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Abstract: Upper-extremity exoskeletons have demonstrated potential as augmentative, assistive,
and rehabilitative devices. Typical control of upper-extremity exoskeletons have relied on switches,
force/torque sensors, and surface electromyography (sEMG), but these systems are usually
reactionary, and/or rely on entirely hand-tuned parameters. sEMG-based systems may be able
to provide anticipatory control, since they interface directly with muscle signals, but typically require
expert placement of sensors on muscle bodies. We present an implementation of an adaptive
sEMG-based exoskeleton controller that learns a mapping between muscle activation and the desired
system state during interaction with a user, generating a personalized sEMG feature classifier to
allow for anticipatory control. This system is robust to novice placement of sEMG sensors, as well
as subdermal muscle shifts. We validate this method with 18 subjects using a thumb exoskeleton to
complete a book-placement task. This learning-from-demonstration system for exoskeleton control
allows for very short training times, as well as the potential for improvement in intent recognition
over time, and adaptation to physiological changes in the user, such as those due to fatigue.
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1. Introduction

Upper-extremity exoskeletons have demonstrated the potential to augment the capabilities of
human users [1,2], to assist disabled users with activities of daily living [3], and to be used as tools
for rehabilitation following neurological disease or injury [4]. Current upper-extremity exoskeleton
systems are often controlled by switches (e.g., [5–8]), pressure sensors (e.g., [9]), bend sensors (e.g., [10]),
and similar mechanical inputs. Surface electromyography (sEMG) has been shown to be a potential
control input for prosthetics [11–14], and exoskeletons (e.g., [15–18]), though these methods require
precise placement of sensors over particular muscles, unless the muscles in question are relatively
large, such as the biceps. sEMG has certain advantages over mechanical inputs, since sEMG signals of
muscle contraction occur before the associated kinematics. Directly interfacing with muscle signals
may mitigate the time lags associated with kinematic control and allow for more closely coordinated
human-exoskeleton movement.

Control of upper-extremity devices is typically more difficult than control of lower-extremity
exoskeletons, since the latter can rely on archetypical gait patterns, which do not have an upper-extremity
analog. The degrees of freedom involved in common upper-extremity movements are also greater
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than those involved in most lower-extremity movements. Control of upper-extremity exoskeleton
devices with sEMG will thus often use classification systems to reduce the complexity of the state space.
sEMG classification systems have been demonstrated for in-air gesture recognition for teleoperation,
sometimes in conjunction with inertial measurement (IMU) units. Wolf et al. [19] used this combination
with a multiclass support vector machine to control a prosthetic hand and a mobile ground robot.
Fukuda et al. [20] and Artemiadis and Kyriakopoulos [21] similarly used sEMG and IMU signals
with a Gaussian mixture model to control a robotic arm based on the movement of the user’s arm.
Supervised K-nearest neighbors classification was previously used by Zardoshti-Kermani et al. [22]
for sEMG control of upper-extremity prosthesis. Other classification systems took advantage of the
temporally-dependent nature of limb movements and used hidden Markov models as a classification
method [23,24]. While these studies show potential for using sEMG for teleoperation and control of
prostheses, with the exception of [24], they do not consider cases where the user is physically in contact
with an object, and consequently do not consider cases where the human movement is affected by
robot movement, both of which are elements needed for exoskeleton control. While [24] does involve
sEMG classification during object contact, no exoskeleton is used in that study.

We aim to build on the work of these in-air systems to implement personalized sEMG control for
upper-extremity exoskeletons, and take advantage of the sEMG signals preceding limb movement in
order to improve fluency of human-exoskeleton movement. Beckers et al. [25] showed that anticipatory
signals for grasp and release can be detected in sEMG data even with object contact during the gesture,
but also found that slight shifts in the sensor placement—approximately 1 cm in any direction on the
forearm—significantly change the anticipatory signals measured. A follow-on study using the same
data [24] showed that a hidden Markov model classifier could correctly classify grasp and release
76% of the time, even when training on data from sensors that were periodically shifted up to 1 cm to
simulate donning and doffing. These studies show that anticipatory sEMG control may be feasible
with non-specific sensor placement, and may achieve even higher classification accuracy when sensor
alignments are fixed.

