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Abstract: There are many problems in existing reconstruction-based super-resolution algorithms,
such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail
enhancement can produce more texture information and high-frequency information. Therefore,
super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail
enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each
remote-sensing image is calculated, and the image with the maximum entropy value is regarded
as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using
phase normalization, which is to reduce the time phase difference of image data and enhance
the complementarity of information. The multi-scale image information is then decomposed
using the L0 gradient minimization model, and the non-redundant information is processed by
difference calculation and expanding non-redundant layers and the redundant layer by the iterative
back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted
and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to
improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative
constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are
obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB
for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an
up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better
than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

Keywords: remote-sensing image; super-resolution reconstruction; multi-scale deposed; adaptive
detail enhancement

1. Introduction

We address the problem of generating a high-resolution (HR) image given multiple
low-resolution (LR) images [1,2]. At present, this is a research hotspot in the remote-sensing
image processing field. In the super-resolution reconstruction technology applied in optical satellite
remote-sensing image processing, homologous or heterogeneous sequences of remote-sensing images
with the same area are used for super-resolution (SR) reconstruction to improve image spatial

Sensors 2018, 18, 498; doi:10.3390/s18020498 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18020498
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 498 2 of 20

resolution and image quality [3–5]. SR reconstruction technology can enhance the spatial resolution
of satellite imagery at a lower economic cost by making full use of satellite remote-sensing image
data without increasing hardware investment. Broadly speaking, the core idea of super-resolution
reconstruction is to increase the spatial resolution by using the time bandwidth (acquiring the
multi temporal image sequence of the same scene), which is to achieve the transformation
from temporal resolution to spatial resolution. Remote-sensing image data of this paper were
acquired from multi-platforms, multi-temporal, multi-viewpoints, which can be considered as a
kind of spatio-temporal remote-sensing image. Spatio-temporal remote-sensing image can provide
non-redundant information, enhance complementary information in spatial domain, and improve
texture-feature representation. Consequently, it is an effective method for the super-resolution
reconstruction to take advantage of the important information provided by the spatio-temporal
remote-sensing image. Thus, the utilization efficiency of remote-sensing image data can be realistically
improved. So, the research results have important theoretical significance and practical value [6].
Currently, SR reconstruction methods can be generally divided into four categories [7]:

(1) Image interpolation [8,9]: This field has been extensively studied, and the studies show that image
interpolation is not only flexible but also calculationally fast. However, image interpolation
is inherently limited since it is based on local grayscale values of low-resolution images to
estimate grayscale information of unknown pixels. Therefore, the lost or degraded high-frequency
information cannot be recovered during the image interpolation process. Which is perhaps
caused by image edge diffusion to different degrees or due to the phenomenon of high-frequency
information blurring found in reconstructed images.

(2) Reconstruction-based techniques [10–13]: These approaches require accurate prior knowledge for
SR reconstruction, but prior knowledge of remote-sensing images with complex topography is
still difficult to acquire [14].

(3) Learning-based techniques [15,16]: Learning-based techniques estimate high-frequency details
from a large training set of HR images that encode the relationship between HR and LR images.
These techniques required a large training set. The missing high-frequency detail information
of the reconstruction image is supplemented based on similarities between the LR image and
the HR image in the training set. Recently, there have been the state-of-the-art SR method to
be put forward. Dong et al. [17] introduced image super-resolution using deep convolutional
networks (SRCNN). Kim et al. [18] proposed accurate image super-resolution using very deep
convolutional networks (VDSR). These approaches have shown great promise. Owing to the fact
that the texture of a remote-sensing image is complex, the training process is time-consuming,
and it is challenging task to achieve real-time processing in practical engineering.

(4) Enhancement-based techniques [19,20]: These approaches estimate an SR image using image
enhancement on the up-sampled image and require an image enhancement method technique
that increases the loss of high-frequency information and improves the effect of image
reconstruction. The cited studies focus on how to increase the detail information as well as
on how representation schemes can be conducted in such spaces. In the pioneering work
of Vishnukumar et al. [21], a single-image SR technique for remote-sensing images using
content-adaptive, detail-enhanced self-examples was proposed. Sun et al. [22] introduced
a gradient profile prior to the reconstruction image when performing single-image SR and
sharpness enhancement. Yu et al. [23] put forward an image SR approach based on gradient
enhancement. Local constraints are established to achieve an enhanced gradient map, while the
global sparsity constraints are imposed on the gradient field to reduce noise effects in SR results.

To summarize, SR reconstructions using these methods have resulted in a certain degree of
progress and breakthroughs. They solve the problem of the complexity of the SR reconstruction model,
but their drawback is that the edge of the reconstructed image is possibly over-sharpened due to the
insufficiency of the image-enhancement method. They also ignore the difference information between
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the series of images. Meanwhile, these methods are not adaptive for different kinds of image contents.
Being quite different from those previous methods, in this paper we investigate the SR problem from
an information enhancement viewpoint and propose a joint SR method based on adaptive multi-scale
detail enhancement.

