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Abstract: Underwater acoustic sensor networks (UASNs) have become a hot research topic.
In UASNs, nodes can be affected by ocean currents and external forces, which could result in sudden
link disruption. Therefore, designing a flexible and efficient link disruption restoration mechanism to
ensure the network connectivity is a challenge. In the paper, we propose a glider-assisted restoration
mechanism which includes link disruption recognition and related link restoring mechanism. In the
link disruption recognition mechanism, the cluster heads collect the link disruption information and
then schedule gliders acting as relay nodes to restore the disrupted link. Considering the glider’s
sawtooth motion, we design a relay location optimization algorithm with a consideration of both
the glider’s trajectory and acoustic channel attenuation model. The utility function is established
by minimizing the channel attenuation and the optimal location of glider is solved by a multiplier
method. The glider-assisted restoration mechanism can greatly improve the packet delivery rate and
reduce the communication energy consumption and it is more general for the restoration of different
link disruption scenarios. The simulation results show that glider-assisted restoration mechanism can
improve the delivery rate of data packets by 15–33% compared with cooperative opportunistic routing
(OVAR), the hop-by-hop vector-based forwarding (HH-VBF) and the vector based forward (VBF)
methods, and reduce communication energy consumption by 20–58% for a typical network’s setting.

Keywords: underwater acoustics sensor networks; glider; sawtooth motion; link-disruption;
restoration; network connectivity

1. Introduction

For decades, marine technology has attracted a lot of interest. In the marine technology
field, underwater acoustic sensor networks (UASNs) have made significant achievements in many
aspects of underwater environmental exploration, such as ocean data collection, monitoring of water
pollution, underwater disaster warning [1], and so on. Therefore, the study on UASNs has received
increasing attention.

However, due to the harsh communication environment, acoustic communication among nodes
in UASNs has much more difficulties than that in terrestrial sensor networks. The first one is that
the communication among underwater sensor nodes must rely on acoustic channels instead of radio
channels for long-range communications. That is because radio signals undergo rapid attenuation
and that makes the communication range decrease sharply in UASNs. For example, the reported
transmission range of Berkeley Mica 2 Motes is 120 cm at 433 MHz [2]. Therefore, the acoustic signals
have become the typical signal carrier due to their relatively lower attenuation. Many studies have been
done on the realization of underwater communications. The method proposed by Won and Park in [3]
shows the design and implementation of an omni-directional underwater acoustic micro-modem and it
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provides the development of the cylindrically shaped micro-modem guaranteeing an omni-directional
beam pattern in three dimensions [4].

However, the fact that the speed of acoustic signals is five-fold slower than the radio wave makes
the end-to-end delay longer. The second one is that many factors make acoustic links among the sensor
nodes dynamically changed with the time flow. One of the factor is that the location of a node tends to
change over time due to water currents, drift and contact with marine organisms. Another factor is
that the speed of sound is influenced by salinity, density and temperature of the water medium, and
these factors are heterogeneous, which makes the channels between nodes vary with time. In the sea,
those parameters present characteristics of stratification and thus the speed of sound is also stratified
and varies with the depth. These factors have led to new studies focused on the optimization of
mobility, coverage and connectivity [5]. Even if networks meet the connectivity conditions at the
time of initial deployment, the communication could suffer a sudden disruption among nodes due
to the time-varying acoustic communicating links. Furthermore, the sudden disruption of links can
lead to the fact that the overall network connectivity and reliability might not be able to meet the
requirements of application. All of these characteristics make the communication quality of UASNs
unstable and the design of stable UASNs very tough. Therefore, in order to improve the connectivity
and reliability of networks, it is important to design a mechanism to flexibly realize link disruption
restoration over time.

There is the problem that acoustic channels are time-varying, which can cause the links among
nodes to be disrupted in UASNs. To solve this problem, many routing algorithms and topology
maintenance mechanisms are proposed. The hole avoidance algorithm in [6] pays attention to energy
hole and coverage hole avoidance. It can take advantage of redundant overlapping and repair
a coverage hole during network operation with the least number of nodes. However, the coverage
does not necessarily lead to network connectivity. The reliable and stable communication links also
affect the network connectivity and thus affect the quality of entire network. In [7], a distributed
reactive shadow zone and delay-aware routing protocol (SZODAR) for UASNs is proposed. It plays
a certain role in maintaining the connectivity and reliability of networks. However, like SZODAR,
many methods just rely on installing additional autonomously moveable power devices in common
sensor nodes to move nodes up and down and achieve the desired effect. That is to say, these methods
require more energy consumption when the nodes are adjusted up and down. However, as we all
know that the energy of underwater nodes is extremely limited because the nodes are powered by
batteries. Furthermore, nodes are anchored to the sea bottom in most cases so that it is difficult to
recharge the batteries. Therefore, to some extent, these methods will shorten the lifetime of nodes and
make networks disconnected and unreliable faster.