In contrast to sEMG inputs provided by in-air gestures, there is a particular paradox inherent
in using sEMG inputs to control exoskeletons that raises a unique challenge. For the most fluent
movement, sEMG inputs for exoskeletons should be collected from the muscles of the limb that
are coupled to the exoskeleton. However, if movement of a limb is constrained by an exoskeleton,
the muscles of that limb may not be able to express the range of sEMG signals that are necessary for
the desired movement, or the motor strategy itself may be adapted to the constrained movement.
This situation means that a constrained limb cannot appropriately train an sEMG-based exoskeleton
if it cannot move the exoskeleton, but the exoskeleton cannot move appropriately if it has not been
trained to understand sEMG inputs.

One way to address this paradox was developed by Hamaya et al. [17,18], who used reinforcement
learning to learn control policy parameters for an sEMG mapping from sensors at the biceps and
triceps to a one-degree-of-freedom elbow exoskeleton. This method required a system identification
step involving random perturbations applied by the exoskeleton on the human while the human
attempted a lifting task, and an additional step where the system applied no torque while the user
attempted the same task. The learned policy was then able to apply an appropriate torque to minimize
sEMG activation when the user later attempted the lifting task. While this method has the advantage
of mapping well to a continuous control output (exoskeleton torque), the need for both a system
identification step and an untorqued step may make it difficult to scale the method up to exoskeletons
with many degrees of freedom and dynamics that may be very different from the human limbs to
which they are coupled. With a multi-DOF exoskeleton, the number of random perturbations needed
for system identification grow significantly and the proposed method would become increasingly
unwieldy for the user.

Kiguchi et al. [26] present an alternative method for using an adaptive controller to learn
subject-specific sEMG signals for an elbow-shoulder exoskeleton. Here, a hierarchical control scheme
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was used that takes into account both sEMG and wrist force information. In this case, the sEMG mapping
to motion is initialized using a fuzzy-logic-based artificial neural network (ANN) generated from
previous sEMG experiments, which required muscle-specific sEMG sensor placement. The mapping
was adapted to new users over time via backpropagation on the ANN.

Robot learning from demonstration (LfD) is a related body of work that can inform another
solution. In this framework, appropriate robot actions are learned from examples provided by a human
teacher, typically in a form that is very similar to the robot action [27]. For example, one might
demonstrate an example motion to teach motion, or an example sentence to teach sentence construction.
Instead of treating physical human-robot interaction as a disturbance, control systems utilizing LfD may
instead learn from these interactions and correct the existing robot objective function [28]. Since highly
personalized policies are required for sEMG control inputs [14], and there is tight physical coupling
between the human “operator” and the exoskeleton “robot,” personalized LfD is an attractive option
for learning a control mapping. This method also affords an opportunity to update appropriate sEMG
to action mappings, even when the exoskeleton is in use.

This paper builds on the sEMG-based anticipatory signal classification work of Siu et al. [24]
to apply machine learning methods for exoskeleton control in a grasping task. We use an LfD
method to train an anticipatory sEMG-based control system for exoskeletons, and implement and
validate the method on a thumb exoskeleton with forearm sEMG inputs. The LfD used here solves the
previously described control/actuation paradox by initially actuating the exoskeleton with a traditional
limit-switch based controller before transitioning to sEMG-driven control.

There are several challenges faced by such a system. First, we use sEMG signals in a physically
coupled human-robot system, where exoskeleton contact can change the signal. Second, since the
system uses human-in-the-loop machine learning, care must be taken to ensure that the system
acts appropriately even when it is being trained to avoid discomfort or injury. We implement novice
(non-specific) placement of the sEMG sensors, since this is likely to occur when donning an exoskeleton
in an operational setting as the muscles of the forearm can be difficult for a non-expert to palpate.
In learning appropriate exoskeleton reactions, the system must also account for shifts in the muscles
under the skin, which would occur even with expert sensor placement. In contrast to the work done
by Hamaya et al. [17,18], our implementation on a thumb exoskeleton and forearm sEMG sensors
must learn activations from smaller, more deeply embedded muscles of the forearm, as opposed to the
larger surface muscles of the biceps and triceps. We also avoid using a random perturbation period for
system identification, which removes a barrier to implementation on a many-DOF system. This paper
presents the exoskeleton and algorithm used for the learning-from-demonstration sEMG controller,
and an experiment to quantify the system performance. Specifically, we examine (1) the training time
of the system, (2) the positive predictive value of the intent classification, and (3) whether or not the
sEMG controllers anticipated the users’ movements.