2. Adaptive Multi-Scale Detail-Enhancement Image SR

In view of existing reconstruction-based SR algorithms, existing texture representation is not
sufficient and high-frequency details are lacking. This paper proposes a novel SR method based
on adaptive multi-scale detail enhancement based on spatio-temporal remote-sensing images with
complementary information. An adaptive detail-enhancement method is applied to SR reconstruction
to improve the reconstruction image quality, and highlight the detail features of the HR image.
In addition, we extend our work to make the reconstructed image clearer, the edge structure more
obvious, and the high-frequency information more abundant. Hence, our method is relatively
accurate and fast compared to state-of-the-art methods. Figure 1 shows the entire AMDE-SR process
flow. Experimental results on a variety of remote-sensing image sequences show that the proposed
method can largely improve the quality of SR results, and increase the high-frequency information of
HR images.
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Figure 1. The framework of AMDE-SR. 
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Figure 1. The framework of AMDE-SR.

2.1. Spatio-Temporal Remote-Sensing Data Preprocessing

To make full use of complementary information between the spatio-temporal remote-sensing
images, and make the SR reconstruction images contain much more texture-detail information,
we process the registered spatio-temporal remote-sensing images. The well-performing image
registration method reported in [24] is used in this paper. On the basis of images registered,
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we determine a reference image among spatio-temporal remote-sensing images through information
entropy. Spatio-temporal remote-sensing images are represented as I1, . . . , It. The entropy of each
remote-sensing image is computed used the entropy function. P(xi) is the probability of appearing xi
(i = 1, 2, . . . , n), where xi represents the gray level of pixels, and the entropy function is described as
Equation (1). Then the information entropy of each spatio-temporal remote-sensing image is compared,
and the maximum entropy is selected as the reference image:

Q(x) ≡
n

∑
i=1

P(xi) log2

(
1

P(xi)

)
= −

n

∑
i=0

P(xi) log2 P(xi) (1)

Next, we must normalize the spatio-temporal remote-sensing data. This process can fully leverage
the advantages of spatio-temporal remote-sensing image data for high temporal resolution, reduce
the differences between spatio-temporal remote-sensing data, and enhance the complementarity of
spatio-temporal remote-sensing data. This step is completed by the least-squares method. Supposing
that I1, I2, . . . , It satisfies the function relation f, in order to allow spatio-temporal remote-sensing
image data to be closer to the reference image Iref, phase normalization is done by the adjustment
method, and the mathematical description is as shown by:

Ire f = fi(Ii) + εi, i ∈ [1, t] (2)

where ε represents the residuals between spatio-temporal image data, and fi represents an affine
function, such as Iref = aiIi + bi, where ai and bi are transformation parameters corresponding
to spatio-temporal remote-sensing data, and the least square is used to solve the transformation
parameters. When the residual error is a minimum, the normalization of the spatio-temporal
remote-sensing data is complete.

2.2. L0 Gradient Minimization Model

In this paper, the multi-scale decomposition of normalized images is performed using the L0

gradient minimization model. Xu et al. [25] introduced a robust method with L0 gradient minimization,
which can achieve a global optimum by processing the whole image. The number of non-zero gradients
is confined in the method of L0 gradient minimization in order to enhance the contrast the utmost.
L0 gradient minimization is based on two constraints: one is that a smoothed image must be very close
to the original input image, and the other is that the image must be flat after image smoothing. These
two constraints are used to perform the modeling, for which the formula is:

min
S
{∑

p
(Sp − Ip)

2 + λ·C(S)} (3)

where Sp is the output image after smoothing, Ip is the input image, and p is a pixel index here.
The function C is a sparse gradient counting tool for image smoothing, which is defined as follows:

C(S) = #
{

p
∣∣∣∣∂hSp

∣∣+ ∣∣∂vSp
∣∣ 6= 0

}
(4)

In practice, the function C(S) is used to calculate the sum of the pixels in the vertical and horizontal
method of smoothing images. λ is a variable which controls the cumulative relationship between the
former formula and the C(S). S in Equation (4) is the desired image,

∣∣∂hSp
∣∣ and

∣∣∂vSp
∣∣ are gradients

in the horizontal and vertical directions of image S, and #{} is a counter, which is used to output the
number pixels of

∣∣∂hSp
∣∣+ ∣∣∂vSp

∣∣ 6= 0. Because the function C(S) has no convex optimization problem,
the formula for the function deformation is:

min
S,h,v
{∑

p
(Sp − Ip)

2 + λC(h, v) + β((∂xSp − hp)
2 + (∂vSp − vp)

2)} (5)



Sensors 2018, 18, 498 5 of 20

where C(h, v) = #
{

p
∣∣∣∣hp

∣∣+ ∣∣vp
∣∣ 6= 0

}
, variables h and v indicate the vertical and horizontal gradients,

respectively, and these two gradients are an approximation of the S gradient in Equation (5).
β represents the adapted parameter, which controls the similarity between the corresponding gradients
and the (h, v). The function deformation equation is divided into two parts. The first is S, using
gradient descent to obtain results, while the second is the process of solving a smooth progression of
h and v, which needs more discussion. Discussion of two kinds of situations has minimum value in
calculating the value of h and v.

In the first step: computing S. The solution of S can be converted to the following terms. Xu et al.
proposed using Fast Fourier Transform (FFT) to accelerate, written as:

S = F−1

(
F(I) + β(F(∂x)

∗F(h) + F(∂y)
∗F(v))

F(1) + β(F(∂x)
∗F(∂x) + F(∂y)

∗F(∂y))

)
(6)

where F is the Fast Fourier Transform operator, F()* is the complex conjugate. F(1) denotes the function
of the Fourier Transform.