Moreover, the above algorithms do not pay attention to using advanced nodes that can be free
to move to maintain the connectivity of networks. Considering that many data acquisition tasks in
UASNs are completed by both static nodes and autonomous mobile nodes [8,9], we apply autonomous
mobile nodes that perform data acquisition tasks to assist in repairing the link-disruption to maintain
network topology more flexibly and efficiently. As a new type of monitoring device with unique
driving mode, gliders have advantages of lower energy consumption, longer run-time, lower noise and
lower energy consumption compared with AUVs [9]. Therefore, gliders are usually used in collecting
environmental parameters missions in many long-time and large-scale three-dimensional ocean [10,11].
Therefore, for less real-time networks, underwater gliders can assist the network in restoring a link
disruption while carrying out data acquisition tasks. However, due to their single sawtooth trajectory
on the vertical plane, it is necessary to fully consider the movement characteristics of gliders when we
design an underwater acoustic channel link restoration mechanism. It is also of great significance for
maintaining network topology and restoring the connectivity and reliability in UASNs.

In view of above problems, we propose a link disruption recognition and glider-scheduling
algorithm (LDR-GS) and a glider-assisted relay location optimization algorithm (GALO) to assist in
restoring link disruptions using existing nearby gliders. In LDR-GS, the cluster head nodes collect
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the link state and schedule gliders to prepare restoring the link-disruption. Since the location of
restoring the link-disruption is limited due to the unique trajectory of gliders, GALO is proposed to
select the optimal position for a glider as the relay node of the disrupted link, to accurately restore the
connectivity and reliability of network. In GALO, the optimal location is selected by combining the
unique characteristics of underwater gliders and the channel attenuation model. Combining LDR-GS
and GALO, connectivity of the networks can be restored.

The rest of this paper is organized as follows: in Section 2, related works on mechanisms for
restoring underwater network connectivity are discussed briefly. In Section 3, the proposed network
model and LDR-GS mechanism are introduced. In Section 4, GALO algorithm is described in detail.
The simulation results are shown and discussed in Section 5. At last, we conclude this paper in Section 6.

2. Related Work

The technology to improve connectivity and reliability of sensor networks is a hot topic nowadays.
There are several kinds of methods aiming to improve connectivity and reliability to meet the
requirement of applications, such as the algorithms for the routing layer and MAC layer [12–16],
the nodes complement about dynamic nodes and static nodes [17–19] and so on. In this section, we
provide a review on research works on this topic.

Communication link restoration and network topology maintenance problems exist in a variety
of network designs from the viewpoint of routing and the MAC layer. A centralized (C-TCSIC) and
a distributed topology control algorithm (D-TCSIC) are proposed in [12]. C-TCSIC and D-TCSIC
integrate power control with channel allocation to create a bidirectional and a collision-free channel
connection in cognitive radio networks (CRNs). Theoretical analysis shows that the algorithm can
guarantee two-channel connectivity without conflicts. However, this algorithm cannot effectively
complete the restoration of link disruption among nodes for the complex environment in UASNs.
Some problems arise if the transmission power is only adjusted according to the communication
channel condition among adjacent nodes to restore the link disruption. This is because the disruption
of communication in two nodes is not only caused by the increase of communication distance, so merely
increasing the transmission power not only causes a large energy overhead but also easily causes
interference to other nodes and reduces the channel capacity. For sparse networks, the authors in [16]
propose a network analytic model and designed an any-to-any communication scheme. The model
considers the problem of real-time message-delivery which is solved by integer linear programming
and heuristics. The model proposed in [16] can reduce the complexity and improve the efficiency of
networks and it is helpful for network simulation. With distributed beacons, the authors in [13] propose
a novel cooperative opportunistic routing (OVAR) scheme for UASNs and build a contiguity graph at
each hop and select a forwarding set that maintains the best balance between reliability and energy
efficiency. OVAR can also choose a forwarding set from any direction of the sender, which increases its
flexibility to bypass any type of hole and has the least deviation from the best path.

In addition to the research on such routing and MAC layers, there are many related studies on
network topology optimization from the perspective of node deployment [8,20–22]. Node deployment
can be divided into static deployment and dynamic deployment. Static deployment consists of
random deployment and deterministic deployment. However, whether it is random deployment or
deterministic deployment, underwater acoustic channels will dynamically change with the water
environment, resulting in disrupted links and network partitioning. In [17], aiming at the problem of
link disruption in sensor networks, the network performance is restored by sowing second-generation
nodes. Although some positive results are obtained, considering the uncertainty of node spreading,
a larger node redundancy will result. A two-node deployment method is proposed in [18] for network
partitioning phenomenon in multi-hop UASNs, which repairs the disrupted links by adjusting the
depth of nodes. This method does not produce more node redundancy like that in [17]. However,
it requires nodes to automatically adjust their depth, which requires much more flexibility from nodes.
Similarly, Ref.[19] makes use of the virtual force algorithm to make the nodes cover the network
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connection holes. The algorithm can reduce the node redundancy, but requires a higher computational
capability and self-mobility capability and the driving force of node movement also generates a large
energy expenditure. However, the method has a great limitation for underwater sensor nodes due to
the difficulty of charging and replacing the battery of common sensor nodes.