2. Materials and Methods

2.1. System Description

We present an exoskeleton control method that learns user intentions from interaction pressure
between the user and the exoskeleton, along with and surface electromyography (sEMG) signals
collected while the exoskeleton is in use. For this proof-of-concept, a single-degree-of-freedom thumb
exoskeleton, the Interaction-based Learning Exoskeleton (ILEXOS Thumb) was used with the goal
of assisting a user’s grasp and release motions (Figure 1). The system was not designed to offload
the weight of the object grasped, support the full arm, or minimize muscle activity. The ILEXOS
Thumb was developed to enable an examination of the accuracy and precision of the algorithm during
the prescribed task. The exoskeleton used an off-the-shelf wrist brace (Mueller Sports Medicine,
Praire du Sac, WI, USA) to which a servomotor (Dynamixel AX-12A, Robotis, Seoul, South Korea) was
mounted using 3D printed and machined parts. The servomotor was connected to a thumb holder via
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a timing belt, with an adjustable center of rotation that was located over the carpometacarpal joint of
the user.

Figure 1. ILEXOS thumb exoskeleton from the top and side. Force-sensitive resistors (FSRs) are located
on either side of the thumb (slightly offset from palmar and dorsal surfaces), between the user and
the exoskeleton. The center of rotation is positioned near the carpometacarpal joint. Positioning of the
entire exoskeleton as well as segment lengths can be adjusted via Velcro and set screws.

Sensing was accomplished by two Flexiforce force-sensitive resistors (Tekscan, Boston, MA, USA)
mounted on either side of the thumb, as well as a band comprised of six Delsys Bagnoli
double-differential sEMG sensors located on the forearm (Delsys, Natick, MA, USA). The sEMG
sensors were uniformly distributed along the band, and placed at the widest point of the forearm,
without specific azimuthal placement of sensors on muscles. The force-sensitive resistors (FSRs) and
sEMG sensors were connected to a single National Instruments USB-6351 Multifunction I/O device
(National Instruments, Austin, TX, USA) which read inputs at 1000 Hz. The raw sEMG signals were
processed with a 6th-order Butterworth filter (10–450 Hz), followed by a 60 Hz notch filter to remove
noise from surrounding electrical equipment.

sEMG data were divided into 125 ms epochs for feature extraction, and successive epochs have
100 ms of overlap. This epoch size was chosen because it was between the 50 and 500 ms epochs used in
literature [19], [29–31], and is short enough to allow the features to be used as real-time control inputs.
Fourteen sEMG features were extracted for each epoch and each sensor, for 84 real-valued control
inputs per epoch. The features extracted were three binned frequency energies (low, medium, and high
frequency) [32], three binned amplitude values (equally spaced between −1 and 1 mV [22]), mean
average value, median frequency, max peak, number of slope sign changes, variance, Wilson amplitude
(5 mV threshold), waveform length, and number of zero crossings [14].

Exoskeleton operation was segmented into a training phase and a test phase. During the training
phase, a pressure-based limit switch controller was used. The test phase used one of three controllers:
the pressure-based limit switch (LS), a non-adaptive EMG controller (NA), or an adaptive EMG
controller (AC).

2.1.1. Limit Switch Control (LS)

The pressure-based limit switch controller defaults the exoskeleton to an open grip, and closes the
grip if sufficient pressure is applied to the interior FSR. The threshold for grip closure is adjusted on
a person-by-person basis due to variations in thumb size and the way the exoskeleton is worn. sEMG
data was collected along with pressure data during the phase, but was not used as a control input.
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2.1.2. Non-Adaptive EMG Control (NA)

The NA controller combines the pressure and sEMG data collected during the training phase to
allow the exoskeleton to learn a user-specific correspondence between user intent and sEMG features
via a supervised K-nearest-neighbors (KNN) classifier on fourteen signal features for each of the six
sEMG sensors. Labeled data are generated by the user during a training period when the LS controller
is used, with intent labels from the FSR pressure, and features from the sEMG. The collected sEMG
features are standardized via mean-subtraction and divided by the feature values’ standard deviation,
forming the model used for classification.

