

(
2620708

231
m10N +

16180
3

m8N + 3844m6N

+
63940

21
m4N +

7664
3

m2N +
28800

11
N − 2979934

77
m11 − 104194

7
m9 (45)

−70662
7

m7 − 49702
7

m5 − 50744
7

m3 −644544
77

m
)

.

for α = −4. Expressions of Var
[
σ̂2

z (τ)
]

for m > N/6 will be given in Appendix B.

4.3. Quick Computation of Discrete-Time Variances

Although for Equations (36) and (38), Walter’s characterizations of AVAR and HVAR holds for real
α values, they produce heavy computational burdens. If their computational complexity is represented
by the evaluation of Gamma functions, then, for given m, the complexity of Equations (15), (16), (36)
and (38) is O(N) and O (mN) for Walter’s characterization of MVAR. Here, we describe a method to
reduce the computation complexity to three.

In order to estimate the values of Equations (15), (16), (36) and (38), we define an N-dimensional
column vector bΓ. The i-th component of bΓ is:

bΓ(i) = sin
(α

2
π
) Γ

(
i− α

2
)

Γ(α− 1)
Γ
(
i− 1 + α

2
) . (46)

From the properties of the gamma function, we recast Equations (15), (16), (36) and (38) as functions
of bΓ. For instance,

ΦAVAR(α, τ) =
3bΓ(1)− 4bΓ(m + 1) + bΓ(2m + 1)

m2(2πτ0)α+1

and:

Var
[
σ̂2

y (τ)
]
=

N−2m−1

∑
`=−N+2m+1

N − 2m− |`|
2

[
2

∑
i=−2

hα
2(3− |i|)bΓ(|im + `|+ 1)
(2πτ0)α+1(N − 2m)m2

]2

.

It is obvious that:
|im + `| ≤ N − 1, −N + 2m + 1 ≤ ` ≤ N − 2m− 1.

On the other hand, for any 0 ≤ j ≤ N − 1, there exists ` such that:

|im + `| = j,

for some −2 ≤ i ≤ 2. Hence, the auxiliary parameter bΓ is both sufficient and necessary in the
computation of Equations (15), (16), (36) and (38).

To calculate the values of bΓ, we start by searching for the least positive i0 such that:

i− α

2
≥ 1

and:
i− 1 +

α

2
≥ 1.
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Then, we compute the value of bΓ(i0):

bΓ(i0) = (−1)bα/2c sin
(α

2
π −

⌊α

2

⌋
π
) Γ

(
i0 − α

2
)

Γ(α− 1)
Γ
(
i0 − 1 + α

2
)

Other components of bΓ can be estimated recursively: Given the value of bΓ(i):

• if bΓ(i− 1) is unknown,

bΓ(i− 1) =
i− 2 + α/2
i− 1− α/2

bΓ(i);

• if bΓ(i + 1) is unknown,

bΓ(i + 1) =
i− α/2

i− 1 + α/2
bΓ(i).

By using the auxiliary vector bΓ, we reduce the calculations of gamma functions to three times per
f α noise.

5. Results and Discussion

To test the method proposed in this article, we predict τ = 15-day frequency stabilities of GPS
onboard clocks. The predictions are made based on 14-day GPS precise clock data provided by IGS
(International GNSS Service). The IGS timescale is selected as the reference clock. For comparison,
we also estimate variances from 42–60-day measured data. It should be noted that the method
discussed in this paper assumes power-law processes and deterministic frequency drift being the
major sources of time-series data. Analysis of all thirty-two satellites shows that the method fails
when period behaviors have a strong influence on input variances. In this section, only the predictions
of GPS SVN. 45 and 41 satellite rubidium clock frequency stabilities are chosen as representative.
This is because:

• To test the modified stochastic ONA method, a strong presentation of deterministic frequency
drift should be seen. In the real data test of [7], frequency drift does not have significant influence
on the behaviors of some onboard rubidium frequency standards within 168 days. Such data
cannot test the capability of stochastic ONA in predicting drift contaminated stabilities.

• The oscillator should be somehow well-modeled. If the dominant variation of the frequency
standard has not been model and it has major influence on frequency stability estimates,
stochastic ONA will not function properly. For instance, stochastic ONA fails to predict the
long-term AVAR and HVAR from MJD.52437.0-52451.0 GPS SVN.36 (PRN.06) precise clock data.
AVAR and HVAR estimated from the data imply strong periodic behaviors.