In order to improve the flexibility and generality of network of link disruption restoration and
save the energy of common sensor nodes to reinforce the connectivity of the network, many researchers
have begun to study the use of movable and rechargeable underwater vehicles to assist in underwater
monitoring tasks. Based on the motion characteristics of underwater vehicles, Ref.[9,23] have made
a related study on the location prediction of dynamic nodes and the communication among nodes.
The authors in [24] propose an AUV-aided underwater routing protocol (AURP) for UASNs. AURP
uses AUV as a relay node to assist common sensor nodes collecting information and gives full play to
the initiative of the mobile node and reduces the load of the network static nodes. Learn from this
idea, taking into account the strong initiative and the low energy consumption of gliders, we propose
a glider-assisted link-disruption restoration mechanism to restore interrupted links in UASNs.

3. The Glider-Assisted Link-Disruption Restoration Mechanism

We first describe the network model that is the basis for our mechanism. Due to the wide range of
deployment in wireless sensor networks and the complex communication environment, the network
structure is generally clustered in UASNs. After that, we introduce the process of the glider-assisted
link disruption restoration mechanism. Next, we design a reasonable link disruption recognition and
glider-scheduling (LDR-GS) mechanism as the first part of the restoration. In LDR-GS every cluster
head node can learn about the link interruption and transfer the status information to the glider when
the glider is periodically close to the cluster head node. The previous work can fully prepare for
glider-assisted link restoration.

3.1. The Network Model

In the water volume D to be monitored, the glider-assisted link disruption restoration
problem considered in this paper is based on the pre-existing hybrid deployment of static and
dynamic nodes. Assume that the original sensor nodes deployment has satisfied the coverage and
connectivity conditions.

As shown in Figure 1, the entire volume is divided into several sub-volumes and the network is
a clustered structure. Each sub-volume contains three kinds of nodes including a cluster head node
hi, a glider gi and multiple static sensor nodes Si =

{
s1

i , s2
i , . . . , sj

i

}
. A static node is anchored to the

sea floor by cables and floats in the water aided by buoyancy devices. Its function is to collect and
forward the environmental data to complete the conventional monitoring tasks. All static nodes have
the same sensing range and communication range. The cluster head node is the only one in each
sub-volume. The cluster head node is responsible for receiving the data forwarded by the static and
dynamic nodes. In addition to this, the cluster head node can collect the status information of whether
the link is disrupted in its sub-volume. Every cluster head node then sends the collected information
to the cluster head nodes of the upper sub-volume so that the collected data is transmitted to sink
nodes layer by layer. Finally, the sink node will send the combined data to a satellite or shore base
station through radio communication. The dynamic node in our paper is a glider. On the one hand,
the glider has a common function with static nodes. It can collect and forward environmental data.
On the other hand, to a certain extent the dynamic nodes can freely move and act as an advanced
sensor node. Every glider would periodically pass through the cluster head nodes to forward the
collected data information to the cluster head node in its sub-volume.
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Although the static nodes in the network are fixed to the bottom by cables, the location of the
static nodes will be disturbed due to the external forces such as water currents and contact with marine
animals. Compared with the nodes that are not fixed, the anchoring nodes are relatively less affected
by the water flow. Their position change volume is in a spherical coronal surface, which also returns to
the original position as the water flow changes over time. The change of the node position will directly
affect the quality of underwater acoustic links. In addition, the quality of the underwater acoustic
links will also be affected by the sea surface fluctuation. Therefore, different sea surface fluctuations
may cause different signal propagation paths. These time-varying factors will temporarily reduce the
quality of underwater acoustic links. In severe cases, the communication link will be disrupted and the
network connectivity will be degraded. If the network just waits for the environment to return to its
original state, it will inevitably cause link disruption for a longer time, resulting in longer transmission
delays and greater waste of network resources caused by data retransmission.

In addition to the problem of link disruption caused by the change of underwater acoustic channel,
there are several other reasons why the acoustic links can be disrupted in UASNs. These problems
include the failure of nodes, the changed direction of hydrophones due to currents and so on. In this
paper, we only cover the link disruption during the networking process of sensor nodes, that is,
we do not consider the case that underwater node is disrupted. We assume that the sensor nodes
in our network model carry omni-directional hydrophones and we do not consider the change of
hydrophone direction.

3.2. The Glider-Assisted Link Disruption Restoration Process

In view of the above analysis, it is necessary to design a mechanism to restore the link disruption.
We first propose the link disruption recognition and glider-scheduling (LDR-GS) mechanism for
identifying the disrupted links and collecting the link disruption information in preparation for
scheduling glider for restoring the disrupted link. The glider reaches the location of a disrupted link to
complete the restoration of the link disruption to restore the network connectivity. In the next section
we design GALO to find out the best location to repair the link more accurately due to the unique
trajectory of the glider, but in this part we just introduce the LDR-GS mechanism.