We use a supervised KNN for online learning of exoskeleton control because there is no model
training time after data are collected, and it works well on small datasets. Both of these considerations
are important for human-in-the-loop machine learning and control, where training time is limited
by the patience and comfort of the user. The supervised KNN classifier is not the same as the more
commonly used unsupervised KNN clustering algorithm, since the latter does not used labeled
data [33].

To encourage the model to learn a classification that anticipates the motion of the user rather than
simply replicating the reactive behavior of the limit switch controller, the labels for all features are
shifted backwards in time by a single epoch. Thus, the label for epoch t is applied to the features from
epoch t − 1, so that labels apply to the 125 ms time window that ended 25 ms before the original label
time. The last epoch in a trial is assumed to have the same label as the epoch before it. The optimal
amount of epoch shift depends on the length of each epoch and amount of time between successive
epochs, and the single-epoch shift used here was chosen after preliminary experiments using zero to
six epochs of shifting.

Unlabeled data during the test phase were classified by comparing new data points to its K nearest
neighbors. We set K to be 50, and the distance to neighbors was the Euclidean distance in feature space.
Each of the 50 neighbors adds a weight equal to one over the Euclidean distance to its label, and the
label with the greatest weighted sum is considered the label of the new data point. With this controller,
up to 1500 data points from the training data are used to form the KNN model. If the training data
contains more than 1500 data points, 1500 points are randomly sampled from the data. The number
of data points was capped at 1500 to maintain real-time control using the selected system software
and hardware.

When this controller is in use, pressure data continued to be collected for post-hoc analysis,
though only the sEMG data were used as control inputs within the test phase. The sEMG-to-actuation
mapping used in this controller remained constant for all trials.

2.1.3. Adaptive EMG Control (AC)

The AC controller was initialized in the same way as the NA controller. This initialization
means that the first test trial using either the AC or the NA controllers is equivalent (though different
mappings may be learned depending on the associated training). This controller diverges from the NA
controller after the first test trial.

Between test trials, the AC controller performs an update to the sEMG mapping via the KNN
classifier. First, epochs from the preceding test trial were labeled. A “close” label was applied if the
pressure on the interior FSR exceeded that of the exterior FSR by the threshold set for LS control.
An “open” label was applied if the pressure differential exceeded the threshold in the opposite direction.
If neither threshold is exceeded, the open/close actuation command previously given for the epoch is
assumed correct and the corresponding label is applied.

Next, a “full KNN model” is created using all the data collected during the previous AC trials,
along with the training trial. Since KNN runtime scales linearly with the number of data points,
using the full model is prohibitively expensive for real-time exoskeleton operation. We thus construct
a reduced model with fewer data points that is as close to the full model as possible, as measured by
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the L2 norm between the models. A reduced model consisting of 1500 randomly sampled points from
the previous trial is built, and the L2 norm between this and the full KNN model was calculated.

Since calculating the L2 norm via integration is infeasible on the 84-dimensional feature space,
we use a Monte Carlo integration of the norm with importance sampling [34] to emphasize the feature
space where the user is providing inputs. Consider P the set of 1500 points used to build the reduced
model. We use a two-step importance sampling method by sampling points x from P and then
sampling again from the space near the points x. Specifically, Monte Carlo samples are chosen by
repeatedly resampling x from P and then sampling from a normal distribution N (x, σNN) where
σNN is the square root of the mean distance between nearest neighbors in P.

Reduced models are constructed and evaluated via random resampling of new sets P until
a predetermined maximum time was reached (two minutes for the current experiment, the time
subjects are allowed to rest between trials), and the model with the lowest L2 norm was kept and
used for the next trial. This process allows a new KNN model to be generated after each trial that has
increased influence from the sEMG data provided in the most recent trial. The exoskeleton’s mapping
of intent to action thus changes over time to reflect any changes in the subject’s intent expression.

2.2. System Operation

A typical concept of operations for training and using the sEMG control mode is described
as follows:

1. System fit. The user dons the sEMG armband and the exoskeleton, and adjustments are made to
the thumb holder and actuator placement to ensure comfort and an aligned center of rotation.