5.1. SVN.45

The prediction of GPS SVN.45 onboard clock long-term stability shows how stochastic ONA
behaves when it cannot distinguish RWFM from frequency drift. As shown in Figure 1, we use (i) AVAR,
(ii) MVAR and (iii) HVAR estimated from 84-day GPS SVN.45 rubidium precise clock data (‘—’) as the
reference. Although a linear frequency drift was removed before the estimation, the variances are not
free from drift. The predictions (‘–·–’) made by stochastic ONA are based on variances estimated from
the first 14 days of the time deviations (‘· · · ’). Since we set ε = 0.025 in the computation, the predicted
confidence interval of long-term variance can be seen to have a 95%-confidence level. For comparison,
we also estimate (i) AVAR and (ii) MVAR from the first 42-day (‘– –’) and (iii) HVAR from the first
60-day (‘– –’) measured data. By assuming RWFM (α = −2) as the dominant noise, 95%-confidence
regions of there variances (‘.–◦–/’) are computed in the following way:[

EDFk′(τ)

F−1(97.5%)
σ̂2

k′(τ),
EDFk′(τ)

F−1(2.5%)
σ̂2

k′(τ)

]
. (47)
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Figure 1. Estimates and prediction of GPS SVN.45 (PRN.21) rubidium clock frequency stability.

It can be seen from Figure 1 that 0.1–1-day AVAR and HVAR estimated from 14-day measured data
are less than the referenced variances. On the other hand, τ > 1-day AVAR and HVAR estimated from
14 days are much larger than the reference. This will be interpreted as a weaker FLFM and stronger
RWFM by the conventional oscillator noise analyzer. Stochastic ONA attributes the fluctuations to
RWFM, because RWFM has much larger confidence regions at long-term averaging time. For example,
the 1152-th (τ = 4/day) rows of Φy and By(ε = 0.025) have the following approximate values:



2.39× 1011

1.06× 10−15

5.60× 10−12

1.45× 10−6

1.40
2.27× 106

0



T

and



2.14× 1011

9.81× 10−16

3.20× 10−12

1.30× 10−7

6.21× 10−2

4.05× 104

0



T

,

respectively. Consequently, the predicted lower and upper bounds of long-term variance are almost
parallel to the references. Stochastic ONA cannot find any h that holds for Equation (21), so it has to
make a trade-off between 0.1–1-day and τ > 1-day input variances: while the former lead to a smaller
RWFM noise level, the latter indicate a larger one. Although the predicted confidence regions are
greater than those estimated from 42-day measured data for averaging time of τ ≤ 10 days, they are
consistent with the referenced variances. However, the confidence regions of variances estimated
from 42-day data, by contrast, do not encompass all referenced variances. For instance, τ = 1- and
2-day referenced AVAR and MVAR, and τ = 2∼7-day HVAR are not included in the confidence regions
calculated from 42-day clock data.
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5.2. SVN.41

When stochastic ONA does find an h that holds for Equation (21), it predicts long-term variances
with narrow confidence regions. This can be seen in Figure 2. The input variances (‘· · · ’) of stochastic
ONA are estimated from GPS SVN.41 rubidium clock time deviations from MJD.52018.0–MJD.52032.0.
Stochastic ONA predicts 2-day≤ τ ≤ 15-day AVAR, MVAR and HVAR (‘–·–’) based on these variances
with ε = 0.025. The referenced (i) AVAR and (ii) MVAR are measured from 84-day (‘—’); and (iii) HVAR
160-day (‘—’) time deviations of the same clock. For comparison, we also estimate (i) AVAR from
42-day (‘– –’), (ii) MVAR from 45-day (‘– –’) and (iii) HVAR from 60-day (‘– –’) measured data.
Their 95%-confidence regions (‘.–◦–/’) are computed by assuming RWFM as the dominant noise.
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y
(

)

(i) Allan Deviation of GPS PRN.14
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95% uncertainty (traditional)

predicted from MJD.52018.0-52032.0

10-2 10-1 100 101
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y
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)
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MJD.52018.0-52102.0

MJD.52018.0-52053.0

MJD.52018.0-52032.0

95% uncertainty (traditional)

predicted from MJD.52018.0-52032.0

10-2 10-1 100 101
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10-13

z
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)

(iii) Hadamard Deviation of GPS PRN.14

MJD.52018.0-52178.0

MJD.52018.0-52078.0

MJD.52018.0-52032.0

95% uncertainty (traditional)

predicted from MJD.52018.0-52032.0

Figure 2. Estimates and prediction of GPS SVN.41 (PRN.14) rubidium clock frequency stability.