The cluster head node hi in the sub-volume i is responsible for collecting and forwarding the data
packets sent by all the cluster members Si in the cluster and the glider gi, and finally sends the data
to the surface sink node. Supposing that the routing table of the cluster head holds all the routing
information in the volume, and the route arrived by each sensor node is routed according to the
shortest path, that is, the path reached by each node is unique. In this network, underwater nodes
automatically go to sleep from the active state when no data needs to be received or sent. While the
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node is sleeping, it no longer sends data packets. When the state changes, the node sends the data
packet to update the status information. Glider gi in this volume periodically approaches the head
nodes hi and the collected environmental data is forwarded to hi. At the same time hi forwards the link
disruption information of cluster members to gi so that the glider gi can repair the link disruption is
a timely way as the relay node. A schematic diagram of this is shown in Figure 2.
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Therefore, in order to get the state information of cluster members for cluster head nodes in time,
cluster members need to periodically report their current location and current status to cluster heads
through the LDR-GS mechanism and it is necessary to accurately schedule the glider for link healing
when the cluster head node finds any link disruption through the GALO algorithm. The process is
shown in Figure 3.
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3.3. The LDR-GS Mechanism

The details of LDR-GS mechanism follows the steps below:

Step 1: The static sensor node sj
i sends data packet sign (sj

i), which contains the node’s own position
information, to its cluster head node hi every time period.

Step 2: If the cluster head hi receives the sign (sj
i) packet sent by sj

i , it indicates that there is no

disruption of all links between static node sj
i and the cluster head hi. If the cluster head hi does

not receive the sign (sj
i) packet sent by sj

i but receives the sign (sj+1
i ) packet of the next hop

sj+1
i , then it judges the link ej,j+1 between sj

i and sj+1
i to be disrupted and the link disruption

identifier in hi therein becomes δj,j+1 = 1. If the cluster head hi does not receive the sign (sj+1
i )

packet sent by sj=+1
i , then it does j = j + 1 and continues to judge until the cluster head can

receive from the next hop. Then the cluster head can judge the disrupted link eab, where
b = a + 1. If there are some simultaneous link disruptions, the glider will prioritize the link
closest to the cluster head node to ensure the connectivity of more nodes.

Step 3: If the link disruption flag δab is 0, the glider completes the data forwarding and continues to
collect data according to the original running track. If there is a link-disruption, that is the link
disruption flag δab is not all 0, hi sends a repair (eab) packet containing the location information
of the two nodes to gi when gi periodically approaches hi for data forwarding, and then starts
scheduling the glider to repair the link disruption.

Step 4: If gi receives the repair (eab) packet, the glider’s link interrupt flag becomes δab = 1.
The disrupted link is repaired by selecting the appropriate trajectory according to the motion
characteristics of the glider gi.

Step 5: After gi completes the link-disruption restoring command issued by hi, the glider’s link
interruption flag δab becomes 0, indicating that the link eab repair task delivered by the cluster
head has been completed. In this case, gi returns to the original position again and sets the
link disruption flag of hi to 0, and continues the environmental monitoring task.

4. The GALO Algorithm

It is necessary to design a glider-assisted relay location optimization algorithm (GALO) so that the
glider can calculate the optimal relay location and complete the link restoring when the glider receives
the repair command (eab) issued by a cluster head. In this section, we first describe the problem and
the process of establishing optimization model. Since the glider has a special sawtooth movement,
we model it based on its kinematics to solve the problem. Then we briefly introduce the motion
model of the “Petrel” glider as the basis for model building. In addition, we use the position with the
smallest signal attenuation as the optimization target. Due to the special trajectory of gliders, the glider
probably cannot arrive the calculated optimal position and therefore depending on the different cases
we design two solutions for the glider’s trajectory.

4.1. The Problem Description

In GALO, according to the received location of the link disruption and the position of the glider
itself, the optimal relay location is calculated based on the glider’s motion characteristics. The schematic
diagram of GALO is shown in Figure 3. Assume that both node sa

i and node sb
i are undamaged,

that is, their data sensing, data sending and receiving functions work normally. The disruption of
the underwater acoustic channel between two nodes is then only a temporary suspension of the
communication link due to changes in the water environment. Therefore, the glider is needed to repair
the link between these two nodes. At this time, the glider serves as a relay node between two nodes to
repair the damaged link and transmits the data back to the cluster head node for data fusion. Then the
cluster head node transmits the message to the water surface aggregation node. In this problem,
we need to calculate the best glider trajectory based on the glider’s motion characteristics. We treat
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this problem as a Nonlinear Program (NLP) problem. In this NLP problem, the position selection of
the glider satisfies the signal-noise-ratio threshold of the receiver. Combining with the glider’s motion
characteristics, we minimize the signal loss of sa

i − gi and gi − sb
i through selecting the optimal position

as the objective to establish multi-objective function:

min
{

TLag, TLgb

}
(1)

When making decision in the game theory, the problem of multi-objective optimization is often
solved by ideal point method. That is to say, the minimum value point of each component objective
function is calculated as the ideal value of the component objective function. Then, the optimal solution
of the original multi-objective programming problem is obtained by the way that the multi-objective
function approximates the corresponding ideal value as much as possible in the feasible domain.
The evaluation function is:

u( f (x)) =
∣∣TLag − TLag

∗∣∣+ ∣∣∣TLgb − TLgb
∗
∣∣∣ (2)