In the second step: computing h and v. The objective function of the step is described as
Equation (7):

min
h,v

{
∑
p
((∂xSp − hp)

2+(∂ySp − vp)
2) +

λ

β
C(h, v)

}
(7)

In Equation (7), C(h,v) can be spatially decomposed to hp and vp and estimated individually.
Therefore, Equation (7) can be converted to the following formula:

∑
p

min
hp ,vp

{(
hp − ∂xSp

)2
+
(
vp − ∂ySp

)2
+

λ

β
H
(∣∣hp

∣∣+ ∣∣vp
∣∣)} (8)

where H is a binary function, if
∣∣hp
∣∣+ ∣∣vp

∣∣ 6= 0, H returns 1, otherwise, H returns 0. In order to reaches
the minimum value, the solution need to be discussed under the condition:

(hp, vp) =

{
(0, 0) (∂xSp)2 + (∂ySp)

2 ≤ λ/β

(∂xSp, ∂ySp) otherwise
(9)

In this paper, the L0 gradient minimization model was used to perform multi-scale decomposition,
for the aim of obtaining more detail information.

2.3. Multi-Scale Decomposition and Non-Redundant Spatial Information Extraction

The initial high-resolution image is reconstructed by the IBP method. The traditional IBP method
presented in [26] is used in the AMED-SR method. In this paper, the initial reconstructed HR
image is decomposed into multiple scales based on the L0 gradient minimization model. Setting
different filtering parameters, the image is decomposed into a series of smooth layers with different
scales. Here, we illustrate the process with an example, specifically a reference image. For the
reference image, the target of the multi-scale decomposition is to acquire a set of smoothed images
sj (scale j = 0, 1, . . . , m). Suppose that the reference image is decomposed into an m-layer smooth
image. The image then must be decomposed at j + 1 levels (scale j = 0, 1, . . . , m). When the smoothed
scale j = 0, we set s0 = Iref. Then, the L0 gradient minimization model was iteratively applied to the
input image and a series of differently scaled smooth layers s1, · · · sj are computed. The progressive
smoothed by the different parameter λ increases the spatial smoothing at each level j. we set the
smoothed scale parameter λs=1 = 1× 10−3, then set λs=j = 2j−1λs=1 for all j > 1. The other input image
can be generated in the same manner. s(i,j) denotes the largest-scale smooth layer of spatio-temporal



Sensors 2018, 18, 498 6 of 20

remote-sensing image. Differential processing is carried out on the smooth layer of the adjacent two
scales, and then differently scaled detail layers are obtained, the specific formula is:

d(i,j) = s(i,j−1) − s(i,j) (10)

where:
j = 0, 1, · · · , m; i = 0, 1, · · · , t (11)

2.4. Non-Redundant Information Weighted Fusion

In this paper, the L0 gradient minimization model is utilized to perform multi-scale decomposition
of remote-sensing image sequences. The ultimate goal of this process is to provide non-redundant
information. On the basis of non-redundant spatial information extraction, different scales of
non-redundant information should be weighted fused. To take advantage of the non-redundant
information, cross-entropy is carried out to realize weighted fusion, rather than simply average
fusion. Cross-entropy can measure the difference between the reference image and the input images’
information, so the cross-entropy is regarded as the weight value with which to calculate the
difference information in the non-redundant spatial information. dre f = {d0

re f , d1
re f , · · · , dn

re f } and

dimg = {d0
img, d1

img, · · · , dn
img} represent grayscale probability distribution of the reference image and

of the input remote-sensing images, respectively. The mathematical description of cross entropy is:

ωi =
n

∑
i=0

di
re f log2

di
re f

di
img

(12)

If the cross-entropy is small, it means the differences between the reference image and
input images are small; that is, the non-redundant information is less available in the process of
reconstruction, the proportions of the weight of the fusion will be smaller, and vice versa. According to
the correlation between the reference image and input images, the fusion weight value is determined
by cross-entropy. The weight parameter w is introduced to realize the weighted fusion. For clarity,
the same-scale information of the reference image and input images is calculated based on the
weighted value wi across the cross-entropy. The multi-scale detail layer of different spatio-temporal
remote-sensing image d(i,j) is weighted fused as dj, which is the spatial frequency and contain the texture
information in different scales. The non-redundant information weighted fusion can be written as:

dj =

n
∑

i=1
ωid(i,j)

n
∑

i=1
ωi

(13)

2.5. Nonlinear Detail-Enhancement Function

After different scale information undergoes weighted fusion, we focus on the problem
of high-frequency detail-information promotion. Here, the motivation of defining a nonlinear
detail-enhancement function is that the cognition of the human visual system is a process extending
from coarse to fine. First, the saliency characteristics of images are observed, such as color, brightness,
contrast, etc. Second, the image texture structure, edge features, and other important detail information
will be observed. From a biological neuroscience point of view, if we convert an image into a
signal, the middle part of the image signal resembles the excited state of the neuron, and the
edge region resembles the inhibitory state of neurons. Therefore, normalized image information,
simulating the neuron processing of signals, defines the nonlinear detail-enhancement function,
as expressed in Equation (14) below. This function enhances the small- and medium-scale detail
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information in the multi-scale decomposition process, and increases the high-frequency information in
the reconstructed image:

f (β, dj) = (2/(1 + exp(−β ∗ dj)))− 1 (14)

f (β, dj) in Equation (14) is the nonlinear detail-enhancement function, β ∗ dj a simple scalar
multiplication, parameter β a positive number in the detail-enhancement function, and dj the
high-resolution differently scaled detail information. Figure 2 shows the detail-enhancement function
of different parameters. From the Figure 2, we can see clearly that the high-frequency information
provided by the function f is significantly increasing, with the increase of parameter β.