In Figure 2, only the τ ≤ 7-day referenced variances are included in the confidence intervals
predicted by stochastic ONA. This phenomenon can be explained by the behavior of input variances.
By comparing Figure 2 with Figure 1, it is easy to see that the 0.1-day ≤ τ ≤ 1-day frequency stabilities
of the GPS SVN.41 onboard clock do not vibrate so fiercely as GPS SVN.45’s. On the other hand,
the former has a tail tens of times smaller than the referenced. As discussed in the previous subsection,
stochastic ONA tends to attribute the fluctuations at long-term averaging time to RWFM. Stochastic
ONA finds an h that holds for Equation (21). In this case, stochastic ONA fits the input variances
using the inequality-bounded least-square model (17). However, the least square criterion (17) is
designed for Gaussian distributions. In addition, the existence of some 1− 2ε confidence regions
holding for input variances does not mean no violation to the theoretical 1− 2ε confidence intervals.
Consequently, as shown in Figure 2, stochastic ONA underestimates the influence of frequency drift
and overestimates the noise level of RWFM. Despite their compactness, only τ ≤ one-week referenced
variances are included in the predicted regions. On the other hand, all referenced variances of the
SVN.45 satellite clock are included in the regions predicted without using the least-square criterion.
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6. Conclusions

In this article, we discussed the prediction of long-term stability with the presentation of
deterministic linear frequency drift. The fundamental theory of time stability analysis and the
influences of discrete sampling are first revisited. Based on these theories, we construct a method
called stochastic ONA. Stochastic ONA extends the capability of conventional oscillator noise analysis
to the prediction of long-term frequency stability. By then, we introduce methods to model long-term
variances contaminated by frequency drift. Specifically, we: (i) formulated the influence of frequency
drift on Allan (AVAR) and modified Allan (MVAR) variances; (ii) derived expressions for discrete
Hadamard variance (HVAR); (iii) simplified the formulations for the case of GPS MCS (master control
station) clock prediction; and (iv) introduce a method that reduces the computational complexity of
Walter’s characterization of AVAR and MVAR.

To test stochastic ONA and the model, we predict τ ≤ 15-day AVAR, MVAR and HVAR based
on 14-day GPS precise clock data. Due to limited space, we choose the result of GPS SVN 45 and 41
as representatives:

• For the SVN.45 satellite clock, stochastic ONA cannot find a set of noise intensity coefficients for
which Equation (21) holds for input variances. In such a case, stochastic ONA predicts long-term
stabilities based on Equation (23). The criterion (23) takes the probability distributions of input
variances into account and produces robust results. All the referenced variances are included in
the predicted confidence regions. On the other hand, τ = 1- and 2-day referenced AVAR and
MVAR, and τ = 2∼7-day HVAR are not included in the 95%-confidence regions estimated from
42-day clock data.

• For the SVN.41 onboard clock, stochastic ONA does find noise intensity coefficient values that
hold for the probabilistic constraints (21). In this case, it predicts long-term stability of the
satellite frequency standard based on the least square criterion (17). Despite the compactness of
predicted confidence intervals, only τ ≤ 7-day referenced variances are included in these regions.
Specifically, τ > 7-day referenced AVAR and MVAR are greater than the predicted ones, while the
τ > 7-day referenced HVAR is smaller than the predictions. This suggests an overestimation of
RWFM noise level and underestimation of frequency drift. Nevertheless, the inconsistency may
be interpreted as the inappropriate power-law model used in this paper.