TLag = χ log rag + αrag · 10−3 (3)

TLgb = χ log rgb + αrgb · 10−3 (4)

where rag =‖ x − y ‖, rgb =‖ x − z ‖, x = (x1, x2, x3)
T is the coordinate vector of the glider,

y = (y1, y2, y3)
T is the coordinate vector of the sensor node sa

i , and z = (z1, z2, z3)
T is the coordinate

vector of the sensor node sb
i . χ is a parameter used to calculate the extended loss caused by the

continuous expansion of the wavefront during the propagation of the sound wave. For the shallow sea,
the wavefront expands according to the law of the cylinder side and at this time χ = 10. The wavefront
expands spherically for the deep sea and at this time χ = 20. α is used to calculate the absorption
coefficient of sound attenuation due to medium viscosity and heat conduction. The corresponding
empirical formula is α = 0.1 f

1+ f 2 +
40 f

4100+ f 2 + 2.75 ∗ 10−4 f 2 + 0.003. Therefore, the NLP problem can be
expressed using Equation (5):

min
{∣∣TLag − TLag

∗∣∣+ ∣∣∣TLgb − TLgb
∗
∣∣∣}

s.t.
C1. TLag < TLth1
C2. TLgb < TLth2
C3. cs(x), ct(x) ∈ trail(x)

(5)

In order to ensure the signal quality of receiver, it is necessary to establish Equation (6), where SL
(Unit: dB) is the signal level sent by the source node. TL is the transmission loss. NL is the noise level
and DL is the directional gain:

SL− TL− NL + DL ≥ Threceiver (6)

Therefore, this condition needs to be established as TL ≤ SL − NL + DL − Threceiver. The constraint
condition C1 indicates that the transmission loss from sa

i to gi should be lower than a loss threshold
TLth1. The constraint condition C2 indicates that the transmission loss from gi to sb

i should be lower
than the loss threshold TLth2. The formula in the constraint C3 indicates the movement trajectory of
the glider should be considered when the link is repaired, and the starting and ending positions are
certain points on the movement trajectory. In other words, different trajectories result in different
feasible regions of the objective function.



Sensors 2018, 18, 501 9 of 17

4.2. The Glider Movement Description

To meet the constraints in C3, the trajectory of glider gi also needs to be studied. Taking the “Petrel”
glider as an example, the motion characteristics of the glider are studied as follows: in its gliding mode,
the glider follows a sawtooth profile through the buoyancy adjusting unit and the attitude adjusting
unit. The spiral gyratory movement is achieved by combining the sawtooth movement with the roll
adjustment unit.

It is necessary to consider the stress conditions of the glider to obtain the kinematics formula.
Specifically, based on the kinetics formula, the kinematic parameters of the glider at any moment are
solved by the Runge-Kutta method with variable step size. Due to the relatively higher efficiency of
the glider’s buoyancy control unit, the sawtooth profile motion controlled by the buoyancy control
unit and the attitude adjustment unit is more suitable for long-range monitoring tasks. The adjustment
of the control parameters can control the movement data of the “Petrel” and the relationship among
these speed parameters is shown in Equation (7):

Vx = u cos θ cos ψ + v sin ψ sin φ− v sin θ cos ψ cos φ + w sin ψ cos φ + w sin θ cos ψ sin φ

Vy = u sin θ + v cos θ cos φ−w cos θ sin φ

Vz = −u cos θ sin ψ + v cos ψ sin φ + v sin θ sin ψ cos φ + w cos ψ cos φ− w sin θ sin ψ sin φ

(7)

where (Vx,Vy,Vz) is the speed vector of the underwater glider floating in the ground coordinate system
and (u,v,w) is the coordinates of the velocity vector in the body at the center of the float. ϕ, ψ and θ are
the roll angle, pitch angle and flight angle, respectively. From the velocity vector formula of the above
equation the underwater glider trajectory can be obtained. The trajectory trail(x) of the underwater
glider is the integral of the speed vector.

4.3. The GALO Algorithm

As the pitch angle θ of the glider during gliding is related to the system dynamics parameters,
under the control parameters of the “Petrel”, the range of the pitch angles of the glider in
steady-state gliding is (−69.5◦,−9.2◦)∪ (9.2◦, 69.5◦). Therefore, due to the limitation of the movement
characteristics, there are two situations for solving the nonlinear programming problem:

Case 1: The glider’s trajectory intersects with the volume where the objective function is optimal.
Case 2: The glider’s trajectory does not intersect with the volume where the objective function

is optimal.