Sensors 2018, 18, x FOR PEER REVIEW  7 of 20 

 

( , ) (2/ (1 exp( * ))) 1  j jf d d      (13) 

( , )jf d  in Equation (14) is the nonlinear detail-enhancement function, * jd  a simple scalar 
multiplication, parameter β a positive number in the detail-enhancement function, and dj the high-
resolution differently scaled detail information. Figure 2 shows the detail-enhancement function of 
different parameters. From the Figure 2, we can see clearly that the high-frequency information 
provided by the function f is significantly increasing, with the increase of parameter β. 

 
Figure 2. Detail-enhancement function of different parameters. 

Details of the nonlinear detail-enhancement function are discussed next. The partial derivative 
of the nonlinear detail-enhancement function can be derived as: 

21( , ) (1 ( , ))
2

j j
j f d f d

d
  


 


 (14) 

Thus, when β > 0, it can be proved that ( , )jf d  is the increasing function of dj. In other words, 
the larger the parameter β, the more the detail information of the image will increase. In the SR 
reconstruction process, the quality index of the peak signal-to-noise–ratio is used as an iterative 
constraint condition to control the value of the parameter β. To achieve better reliability in 
reconstructing the SR image, local iterative optimization is carried out to realize adaptive multi-scale 
detail enhancement, and the iterative formula can be expressed as: 

2

2

1( , ) ( ) ( )
m

j j
HR ref ref

j
I I sP d s P I

MN
     (15) 

In Equation (16), M, N are the local window sizes, s the down-sampling factor, IHR the 
reconstructed image, Iref the reference image, and P the function of the PSNR. The primary purpose 
of iterative optimization is to acquire the high-resolution image with rich high-frequency 
information. 

3. Experimental Results and Discussion 

In this section, a variety of areas with different topographies are used in super resolution 
reconstruction experiments, in order to test the reliability and effectiveness of the proposed AMED-
SR method. The experimental data come from different temporal and different sensors. The areas of 
remote-sensing images cover mountainous area, road, plain area, and city building area. In 
simulation experiment, input LR images are simulated by down sample by convoluting the real HR 
images. In real experiment, input LR images are the original satellite remote-sensing image. 
  

Figure 2. Detail-enhancement function of different parameters.

Details of the nonlinear detail-enhancement function are discussed next. The partial derivative of
the nonlinear detail-enhancement function can be derived as:

∂

∂dj f (β, dj) =
1
2

β(1− f 2(β, dj)) (15)

Thus, when β > 0, it can be proved that f (β, dj) is the increasing function of dj. In other
words, the larger the parameter β, the more the detail information of the image will increase.
In the SR reconstruction process, the quality index of the peak signal-to-noise–ratio is used as an
iterative constraint condition to control the value of the parameter β. To achieve better reliability in
reconstructing the SR image, local iterative optimization is carried out to realize adaptive multi-scale
detail enhancement, and the iterative formula can be expressed as:

∆(IHR, Ire f ) =
1

MN
‖sP(

m

∑
j

dj + sj)− P(Ire f )‖
2

2

(16)

In Equation (16), M, N are the local window sizes, s the down-sampling factor, IHR the
reconstructed image, Iref the reference image, and P the function of the PSNR. The primary purpose of
iterative optimization is to acquire the high-resolution image with rich high-frequency information.

3. Experimental Results and Discussion

In this section, a variety of areas with different topographies are used in super resolution
reconstruction experiments, in order to test the reliability and effectiveness of the proposed AMED-SR
method. The experimental data come from different temporal and different sensors. The areas of
remote-sensing images cover mountainous area, road, plain area, and city building area. In simulation
experiment, input LR images are simulated by down sample by convoluting the real HR images. In real
experiment, input LR images are the original satellite remote-sensing image.
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3.1. Quantitative Evaluation Factors

For the sake of evaluating the quality of the super-resolution reconstruction results in our
experimental, the following four classical quantitative evaluation factors are chosen in super resolution
reconstruction field. In the simulation SR experiments, the full reference evaluation factors are
selected, such as peak signal-to-noise ratio (PSNR) [27] and structural similarity index (SSIM) [28].
These reference quality evaluations require the original HR as reference image. In real experiments,
we use the no reference image evaluation factors: entropy [29] and enhancement measure evaluation
(EME) [30], by reason of the real HR image does not exist.