In summary, the method introduced in this paper can predict long-term stability superimposed
with influences of frequency drift. Criterion (23) takes the probability distributions of input variances
into account by assuming the majority of input variances within their 1 − 2ε confidence regions.
The predictions made therein have large uncertainty, but are robust. In contrast, the least square
criterion (17) assumes non-existing symmetric distributions of input variances, which reduce both the
uncertainty and robustness of the result. We should find an alternative for the least square criterion in
a future study.
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Abbreviations

The following abbreviations are used in this manuscript:

AVAR Allan variance
EDF Equivalence degree of freedom
FLFM Flicker frequency modulation
FLPM Flicker phase modulation
GNSS Global navigation satellite system
GPS Global positioning system
HVAR Hadamard variance
MCS Master control station
MVAR Modified Allan variance
ONA Oscillator noise analysis
RRFM Random run frequency modulation
RWFM Random walk frequency modulation
PLN Power-law noise
PRN Pseudo-random noise
PSD Power spectral distribution or power spectrum density
SVN Space vehicle numbers
TAI International Atomic Time
WHFM White frequency modulation
WHPM White phase modulation

Appendix A. Convex Optimization Techniques

We solve the stochastic ONA models described in this paper using a primal-dual interior-point
algorithm. Its foundation is the theory of convex optimization. In this Appendix, relevant concepts
and techniques will be reviewed.

Appendix A.1. `1 Norm and Compressive Sensing

We define the object function in Equation (23) using the `1-norm:

f0(h, µ, ν) = ‖µ‖1 + ‖ν‖1.

Since both µ and ν are positive,

f0(h, µ, ν) =

∑M
j=1 mj

∑
i=1

(µi + νi) .

It has been shown that when the `1-norm is applied to the optimization variable, and

dim(h, µ, ν) > dim(σ)

estimates of the optima are approximately sparse [20]. Here, dim(σ) returns the dimension of σ.
There is a high probability that the solution is stable and unique. The number:

dim(h, µ, ν) = dim(h) + dim(µ) + dim(ν).

makes little difference to the solutions. Instead, (h, µ, ν) should be less than C dim(σ), where C is
a constant given in [21]. Such kinds of problems are called compressive sensing and can be solved by
the convex optimization techniques described below.

Appendix A.2. Solving Inequality Constrained Optimization Problems

Equations (20), (23) and (25) are all convex optimization problems, because both sets defined by
Equation (21) and the inequality constraints of Equation (23) are intersections of hyperplanes. That is,
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they are convex sets. In addition, the object functions defined in Equations (20), (23) and (25) are
convex since they are either linear or quadratic with the semi-positive Hessian.

If we denote the object functions of Equations (20), (23) and (25) as f0(s), where s = h or (h, µ, ν),
and the inequality constraints as:

fi(s) ≤ 0, i = 1, 2, · · · , l,

where l = 3 ∑M
j=1 mj or 6 ∑M

j=1 mj. The (Lagrange) dual problem of Equation (20), (23) and (25) is
defined as:

maximize L(λ),
subject to λ ≥ 0.

(A1)

where λ is an l-dimensional real column vector, L(λ) dual function of the original problem:

L(λ) := inf
(s)∈D

(r(s, λ)) , (A2)

the infimum function inf(s)∈D (r(s, λ)) returns the maximum value of A, A is the set of all real values
less than r(s, λ) for s ∈ D and fixed λ. r(s, λ) is the corresponding Lagrangian,

r(s, λ) = f0(s) +
l

∑
i=1

λi fi(s). (A3)

Then, L(λ) ≤ f0(s). If, in addition, all inequalities fi(s) ≤ 0, i = 1, ..., l, are strict, and we denote the
optimum of f0(s) and L(λ) as s∗ and λ∗, respectively,

f0(s∗) = L(λ∗).

Since the object function f0(s) defined by Equations (20), (23) and (25) and their dual L(λ)
are differentiable, [

∂r(s, λ)

∂s
∂r(s, λ)

∂λ

]∣∣∣∣
(s,λ)=(s∗ ,λ∗)

= 0. (A4)

This is the famous Karush–Kuhn–Tucker (KKT) conditions.
To solve the inequality constraints, we replace fi(s) with the interior barriers:

Ii(s) = −(1/η) log (− fi(s)) , i = 1, · · · , l,

where log is the natural logarithm function and η an arbitrary positive real number. These barriers
will be used as ‘penalties’ in the cost function. Specifically, we substitute the original object function
f0(s) by:

f0(s)−
m1

∑
i=1

(1/η) log (− fi(s)) . (A5)