For different situations, we need to have different methods. For Case 1 where the trajectory
intersects with the optimal region, the optimal solution of the problem can be obtained for the problem.
Then the NLP problem can be solved by the multiplier method to obtain the optimal solution to the
problem. For Case 2 where the trajectory does not intersect with the optimal region, the optimal
solution to the problem does not exist. Then the problem can be transformed into solving the minimum
distance between the glider trajectory coverage volume A1 and the optimal region A2. We take this
point that meets the minimum distance on the trajectory as the suboptimal solution to the NLP problem.
That is, the problem is transformed into the objective function min{d(A1,A2)}. Specific solution steps
are as follows:

Case 1: The glider’s trajectory intersects with the volume where the objective function is optimal.
The problem can be solved by multiplier method (PHP) and the corresponding augmented
Lagrange function is shown as (8):

M(x, λ, δ) =
√
(TLag − TLag

∗)2 + (TLgb − TLgb
∗)2 − λ3 · trail(x) + δ

2 trail2(x) + 1
2δ{[max{0, λ1 − δ(TLth1

−TLag)}]2 − λ1
2}+ 1

2δ{[max{0, λ2 − δ(TLth2 − TLgb)}]2 − λ2
2}

(8)
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where λ = (λ1,λ2,λ3)T is the corresponding Lagrange multiplier vector. The corresponding
multiplier iteration formula is shown as (9):

λ1
k+1 = λ1

k − δ(TLth1 − TLag)

λ2
k+1 = λ2

k − δ(TLth2 − TLgb)

λ3
k+1 = max

{
0, λ3

k − δtrail(xk)
} (9)

The original problem (5) is converted to the following unconstrained optimization
problem (10):

min
{

M(x, λk, δk)
}

(10)

By separately taking partial derivative of the variable x1,x2,x3 and making ∂M
∂x1

= ∂M
∂x2

=

∂M
∂x3

= 0, the optimal solution xk = (x1
k, x2

k, x3
k)

T
can be obtained separately and then

substituted into Equation (11) to calculate whether the termination rule is established:

φk := {trail2(x) + [min{THth1(x)− TLag(x), λ1
k

δ }]
2
+ [min{THth2(x)− TLgb(x), λ2

k

δ }]
2
}

1
2
< ε (11)

If Equation (11) works, the solution is the approximate optimal solution, and if not,
it will be brought into Equation (9) to continue calculating for the next iteration until
Equation (11) works. At this point, the optimal relay position of glider for link restoration is
x∗ = (x1

∗, x2
∗, x3

∗)T.
Case 2: The glider’s trajectory does not intersect with the volume where the objective function is

optimal. Since the glider’s trajectory is limited, the glider may not be able to go through
the optimal position represented by Equation (5). The nearest point in the volume A1 to
the volume A2 is selected as the sub-optimal solution. Volume A1 is the glider’s trajectory
coverage volume and volume A2 is the zone defined by the C1 and C2 constraints. That is,
the range indicated by the volume A1 is expressed by Equation (12), and the range indicated
by the volume A2 is expressed by Equation (13):

trail(x) = 0 (12)

min
{√

(TLag − TLag
∗)2 + (TLgb − TLgb

∗)2
}

s.t.
C1. TLag < TLth1
C2. TLgb < TLth2

(13)

The original problem of Equation (5) is thus transformed into a new problem for solving
the suboptimal solution, as shown in Equation (14). The solution obtained to achieve the
shortest distance between the two regions is the sub-optimal solution of the original problem.
It is the position for the glider to restore the link:

min{d(A1, A2)} (14)

Based on the above calculation, the glider can arrive the optimal or sub-optimal position to restore
the link disruption as a relay node. However, if the data packet needs a long time to be transmitted or
the link needs a long time to be restored, there may be a link disruption between the node and the
glider due to currents. Thence designing a method to withstand currents is necessary when the glider
prepares restoring the disrupted link. We consider that the glider has two kinds of movement (sawtooth
and spiral movement). It achieves a sawtooth profile through the buoyancy adjusting unit and the
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attitude adjusting unit. The spiral movement is achieved by combining the sawtooth movement
with the roll adjustment unit. When the glider arrives at the calculated position, it transforms its
movement mode into a spiral movement. That is because it can move within a relatively small volume
in a spiral movement. In additions, the maximum total speed, vertical speed and horizontal speed of
the glider are 2.05 m/s, 1.88 m/s and 1.93 m/s, respectively. As an important performance parameter
of counteracting currents, the greater horizontal speed indicates a stronger anti-flow ability [10,11],
and higher reliability in the harsh environment. In addition, the communication between node and
glider with a specific trajectory has been studied [9]. Therefore, the conversion of movement model
can complete the communication between node and glider without disruption.

In this networking process, the cluster head node can calculate the probability of the link
disruption in this cluster. In general, the probability of link disruption can be calculated as
Fab = Pr(log2(1 + |Hab|2SNRab) < RA) = Pr(|Hab| < 2RA−1

SNRab
) [25]. However, for a link with higher

probability of disruption than Fab, it indicates that the environment of the acoustic channel here is rather
harsh. In this case, in order to improve the restoration efficiency, we add the calculated position of the
link to the periodic path of the glider until the environment there is improved. In our network model,
we assume that the deployment of original sensor nodes has satisfied the coverage and connectivity
conditions. Therefore, the probability of link disruption will not be high and that glider can complete
its tasks of monitoring and restoring the link.