2. sEMG calibration. The user holds his or her arm steady, laterally in his or her lap, while the
armband records five seconds of sEMG data, in order to establish a nominal resting mean and
standard deviation for each sensor.

3. Range-of-motion calibration. The user moves the unpowered exoskeleton to acceptable “close” and
“open” positions for the desired task, which are then recorded by the exoskeleton.

4. Limit switch deadband calibration. A deadband for the limit switch of the pressure-controlled case is
set for the individual.

5. Training. The LS mode is used initially to allow the user to familiarize themselves with using the
exoskeleton, and then the desired task is performed.

6. Testing. If the NA or AC mode is being used, the system is switched to an sEMG-controlled mode,
which uses a classification model based on previous data to move the exoskeleton according to
the inferred user intent. If the LS mode is being used, then the controller remains the same as it
was in training.

7. Updates. If the AC mode is being used, the system periodically updates its sEMG mapping.
For the experiment (described below), these updates occur during breaks in the task.

2.3. System Validation Experiment

The efficacy of the learned sEMG control system was evaluated using a tabletop book-shelving
task. Twenty people were consented for the study, but two subjects’ data were unusable due to
technical issues with the exoskeleton in one case, and unforeseen distractions for the subject in another.
For one participant, data from two out of the twelve total test trials was unusable as the exoskeleton
had a wire that became disconnected and data were not captured. The remaining trials for this subject
were appropriately captured and are included in the analysis.

The 18 participants that completed the study and were included in data analysis consisted of
eleven males and seven females, all of whom were right-handed, had 20/20 or corrected to 20/20 vision,
and had no self-reported disabilities or injuries affecting the use of their right arms. The experiment
protocol was approved by the MIT Committee on the Use of Humans as Experimental Subjects
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(protocol 1454402), and all participants provided written informed consent. All participants received
up to $20 as compensation. Subject age ranges and collected anthropometry data are shown in Table 1.

Table 1. Subject characteristics.

Characteristic Min Max Mean Standard Deviation

Age (years) 18 33 22.5 4.5
Forearm Circumference (cm) 16 28 22.8 3.2
Seated Shoulder Height (cm) 46 66 55.6 5.6

Thumb Length (cm) 5 13 9.4 1.6

During the experiment, participants were seated in front of a tabletop bookshelf with six shelves
(70 cm wide by 41.5 cm high by 15 cm deep), and asked to move a book between the tabletop and
shelves on the bookshelf using their right hands while wearing the exoskeleton. Participants were
instructed to move the book in a palm-down position, using their thumbs to support the bottom of the
book (Figure 2). Two corners of the book were cut out to allow for better motion tracking of the subjects’
thumbs during the task. Requiring the thumb to be on the bottom limited finger flexion/extension
during the grasping task, and limited participants from using their fingers to compensate for altered
thumb movement due to the exoskeleton. Lateral variation in the placement locations of the book
created increased potential for subdermal muscle shifts, for which the sEMG controllers must account.
This task permitted an evaluation of the timing of the thumb assistance while limiting the compensatory
motions a user could perform during the task, thus enabling validation of the system’s behavior.

Figure 2. Grasping action taken by subjects. For each motion, the subject grasps the book from the
starting position on the table (left), places the book onto a cubby (middle) and the taps the marked spot
on the table (right) before reversing the series of actions and placing the book back onto the starting
position. For each grasp, the thumb is on the bottom supporting the book so that thumb closure is
required for the grip.

A single iteration of the task consisted of grasping a book on the tabletop, placing it in one of
six locations on the bookshelf, releasing the book, touching the table where the book was originally
placed, and then grasping and moving the book back to its original location (Figure 2).

Steps 1 through 4 of the concept of operations were followed at the beginning of the experiment
to adjust the system for each user. The experiment itself consisted of three blocks, one to test each
controller. After the system adjustment steps at the beginning of the experiment, each block began
with a single-trial training phase consisting of six iterations of the task, once per location available on
the bookshelf. The training period was always performed with the limit switch controller (step 5 of
the concept of operations). This training period was not set at a fixed time duration, but rather ended
when a user finished one set of six motions, utilizing all the spots on the shelf. There is thus some
variability in training time, as well as the amount of data and the proportion of the data that is labeled
as grasp or release.