Peak Signal-to-Noise Ratio (PSNR). In the field of super-resolution reconstruction, PSNR is one
of the commonly quantitative evaluation method and mainly used to evaluate the degree of image
distortion. In the quality evaluation of the super-resolution reconstruction results, the mean square
error between the real HR image and the reconstructed HR image is computed. The higher PSNR
value is, the better reconstruction image will be. The description of this index can be expressed
as follows:

PNSR = 10lg
L2mn

m
∑

i=1

n
∑

j=1
[IHR(i, j)− ISR(i, j)]2

(17)

where IHR(i, j) is the real HR image and ISR(i, j) is the SR reconstruction image, m and n represent
the line number and column number of the image, respectively, and L generally represents the gray
distribution range of image.

3.1.1. Structural Similarity index (SSIM)

It is widely used in the super-resolution reconstruction quality evaluation. Wang et al. [28]
introduced the structural similarity index, and the mathematical description of the SSIM index is
defined as:

SSIM =
(2µxµy + C1)(2δxy + C2)

(µ2
x + µ2

y + C1)(δ2
x + δ2

y + C2)
(18)

where µx, µy is the average of x and y respectively, δ2
x, δ2

y are the variance of x and y respectively, δxy is
the covariance of x and y, C1, C2 are the constants.

3.1.2. Entropy

Entropy is used to represent the degree of uniform distribution of any energy in space. If the
energy distribution is uniform better, the entropy value will be larger. The entropy of image information
can be generally expressed as in Equation (1). The larger of the entropy value is, the more information
of the image will be contained.

3.1.3. Enhancement Measure Evaluation (EME)

The principle of enhancement measure evaluation is to calculate the maximum and minimum
ratio of the gray level in the sub region, which is obtained by dividing the evaluated image into k1 × k2

sub regions. The logarithm of ratio is the evaluation result of the image details. This evaluation index
represents the degree of gray change of the image local. The larger the EME value is, the richer the
detail information of the image will have. Its mathematical expression is shown in Equation (19):

EMEk1,k2 =
1

k1, k2

k2

∑
i=1

k1

∑
k=2

20 log
Iw
max;k,j

Iw
min;k,j

(19)

where Iw
max;k,j, Iw

min;k,j denotes the maximum and minimum values of the local image blocks
wk,l, respectively.
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3.2. Simulation Image Experiments

It is difficult to obtain a real HR remote sensing image from the same sensor. Therefore,
the effectiveness of the proposed super-resolution reconstruction method is verified by simulation
experiments, and the original HR remote sensing images were obtained from ZY-3. Consideration
length of thesis, we just select three simulated experiments to illustrate. The LR sequence image
data with sub-pixel displacement relation is calculated through the simulation model gm = K * fm,
where fm is the original high-resolution image by similarity transformation simulation operation,
K the fuzzy convolution kernel, * representative convolution operation, gm the down-sampled image
sequences. We compare the proposed method with other typical and state-of-the-art super resolution
reconstruction methods. SR experiment with the scaling factor s = 2, Figures 3 and 4 give the simulated
remote-sensing image, and super resolution reconstruction results of different methods, respectively.
In Figure 3, remote-sensing image comes from the resources satellite three (ZY-3), which is a series
of surveying and mapping remote-sensing satellites. At present, ZY3-01 and ZY3-02 are in-orbit
operation. Now, the network of ZY3-01 and ZY3-02 is operated to ensure the long-term stable
acquisition of high-resolution remote-sensing data. In our SR experimental, the resolution of the
ZY3-01 panchromatic nadir image is 2.1 m. The imagery in Figure 3 was taken on 6 June 2016,
21 September 2015 and 9 April 2013, respectively.
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It can be seen from the experimental results, the edge structure of the interpolation SR result using
simulated ZY-3 satellite imagery is blurry. Because the high-frequency information is lost in the SR
reconstruction process and the difference between the edge structure and the smooth information is
ignored. The SRCNN is one of the state-of-the-art SR methods, and the SR result is got through deep
learning network structure. The edge structure is better than the bicubic method. The quality of the
reconstructed image has also been improved significantly. The deficiency in the SRCNN method is that
the texture information is still not enough. In comparison with experimental results through different
SR methods, the MADE-SR method can retain a better edge structure, and the texture information is
increased by the nonlinear detail enhancement function. In Figure 4, the edge of the house is clearly
visible in the first experiment, the outline of a plane is more obvious in the second experiment and the
edge structure of the building is clearer in the third experiment. That is, the edge structure is clearer
and texture detail is supplemented in the proposed SR method of this paper.

Remote-sensing satellites can obtain single band panchromatic images and multiband
multi-spectral images at the same time. Thus, multi-spectral image is also one of the representative
remote-sensing images. In the simulation experiment, the multi-spectral image is used to verify the
effectiveness of the MADE-SR method. We choose the multi-spectral image from different sensors,
such as ZY3-01, Gaofen-2 satellite (GF-2) and worldview-2. The resolution of the ZY3-01 multi-spectral
image is 2.1 m. The imagery in Figure 5a was taken on 10 January 2017. The resolution of the
GF-2 multi-spectral image is 3.2 m. The imagery in Figure 5b was taken on 11 November 2017.
The resolution of the WorldVeiw-2 multi-spectral image is also 1.8 m. The imagery in Figure 5c was
taken on 16 October 2017. In the multi-spectral image SR experimental, the red, green and blue band
was selected. The three bands of multi-spectral image in the experiment are considered as the image
with shorter interval which is taken from different CCD cameras. Then using the complementary
information between bands to realize super-resolution reconstruction. We determine a reference band
among multi-spectral image through entropy. The next process of the super-resolution reconstruction
is the same as the panchromatic image. The simulated multi-spectral image is shown in Figure 5,
and the SR result is shown in Figure 6.
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image; (c) WorldView-2 multi-temporal image.