5. Performance Evaluation

In this section, we evaluate the performance of the glider-assisted link disruption restoration
mechanism. To verify the effectiveness of the glider-assisted link disruption restoration mechanism
proposed in this paper, experiments will be conducted from the aspects of packet delivery
rate, end-to-end delay, connectivity and communication energy consumption of the network.
The glider-assisted link disruption restoration mechanism is compared with the classic underwater
routing protocols vector-based forwarding (VBF) [26], hop-by-hop vector-based forwarding
(HHVBF) [27] and OVAR [13]. In VBF, a vector from the source to the sink is build and acts as
the axis of the “routing pipe”. The data packet is transformed along the pipe. HH-VBF suggests the
use of a routing vector for each individual forwarder in the network, instead of a single network-wide
source-to-sink routing vector.

5.1. Experimental Setting

In the simulation, the water to be monitored in the simulation is a three-dimensional volume of
6 km × 4 km × 4 km. The initial deployment in the volume is composed of eight clusters, that is, the
network contains eight clusters, and each cluster is responsible for monitoring the three-dimensional
volume of 3 km × 2 km × 2 km. In each cluster there is a glider as an advanced node and common
sensor nodes to carry out environmental monitoring tasks in their respective volumes. The initial
energy, transmission power, receive power and communication distance of these common sensor
nodes are all the same. The performance of the sensor carried on the underwater glider is not different
from that of the common sensor nodes. The transmission power and receive power of the data are also
consistent in every node. For source nodes, the data packet generation rate and sending rate follow
the independent Poisson distribution process and the rate is λ (packets/s).

The parameters used in the experiment refer to the Aqua-sent OFDM MODEM [28] and “Petrel”
glider [11] parameters. The following simulation is done using Aqua-sim [29], which is an underwater
network simulation software based on NS-2. The simulation parameters are listed in Table 1.
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Table 1. Simulation parameters.

Name Values

Monitoring volume 6 km × 4 km × 4 km
Transmission speed 1.5 km/s
Transmission range 1.5 km
DATA packet size 300 B

Maximum gliding depth 4 km
steady-state gliding maximum pitch angle 69.5◦

steady-state gliding minimum pitch angle 9.2◦

Maximum gliding speed 2 Kn (1.852 km/h)

5.2. Evaluation with Different Parameters

Packet delivery rate (PDR) in the network refers to the ratio between the data packets (Ps) sent
by the source node and the data packets (Pr) received by the target node, that is, the statistical
measurement of correctly transmitting the data packet. It is an important performance indicator
that reflects network reliability and communication quality. Therefore, we simulate the relationship
of packet delivery rate and the different parameters s/h of four different algorithms, where s is the
number of common sensor nodes in the network and h is the number of cluster heads in the network,
that is, s/h is the number of common sensor nodes in a cluster.

In the simulation, the parameter s/h varies between 0 and 30 with a step of 5. As shown in Figure 4,
by comparing the packet delivery rate with the change of the parameter s/h, we can conclude that
the packet delivery rate is also closer to the ideal value 1 as the parameter s/h increases. The rate of
increase of data packet delivery is faster at first and slower later because the network connectivity
is particularly poor when the nodes are sparsely distributed. In this case, adding nodes will have
a greater impact on network connectivity. However, when the number of nodes reaches a certain
critical value, for example, when the parameter s/h in the figure is 20, the rate of packet delivery
increases quite slowly because the network is basically connected. At this point if the number of
nodes increases, the connectivity is improved less obviously. Therefore, in the following simulations,
we perform other simulations based on the parameter s/h = 20. Compared with OVAR, HHVBF and
VBF, the glider-assisted link-disruption restoration mechanism has a higher packet delivery rate with
the same s/h value. For example, when the parameter s/h is 20, in the glider-assisted link-disruption
restoration mechanism, the packet delivery rate has increased by 15%, 23% and 33%, respectively,
relative to OVAR, HHVBF and VBF. This is because in the glider-assisted link disruption restoration
mechanism, when a certain link in the network is disrupted due to change of underwater acoustic
channel or external force in the ocean, the cluster head node in each sub-volume will notify the glider
to perform restoring the link in time. For both the links among common nodes and the key nodes, the
glider can do the repair, which greatly improves the delivery rate of the data packets in the network.