During the subsequent test phase, subjects performed four trials, each consisting of twenty-four
iterations of the task, where each of the six locations on the bookshelf was used four times (for a total of
96 iterations of the task during the test phase of each block). These test phases were performed with the
LS, NA, or AC controllers, depending on the block (step 6), with the subjects unaware of the nature of the
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controllers they were using. Trials were separated by a two-minute break and blocks were separated by
five-minute breaks to allow the subject to rest. Subjects took Likert scale and NASA Task Load Index [35]
surveys during those two- and five-minute breaks (results for the surveys are not reported in this paper).
During the AC block, the two minutes were also used to update the sEMG model (step 7). Three block
orders were used to control for participant learning effects, while enabling an opportunity to examine the
effect of order. The block orders were (FB, NA, AC), (FB, AC, NA) and (AC, NA, FB), where each one was
used with six subjects.

For the purpose of these comparisons, a grasping action (thumb close) is considered a positive result
(e.g., true positive or false positive), and a release (thumb open) is a negative result (e.g., true negative or
false negative). Ground truth was determined by the pressure on the FSR sensors, which should be high
when a subject is holding the book, regardless of the controller used, due to the nature of the grasp being
performed. Thus, a true positive occurred when the controller actuates to a close position when the user
has a high pressure signal on the palmar thumb FSR (beyond the pre-set activation threshold for the LS
controller). A false positive occurred when the controller actuated to a close position when the user did not
have a high palmar thumb FSR signal, and continues to not have a high signal for the duration of the close
actuation. Note that this scheme for obtaining ground truth means that false positives cannot occur with the
limit switch controller by definition, since it uses the pressure signal directly for actuation. This setup also
allows us to use the limit switch controller as a baseline against which to compare the other controllers.

2.4. Data Analysis

Data analysis for this paper focuses on examining three aspects of the exoskeleton behavior that
influence system usability: (1) the training time of the system; (2) the precision (positive predictive
value) of the EMG intent classification; and (3) whether or not the EMG controllers anticipated
the human.

The training times were calculated as the time between the first exoskeleton actuation command
to either the last actuation command or the end of the trial (whichever came first). The times were
normally distributed according to a Shapiro-Wilk normality test (p < 0.05), so a one-way analysis of
variance (ANOVA) was used to find differences in the times between controllers.

The precision of the sEMG-based prediction was evaluated in two ways—(1) the number of
true and false positives across trials and (2) the duration of the positive responses. Recall, a positive
response is defined to be when the system is in a closed state. We evaluate precision (true/false
positive responses) because ground truth information on negative predictions (i.e., when the user did
not intend to grasp) is harder to infer. The grasping pressure provides a much clearer signal than the
equivalent pressure signal when the intent is not to grasp. The duration of these positives is important
because it acts as a measure of how useful a true positive was (if it lasted the duration of an intended
grasp) or how detrimental a false positive was (how long the user was stopped from doing what he or
she intended). Both the number and duration of positive responses were determined to be non-normal
using the Shapiro-Wilk test (p > 0.05), so nonparametric Kruskal-Wallis tests were used.

An initial Kruskal-Wallis test was performed for each combination of controller and response type,
with an independent variable of trial (6 tests in total). All tests for trial were non-significant for both
number and duration of grasps (p > 0.05), thus trial data were pooled to examine the other independent
variables. As the Kruskal-Wallis test does not include interaction effects in the omnibus test, an independent
variable was defined to enable examination of the individual treatments. For the number of positive
responses and action duration, the independent variable defined included controller and response type
(e.g., AC true, NA false, etc.), with trials pooled as previously described. Omnibus Kruskal-Wallis tests
were then performed for both number and duration, and Dwass-Steel-Critchlow-Fligner post-hoc pairwise
comparisons were performed if the corresponding omnibus test was significant, enabling underlying
interactions to be examined.