The simulated multi-spectral image is calculated through the simulation model gm = K * fm, using
the complementary information of multispectral spectral segments to fulfil the SR experiment. Figure 6
clearly shows that the MADE-SR method can protect the edge structure and include rich texture
detail information.

In the simulated experiment, for the sake of evaluating the reconstruction results more objectively,
the objective evaluation index of the PSNR and the SSIM are chosen to evaluate the SR images.
The reconstructed images of the simulated experiments are presented in Figures 4 and 6. We can see
that the whole image blur-based bicubic, that is, the SR image based on interpolation method cannot
increase the high-frequency information. Also, in Figure 6, we can see the SRCNN method applied to
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remote-sensing images, the edge of the SR images structures tends to a little blur, which is not effective
in preserving the large-scale edges of remote-sensing image. In contrast, the SR images of the proposed
method have better texture performance. The results of the reference quality assessment reveal that the
SR images of the proposed method has better perform with respect to the image objective evaluation
factors. The objective evaluation results of the different SR algorithms are listed in Table 1.
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Table 1. The Objective Evaluation Index Results of Different SR Methods.

Image Data Bicubic IBP SRCNN Proposed

Experiment one PSNR: 25.59 PSNR: 26.05 PSNR: 26.38 PSNR: 26.77
SSIM: 0.82 SSIM: 0.85 SSIM: 0.87 SSIM: 0.89

Experiment two PSNR: 20.57 PSNR: 22.03 PSNR: 26.43 PSNR: 26.83
SSIM: 0.74 SSIM: 0.82 SSIM: 0.89 SSIM: 0.91

Experiment three PSNR: 21.41 PSNR: 21. 82 PSNR: 22.41 PSNR: 22.52
SSIM: 0.80 SSIM: 0.82 SSIM: 0.88 SSIM: 0.91

Experiment four PSNR: 32.11 PSNR: 32.16 PSNR: 33.08 PSNR: 33.10
SSIM: 0.81 SSIM: 0.86 SSIM: 0.94 SSIM: 0.95

Experiment five PSNR: 29.96 PSNR:30.02 PSNR: 30.17 PSNR: 30.18
SSIM: 0.85 SSIM: 0.89 SSIM: 0.92 SSIM: 0.94

Experiment six PSNR: 29.94 PSNR: 30.06 PSNR: 30.15 PSNR: 30.17
SSIM: 0.83 SSIM:0.87 SSIM: 0.90 SSIM: 0.91

3.3. Real Remote-Sensing Image Experiments

The image data in real remote-sensing image experiments comes from a remote-sensing satellite.
For real remote-sensing image, both the panchromatic image with different dates and the multi-spectral
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image with different bands belong to spatio-temporal remote-sensing image. Both of these images
can provide complementary information in the process of super-resolution reconstruction. But the
difference is that the time interval of the panchromatic image is relatively long while the imaging
time of the multi-spectral images in different bands is relatively short. In real remote-sensing
image experiments, the date of the multi-temporal panchromatic image is selected from similar
dates. The reason is that the continuous covered panchromatic image from similar dates can provide
complementary information without significant changes in topography. The reconstructed results of
these real data sets are shown in Figure 7. The specific parameters of these imagery are listed in Table 2.
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Figure 7. Experimental images. (a) city building area; (b) mountain area; (c) road area; (d) plain area;
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Table 2. The parameters of experimental imagery.

No. Figure Satellite View/Spectral Mode Image Size GSD (m) Acquisition Date

1 7a
ZY3-01 Nadir-View 2000 × 2000 2.1 10 July 2013
ZY3-01 Forward-View 2000 × 2000 3.5 10 July 2013
ZY3-01 Backward-View 2000 × 2000 3.5 10 July 2013

2 7b
ZY3-01 Nadir-View 705 × 705 2.1 9 February 2016
ZY3-01 Nadir-View 705 × 705 2.1 3 April 2016
ZY3-01 Nadir-View 705 × 705 2.1 8 April 2015

3 7c
ZY3-01 Nadir-View 500 × 500 2.1 30 January 2016
ZY3-01 Nadir-View 500 × 500 2.1 4 February 2016
ZY3-01 Nadir-View 500 × 500 2.1 29 March 2016

4 7d
ZY3-01 Nadir-View 500 × 500 2.1 30 January 2016
ZY3-01 Nadir-View 500 × 500 2.1 24 March 2016
ZY3-01 Nadir-View 500 × 500 2.1 29 March 2016

5 7e
GF-2 Panchromatic 500 × 500 0.8 3 November 2017
GF-2 Panchromatic 500 × 500 0.8 11 November 2017
GF-2 Panchromatic 500 × 500 0.8 7 December 2017

6 7f GF-2 Multi Spectral 500 × 500 3.2 11 November 2017

7 7h
ZY3-01 Nadir-View 500 × 500 2.1 17 May 2016
ZY3-02 Nadir-View 500 × 500 2.1 5 June 2016
ZY3-02 Forward-View 500 × 500 3.5 5 June 2016