Based on the simulation in Figure 4, our simulation parameter s/h is 20. As shown in Figure 5,
the end-to-end delay of the glider-assisted link-disruption restoration mechanism respectively is 20%,
38% and 43% lower than OVAR, HHVBF and VBF when there is no link disruption and the time is
less than 200 s. This is because the glider-assisted link disruption restoration mechanism is based
on the shortest path routing protocol. Shortest path routing has less time-delay than VBF and the
HHVBF and OVAR protocols. For a sudden disruption of the link after 200 s, all of four algorithms
restore the broken link. OVAR, HHVBF, and VBF rerouted the topology in a relatively shorter period
of time by bypassing to repair the disrupted link. At this time, the glider-assisted link disruption
restoration mechanism takes a relatively longer time to wait for the glider to assist in repairing the
disrupted link. However, when the link returns to its original state, the glider-assisted link disruption
restoration mechanism does not need to spend more time and energy on reconstructing the network
topology to return to the original optimal state. OVAR, HHVBF, and VBF will continue to maintain the
suboptimal state of the network for some time from 400 s to 1000 s in the following period, or spend
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a certain amount of time and energy on reconstructing back to the original optimal state. When a link
in the network is disrupted for 1000 s, for the glider-assisted link disruption restoration mechanism,
the previous process is continued for link restoration. For other algorithms, however, the link repair
is not done within the simulation time. This may be due to the link between the key nodes being
disrupted, for example, the link between the cluster head node and its upper-level node, so that the link
cannot be repaired no matter how the path is detoured or the topology is reconstructed. Only when the
link environment changes again these mechanisms may restore the disrupted link to the original state,
thereby restoring link connectivity. At this time, the advantages of the glider-assisted link disruption
restoration mechanism are obvious: the glider-assisted link disruption restoration mechanism has
a strong general nature and it can adapt to a variety of different conditions.
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The scenario of Figure 6 is synchronized with Figure 5, which shows the connectivity of the link
as time goes by. In this simulation, we use binary numbers to indicate the connectivity and disruption
status of link. The state 1 indicates that the link is connected, and the opposite state 0 indicates the
link is disrupted. As shown in Figure 6, when the link status changes from 1 to 0 at 200 s, the link is
disrupted, and the OVAR, HHVBF and VBF resume the link connectivity within a relatively shorter
period of time. The glider-assisted link disruption restoration mechanism takes a relatively longer time
to complete the link restoration task, and the link status changes from 0 to 1, until 1000 s, the link state
has changed from 1 to 0, that is, another link disrupted. However, the OVAR, HHVBF and VBF cannot
complete the link repairing during the simulation time. However, the glider-assisted link disruption
restoration mechanism still completes the link restoration without any difference and restores the
initial connectivity of the network. This shows that the glider-assisted link disruption restoration
mechanism is more generally applicable.
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Energy is also an important factor to consider since the common sensor nodes in UASNs are mostly
battery-powered. The storage capacity of batteries is limited and underwater charging technology is
more difficult to achieve. For common nodes, its energy consumption is mainly used to collect sensor
data, send data packets, forward data packets and receive data packets, and we define these energy
consumption as communication energy consumption. Therefore, communication energy consumption
is an important measure of the life of a common sensor node. That is, the less energy consumption to
deliver the same packet to the aggregation node can prolong the life of the node, thereby prolonging
the life of the entire network. Therefore, in order to verify the performance of the glider-assisted
link-disruption restoration mechanism, we compare its communication energy consumption with
OVAR, HHVBF and VBF, as shown in Figure 7.

It can be seen from Figure 7 that the increase rate of communication energy consumption
of the glider-assisted link disruption restoration mechanism is almost unchanged as the rate of
increase of OVAR, HHVBF and VBF increases. The reason is that when performing link restoration,
the OVAR, HHVBF and VBF algorithms need to perform more data packet retransmissions to
select the more appropriate link. The process of topology reconstruction at this time consumes
more energy. The glider-assisted link disruption restoration mechanism just added a node, so the
topology is not changed much, so there is no extra energy costs. Therefore, the increase rate of the
glider-assisted link disruption restoration mechanism is stable regardless of whether a disrupted
link is restored. As shown in Figure 7, the glider-assisted link-disruption restoration mechanism
can consume less energy than the OVAR, HHVBF, and VBF algorithms, respectively. For example,
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the communication energy consumption is reduced by 20%, 47% and 58%, respectively, at 1600 s.
This proves that the glider-assisted link-disruption restoration mechanism has obvious advantages in
reducing communication energy consumption.
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6. Conclusions

In this paper, we design a glider-assisted linkdisruption restoration mechanism for UWANs,
which includes a LDR-GS mechanism and GALO. In LDR-GS, when any cluster head node discovers
a link disruption among cluster members, the corresponding link state flag in every cluster head
node becomes 1. On the other hand, a glider periodically approaches the cluster head node and the
corresponding link state flag in the gliders also becomes 1. Then the glider is scheduled to go to the
location for restoring a link disruption, but due to the limited trajectory of the underwater glider,
we further design GALO to improve the efficiency of the glider-assisted link disruption restoration
mechanism. In GALO, we combine the specific sawtooth movement of the glider and the channel
attenuation model to select the optimal relay location. This can enable underwater gliders to accurately
restore network connectivity as relay nodes of the disrupted links. We evaluate the performance of
different parameters on the glider-assisted link disruption restoration mechanism and compare it
with OVAR, HHVBF and VBF algorithms. Simulation results show that the communication energy
consumption is reduced by about 20~58% compared with other algorithms and the packet delivery
rate is also increased about 15~33% because the glider-assisted link disruption restoration mechanism
can change the topology of the entire network to a lesser degree during execution. Compared with
other algorithms, the glider-assisted link disruption restoration mechanism proposed can flexibly
complete restoring disrupted links because it can schedule free-moving gliders for link restoration.
For any link, it can complete the restoring task, while other algorithms have limitations for some link
disruptions among key nodes. Therefore, the glider-assisted link disruption restoration mechanism is
more general for restoring link disruptions and reinforcing the connectivity in UASNs.
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