Since the inequality constraints become strict after taking the interior barriers, the KKT conditions
are both sufficient and necessary for optima of Equation (A5). We therein solve Equation (A5) in the
following Newtonian framework:

• (s0, λ0) is an arbitrary initial point of the original and dual problem
• for k = 0, 1, · · ·
• solve the Newton step

(
∆sk, ∆λk

)
from:

R
[

∆sk

∆λk

]
=

[
−∂ f0(s)/∂s−DF (s)Tλ

diag(λ)F (s) + (1/η)1

]
(A6)
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at the point (s, λ) = (hk, sk, λk), where:

F (s) =
[

f1(s) f2(s) · · · fl(s),
]

1 is an l-dimensional column vector whose elements are one,

R =

[
∇2 f0(s) + ∑l

i=1 λi∇2 fi(h, s) DF (s)T

diag(λ)DF (s) diag (F (s))

]
diag(λ) returns a square diagonal matrix with the elements of vector λ on the main diagonal,
and the operator ∇2 returns the Hessian matrix of the operand at its right-hand side; for example,
for f0(h, s) defined in Equation (17), the i-th row and j-th column component of ∇2 f0(s) is:

∇2 f0(s)[ij] =
∂2 f0(s)
∂hαi ∂hαj

= ΦTQΦ[ij],

ΦTQΦ[ij] is the i-th row and j-th column component of ΦTQΦ, λi the i-th component of λ,
DF (s) the derivative matrix of F (s), whose i-th row j-th column component is:

DF (s)[ij] = ∂ fi(s)
∂hαj

,

• set (
hk+1, sk+1, λk+1

)
←
(

hk, sk, λk
)
+ ψ

(
∆hk, ∆sk, ∆λk

)
choosing β so that fi(s) < 0, i = 1, · · · , m1, and λ ≥ 0 [22], where 0 < ψ ≤ 1, ψ can be determined
using a backtracking line search described in [23]. When ψ = 1, the primal-dual interior-point
algorithm is based on the pure Newton method.

If the difference between f0(sk) and r(sk, λk) grows when k increases, from [24], we label
Equation (A5) as ‘infeasible’, and change the model according to the description of Section 3.
Otherwise, we increase t in Equation (A5) and use the result of the previous iteration as the initial
point (s0, λ0) in th current iteration.

Appendix B. Simplified Formulations

Suppose we estimate AVAR σ̂2
y (mτ0) and HVAR σ̂2

z (mτ0) from time deviations x[i], i = 1, 2, · · · ,
and N, of a frequency standard. In Section 4, we give the expressions Var

[
σ̂2

k (mτ0)
]

of AVAR for
m ≤ N/4 and HVAR for m ≤ N/6. Here, expressions of Var

[
σ̂2

k (mτ0)
]

for other situations will
be given.

When N/3 ≤ m < N/2,

Var
[
σ̂2

y (mτ0)
]
=

18q2
0

(N − 2m)(mτ0)4

for α = −2,

Var
[
σ̂2

y (mτ0)
]
= q2

1

3
4 N4 − 8mN3 + 32m2N2 − 3

4 N2 − 56m3N + 5mN + 36m4 − 7m2

4(N − 2m)2(mτ0)4
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for α = 0, and:

Var
[
σ̂2

y (mτ0)
]
=

q2
2

96(N − 2m)2m4

(
3

14
N8 − 32

7
mN7 +

208
5

m2N6 − 9
5

N6 − 1048
5

m3N5

+
144

5
mN5 +

1904
3

m4N4 − 560
3

m2N4 +
9
2

N4 − 3520
3

m5N3

+
1864

3
m3N3 − 48mN3 +

3872
3

m6N2 − 1104m4N2 +
2816

15
m2N2

− 102
35

N2 − 27392
35

m7N +
14624

15
m5N − 4688

15
m3N +

88
5

mN

+
22016

105
m8 − 4864

15
m6 +

2792
15

m4 − 824
35

m2
)

for α = −2.
When N/4 ≤ m < N/3,

Var
[
σ̂2

y (mτ0)
]
=

2q2
0(17N − 42m)

(N − 2m)2(mτ0)4

and:

Var
[
σ̂2

z (mτ0)
]
=

200q2
0

9(N − 3m)(mτ0)4

for α = 2,

Var
[
σ̂2

y (mτ0)
]
=

q2
1

8(N − 2m)2(mτ0)4

(
1
6

N4 − 2mN3 + 8m2N2 −mN2

−1
6

N2 − 8m3N + 8m2N + 5mN − 6m4 − 17m3 − 11m2
)

and:

Var
[
σ̂2

z (mτ0)
]
=

q2
1

144(N − 3m)2(mτ0)4

(
100

3
N4 − 480mN3 + 2592m2N2

−100
3

N2 − 6192m3N + 280mN + 5508m4 − 540m2
)

for α = 0,

Var
[
σ̂2

y (mτ0)
]
=

q2

72m4(N − 2m)2

(
1

56
N8 − 4

7
mN7 + 8m2N6 − 3

20
N6 − 64m3N5 +

18
5

mN5

+ 320m4N4 − 36m2N4 +
3
8

N4 − 1024m5N3 + 192m3N3 − 6mN3 + 2048m6N2

− 576m4N2 + 36m2N2 − 17
70

N2 − 81618
35

m7N +
4628

5
m5N +

40253
35

m8

− 3106
5

m6 − 466
5

m3N +
158
35

mN +
461
5

m4 − 318
35

m2
)
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and:

Var
[
σ̂2

z (mτ0)
]
=

q2
2

648(N − 3m)2m4

(
25
28

N8 − 180
7

mN7 +
1602

5
m2N6 − 15

2
N6 − 11271

5
m3N5

+ 162mN5 +
19575

2
m4N4 − 1440m2N4 +

75
4

N4 − 26838m5N3 + 6735m3N3

− 270mN3 + 45369m6N2 − 34911
2

m4N2 +
7218

5
m2N2 − 85

7
N2 − 1513107

35
m7N

+ 23733m5N − 16923
5

m3N +
666
7

mN +
2490669

140
m8 − 13203m6

+
58653

20
m4 −1233

7
m2
)

for α = −2, and:

Var
[
σ̂2

z (mτ0)
]
=

τ4
0 q2

3
103680(N − 3m)2m4

(
5
66

N12 − 36
11

mN11 + 64m2N10 − 35
18

N10 − 2245
3

m3N9

+ 70mN9 +
81495

14
m4N8 − 15675

14
m2N8 +

755
42

N8 − 221962
7

m5N7 +
73260

7
m3N7

− 3624
7

mN7 +
619836

5
m6N6 − 63243m4N6 +

32199
5

m2N6 − 145
2

N6 − 1752408
5

m7N5

+ 257948m5N5 − 225667
5

m3N5 + 1566mN5 +
1423227

2
m8N4 − 718917m6N4

+ 194724m4N4 − 27821
2

m2N4 +
1120

9
N4 − 1013166m9N3 + 1352484m7N3

− 529228m5N3 +
194878

3
m3N3 − 1792mN3 +

4809249
5

m10N2 − 3291663
2

m8N2

+
4424766

5
m6N2 − 2351637

14
m4N2 +

66942
7

m2N2 − 5240
77

N2 − 211070799
385

m11N

+
8206362

9
m9N − 29175021

35
m7N +

1595052
7

m5N − 156444
7

m3N +
3648

7
mN

+
21992877

154
m12 − 5208975

14
m10 +

4756509
14

m8 − 1773297
14

m6 +
134982

7
m4 −73224

77
m2
)

for α = −4.
When N/5 ≤ m < N/4,

Var
[
σ̂2

z (mτ0)
]
=

(425N − 1500m)q2
0

9(N − 3m)2(mτ0)4

for α = 2,

Var
[
σ̂2

z (mτ0)
]
= q2

1

25
12 N4 − 40mN3 + 288m2N2 − 25

12 N2 − 908m3N + 40mN + 1057m4 − 115m2

36(N − 3m)2(mτ0)4

for α = 0,
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Var
[
σ̂2

z (mτ0)
]
=

q2
2

864(N − 3m)2m4

(
25
84

N8 − 80
7

mN7 +
956

5
m2N6 − 15N6 − 9098

5
m3N5

+ 72mN5 + 10770m4N4 − 860m2N4 +
25
4

N4 − 40584m5N3 + 5450m3N3

− 120mN3 + 95052m6N2 − 19314m4N2 +
4304

5
m2N2 − 85

21
N2

− 632348
5

m7N + 36284m5N − 13564
5

m3N +
416

7
mN +

2560783
35

m8

− 28228m6 +
15871

5
m4 − 1116

7
m2
)

for α = −2, and:

Var
[
σ̂2

z (mτ0)
]
=

τ4
0 q2

3
138240(N − 3m)2m4

(
5

198
N12 − 16

11
mN11 +

344
9

m2N10 − 35
54

N10 − 5450
9

m3N9

+
280

9
mN9 +

45065
7

m4N8 − 14045
21

m2N8 +
755
126

N8 − 1015316
21

m5N7 +
59320

7
m3N7

− 4832
21

mN7 +
1313888

5
m6N6 − 70034m4N6 +

57706
15

m2N6 − 145
6

N6

− 5202144
5

m7N5 +
1182328

3
m5N5 − 548318

15
m3N5 + 696mN5 + 1487529m8N4

− 763918m6N4 + 215737m4N4 − 74801
9

m2N4 +
1120

27
N4 − 5984488m9N3

+ 4024112m7N3 − 2427188
3

m5N3 +
473732

21
m3N3 − 7168

9
mN3 +

40142892
5

m10N2

− 6881802m8N2 +
9403928

5
m6N2 − 1304218

7
m4N2 +

39964
7

m2N2 − 5240
231

N2

− 289902724
45

m11N +
433989944

63
m9N − 37117292

15
m7N +

22002368
63

m5N

− 162080
9

m3N +
23168

77
mN +

1618838030
693

m12 − 192734554
63

m10

+
29575226

21
m8 − 17042854

63
m6 +

1331272
63

m4 − 60128
77

m2
)

for α = −4.
When 1/6 ≤ m/N < 1/5,

Var
[
σ̂2

z (mτ0)
]
=

(461N − 1680m)q2
0

9(N − 3m)2(mτ0)4

for α = 2,

Var
[
σ̂2

z (mτ0)
]
= q2

1

1
3 N4 − 8mN3 + 72m2N2 − 1

3 N2 − 232m3N + 88mN + 228m4 − 300m2

144(N − 3m)2(mτ0)4

for α = 0,
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Var
[
σ̂2

z (mτ0)
]
=

q2
2

864(N − 3m)2m4

(
1

84
N8 − 4

7
mN7 + 12m2N6 − 1

10
N6 − 144m3N5

+
18
5

mN5 + 1080m4N4 − 54m2N4 +
1
4

N4 − 5184m5N3 + 432m3N3

− 6mN3 + 15552m6N2 − 1944m4N2 + 54m2N2 − 17
105

N2

− 932686
35

m7N + 4684m5N − 982
5

m3N +
824
35

mN

+
698283

35
m8 − 4728m6 +

1311
5

m4 − 540
7

m2
)

for α = −2, and:

Var
[
σ̂2

z (mτ0)
]
=

τ4
0 q2

3
4147200(N − 3m)2m4

(
1

33
N12 − 24

11
mN11 + 72m2N10 − 7

9
N10 − 1440m3N9

+
140

3
mN9 + 19440m4N8 − 1260m2N8 +

151
21

N8 − 186624m5N7 + 20160m3N7

− 2416
7

mN7 + 1306368m6N6 − 211680m4N6 + 7248m2N6 − 29N6

− 6718464m7N5 + 1524096m5N5 − 86976m3N5 + 1044mN5 + 25194240m8N4

− 7620480m6N4 + 652320m4N4 − 15660m2N4 +
448

9
N4 − 67184640m9N3

+ 26127360m7N3 − 3131136m5N3 + 125280m3N3 − 3584
3

mN3

+ 120932352m10N2 − 58786560m8N2 + 9393408m6N2 − 563760m4N2

+ 10752m2N2 − 2096
77

N2 − 30472331996
231

m11N +
235162420

3
m9N

− 112693988
7

m7N +
28477444

21
m5N − 121360

3
m3N +

226752
77

mN

+
5076178850

77
m12 − 329308930

7
m10 +

84470010
7

m8 − 9520870
7

m6

+
400840

7
m4 − 720000

77
m2
)

.

for α = −4.
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