In Table 2, the imagery in Figure 7a was taken on the same day, but the time taken by the three
CCD camera was actually different. The panchromatic imagery only has one band. The red, green
and blue band of the multi spectral imagery is selected in the real remote-sensing SR experiment, it is
shown in Figure 7g.
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In the real remote-sensing image experiment, experimental images of the first four groups
come from the same sensor, and the acquisition time of the image was different. We compare
the AMED-SR method with the traditional and the state-of-the-art SR methods, including bicubic
method, IBP method [29], MAP method [14], SRCNN method [17] and VDSR method [18]. The results
show that the definition of the reconstructed image based on interpolation method is not good.
In Figure 8(a1,b1,c1,d1,e1,f1,g1), those reconstructed edge structures are also blurry. The IBP method
and MAP method are in the range of the reconstructed SR reconstruction approach. The experimental
results are shown in Figure 8(a2,b2,c2,d2,e2,f2,g2,a3,b3,c3,d3,e3,f3,g3).
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here it can seen that the proposed MADE-SR method is not a simple contrast enhancement method. 
In the proposed method of this paper, the detail information of different scales can be improved by 
the nonlinear detail enhancement function. Contrast to the nonlinear detail enhancement function, 
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Figure 8. Reconstructed HR images of different areas by different super resolution methods.
(a1,b1,c1,d1,e1,f1,g1) Bicubic; (a2,b2,c2,d2,e2,f2,g2) IBP; (a3,b3,c3,d3,e3,f3,g3) MAP; (a4,b4,c4,d4,e4,f4,g4)
SRCNN; (a5,b5,c5,d5,e5,f5,g5) VDSR; (a6,b6,c6,d6,e6,f6,g6) HE; (a7,b7,c7,d7,e7,f7,g7) average fusion;
(a8,b8,c8,d8,e8,f8,g8) MADE-SR.

The edge structure of reconstructed image is better than interpolation approach. However,
the detail information is not prominent enough on the basis of IBP and MAP method. In addition,
SRCNN and VDSR method are regarded as subordinate to the state-of-the-art SR method. A large
number of experimental samples need to be trained in these deep learning SR methods, and the
quality of the reconstructed image has been significantly improved. Nevertheless, the state-of-the-art
reconstructed results often need to sacrifice a great deal of time. Furthermore, the promotion of the
texture information is still limited. Moreover, to test independently contributions, we also compare
the proposed method with SR result based on histogram equalization (HE) and SR result with the
information average fusion. Compared to the reconstructed image in Figure 8(g7), the global of the
SR image seems to miss the inherent information. Histogram equalization does not improve the
local details of the reconstructed image. Meanwhile, the edge structure has not been well preserved.
From here it can seen that the proposed MADE-SR method is not a simple contrast enhancement
method. In the proposed method of this paper, the detail information of different scales can be
improved by the nonlinear detail enhancement function. Contrast to the nonlinear detail enhancement
function, there is no special change in visual of the reconstructed image through non-redundant
information average fusion. In the proposed method of this paper, the contribution of the nonlinear
detail enhancement is larger than the non-redundant information weighted fusion. But the objective
of the weighted fusion is to make full use of the non-redundant information in spatio-temporal
image. Because each image itself has a different amount of information as well as the contribution
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of each image to the reconstructed result is different (Table 3). To verify that the proposed method
is applicable to different sensors, the remote-sensing images from different sensors are used in the
experiment. The experimental results are shown in the next three groups in Figure 8 which give a better
experimental result as well. In terms of visible effect, our results perform clearer edge and produce
more high-frequency information than traditional SR method. Compared to the state-of-the-art SR
method, our method by using adaptive multi-scale detail enhancement works better in handling
those different scale edges. The reconstructed results produce clear edge structure and rich detail
information. This strategy exploits the availability of rich remote-sensing image to assist the user in
providing more high-resolution image.

In the real remote-sensing image experiments, the objective assessment is provided through the
non-referenced image quality assessment method, due to the real HR images cannot be obtained.
The non-referenced image quality assessment indices are entropy and EME, respectively. These two
indices mainly evaluate the amount of information of the image. The higher the value, the better
the image quality. The objective evaluation indexes are shown in Table 3, where the entropy and
EME metrics by contrasting different methods on the remote-sensing images are listed. Statistics
show that the proposed AMED-SR method achieves the highest Entropy and EME metrics on almost
all the experimental images. The average entropy gains over bicubic, IBP, MAP, SRCNN, VDSR,
HE and average fusion method are 0.84 dB, 0.34 dB, 0.31 dB, 0.32 dB, 0.3 dB, 0.57 dB and 0.27 dB,
respectively. In contrast with the other SR methods, the EME metric of the proposed SR method is
improved significantly. Table 3 shows the objective evaluation index of proposed method in this paper
is better than the traditional SR methods and the state-of-the art SR methods. In addition, histogram
equalization through gray stretching may lead to the entropy index slightly higher occasionally,
but the detail information is not improved in experiment seven. Combined with the final image of
the experiment, the visual effect is poor and it has missed part of the information. The entropy and
EME metric of the weighted fusion is a little bit higher than average fusion. It reveals that AMED-SR
method can provide rich detail information in the process of the super-resolution reconstruction by
synthesizing subjective evaluation and objective evaluation analyses.

In this paper, we established a novel nonlinear detail-enhancement function. Using this function,
texture-detail information of remote-sensing images is promoted. The SRCNN and VDSR method is
the state-of-the-art SR method, and the performance of the SRCNN and VDSR model is based on deep
learning networks. However, such deep learning methods exhibit limitations in terms of architecture,
e.g., deep learning cannot realize adaptive scale SR reconstruction; therefore, methods based on
deep learning can only train the specified model parameters. However, after experimental analysis,
we found a better model with which to increase differently scaled information in remote-sensing
images. It is clear that this model can realize SR reconstruction with different factors through the
nonlinear detail-enhancement function, thereby avoiding training samples for a specific scale alone.
Compared with traditional SR methods, such as the bicubic, IBP and MAP methods, the adaptive
multi-scale detail-enhancement model delivers the best performance in the matter of improving the
entropy. Our method improves on the traditional method because it cannot increase the high-frequency
information, which leads to limited resolution of the reconstructed image. Traditional SR methods
focus purely on the content of the image itself, while not focusing on texture details, which is the main
difference between the traditional SR methods and the proposed model. In the future, we plan to
combine radiation information to improve the effect of the reconstructed image. We are also interested
in applying the radiation prior to the point-spread-function estimation as the constraint condition to
make the reconstructed image clearer.
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Table 3. Entropy and EME Values of Different Reconstruction Methods in Real Experiments.

Bicubic IBP MAP SRCNN VDSR HE Average Fusion Proposed

Exp_1 Entropy:6.18 Entropy:6.26 Entropy:6.21 Entropy:6.28 Entropy:6.29 Entropy:6.11 Entropy:6.46 Entropy:7.01
EME:5.93 EME:6.05 EME: 5.34 EME:6.17 EME:6.54 EME:6.80 EME:12.26 EME:14.47

Exp_2 Entropy:6.89 Entropy:7.09 Entropy: 7.10 Entropy:7.10 Entropy:7.12 Entropy:7.06 Entropy:7.10 Entropy:7.56
EME:8.41 EME:9.05 EME: 9.18 EME:9.13 EME:9.66 EME:10.67 EME:14.87 EME:15.15

Exp_3 Entropy:6.95 Entropy:6.96 Entropy: 6.98 Entropy:6.93 Entropy:6.97 Entropy:6.83 Entropy:6.92 Entropy:7.12
EME:10.08 EME:10.11 EME: 11.81 EME:11.88 EME:11.87 EME:12.28 EME:12.63 EME:13.07

Exp_4 Entropy:6.62 Entropy:6.63 Entropy: 6.75 Entropy:6.78 Entropy:6.97 Entropy:6.78 Entropy:6.90 Entropy:7.18
EME:4.69 EME:4.79 EME: 6.42 EME:7.23 EME:8.71 EME:6.94 EME:8.55 EME:9.44

Exp_5 Entropy:6.09 Entropy: 7.15 Entropy: 7.14 Entropy:7.16 Entropy:7.11 Entropy:7.28 Entropy: 7.24 Entropy:7.46
EME:5.82 EME:7.19 EME: 5.70 EME:7.80 EME:6.23 EME:9.34 EME: 11.03 EME: 12.75

Exp_6 Entropy:6.54 Entropy:7.57 Entropy: 7.60 Entropy:7.56 Entropy: 7.60 Entropy:5.95 Entropy:7.56 Entropy:7.58
EME:8.03 EME:8.85 EME: 8.86 EME:8.87 EME:8.61 EME:7.78 EME:13.63 EME:13.99

Exp_7 Entropy:6.45 Entropy:7.54 Entropy:7.62 Entropy:7.58 Entropy: 7.45 Entropy:7.72 Entropy:7.51 Entropy:7.56
EME:4.63 EME:4.64 EME:4.99 EME:5.55 EME:8.03 EME:6.34 EME:8.64 EME:9.30
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4. Conclusions

In this work, we have developed a novel remote-sensing image SR reconstruction method.
In our method, through spatio-temporal remote-sensing data preprocessing, the differences between
spatio-temporal remote-sensing data is reduced and the complementarity of spatio-temporal
remote-sensing data is enhanced. Multi-scale non-redundant information is extracted, which is
made full use of in the process of the SR reconstruction. At the same time, for the problem of
remote-sensing image SR, the traditional SR methods will become less effective because they fail
to improve the high-frequency detail information. We addressed this issue by using the adaptive
nonlinear detail-enhancement function. Through multi-scale detail enhancement, AMDE-SR can act
as a new method of increasing structural data and fidelity. Actual results show an average gain in
luminance entropy with up to 0.42 dB for an up-scaling of 2. Real results show an average gain in
EME with up to 4.25 dB for an up-scaling of 2. Experiments show that AMDE-SR can greatly increase
high-frequency detail information, making remote-sensing image SR more effective. Furthermore,
the proposed AMDE-SR method, compared with the state-of-the-art SR method, can reconstruct
different zooming factors, instead of training different factor models, and the reconstructed HR
images achieve state-of-the-art performance. Our extensive experimental results demonstrate that
the proposed AMDE-SR method significantly outperforms state-of-the-art remote-sensing image SR
methods in terms of both quantitative metrics and subjective visual quality.
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