A special case of “multi-grasp” was also considered in the analysis of precision. A multi-grasp
refers to a scenario within a single close-open cycle of exoskeleton movement where the pressure
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profile indicates multiple grasps. Using the pressure profile, the multi-grasp was defined to occur if the
pressure signal crosses the limit switch threshold from below more than once and remained below the
threshold for more than 0.1 s (one servo control cycle) between crossings (Figure 3). These instances
involve elements of both true positives (the initial close) as well as false positives (a continued close
state when the pressure drops below the threshold). Since these are not as easily classified, we remove
these occurrences from the true and false positive analysis and examine them separately.

Figure 3. Example of a “multi-grasp” where the palmar thumb pressure crosses the limit switch
threshold from below multiple times within a single exoskeleton close action, with below-threshold
periods longer than 0.1 s interspersed.

In order to quantify anticipatory exoskeleton behavior, we define the anticipation time for a true
positive grasp as the time between the start of an EMG-triggered grasping motion and the time
when the pressure threshold is crossed (Figure 4). Since anticipation time is necessarily zero for the
LS controller, only the times associated with NA and AC were compared. The Shapiro-Wilk test
supported that the anticipation times were non-normal, so the sign test was used to test whether each
controller’s times were significantly different from zero, and the Wilcoxon rank-sum test was used to
determine whether or not each controller’s times were significantly different from each other.

Figure 4. Example of thumb pressures detected during operation of a limit switch controller (top)
and an EMG controller (bottom) along with exoskeleton action. The thumb pressure and limit switch
threshold lines correspond to the left axis, and the exoskeleton action corresponds to the right axis.
The bottom plot shows how exoskeleton actuation often occurs before the limit switch threshold is
reached with the EMG controller, as the black line changes before the red line hits the dashed limit.
False positive predictions are marked with black squares.

3. Results

3.1. Training Time

Figure 5 shows the distribution of times spent in training for each of the three controllers.
The training time shown here is the time between the start of the first grasp and the end of the
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last grasp. There are a few additional seconds of time when data are still being collected before and
after this period, but this definition is the one that is operationally relevant to the user, since that is
when the user is actively training the system. Training occurs before the LS test trials for consistency
with the other blocks, though data collected at that time is not used during the experiment.

Figure 5. Distribution of the time spent completing the six-motion training task across all subjects.
The mean and standard deviation were 51 s and 14 s respectively.

The mean training time for the three controllers is not significantly different (F(2, 51) = 1.92,
p > 0.05), and the mean time across all cases is 51 ± 14 s. Thus, users have similar exposure to the
system within each training period.

3.2. Precision of Prediction

The number of true and false positives across trials for each controller is shown in Figure 6,
and the duration of true and false positives is shown in Figure 7. The limit switch controller exhibits
no false positives (both figures, LS plots), since the pressures that directly drive the LS controller are
used as the ground truth for intent.

Figure 6. Number of true positive (TP) and false positive (FP) responses across test trials for the
three controllers.

The Kruskal-Wallis tests with an independent variable of controller crossed with response found
significant effects for both the number of responses (H = 221.918, p < 0.01), and the response time
(H = 362.080, p < 0.01). For the number of responses, the median number of true positives for LS was
significantly greater than both NA (p < 0.01) and AC (p < 0.01). There was no significant difference
in the median number of true positive responses between NA and AC. The median number of false
positives was significantly greater for AC than NA (p = 0.045). The median number of true positives
was significantly different from false positives for NA (p < 0.001), although was not significantly
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different for AC (p > 0.05). For the median duration, there was no significant difference between the
median true positive durations for LS and NA (p > 0.05) or LS and AC (p > 0.05). The duration of true
positives was found to be greater than the duration of false positives for all cases (p < 0.05).

Figure 7. Mean duration (seconds) of true positive (TP) and false positive (FP) responses across test
trials for the three controllers. Significant differences (p < 0.01) were found between true and false
positive durations within each controller. Multi-grasps were removed in the data shown here.

3.3. Occurrence of Multi-Grasps

As previously stated, we removed occurrences of “multi-grasps” from our precision analysis, and
considered them separately. Figure 3 showed an example of a multi-grasp, where a single exoskeleton
close action was accompanied by three distinct grasps in the pressure profile. Figure 8 shows the
number and duration of multi-grasps across trials. We specifically note two subjects for which the mean
multi-grasp durations were outliers during their last AC trial (Figure 8a, right-most box plot). For these
subjects, the exoskeleton remained closed for long periods, and they were unable to command it to
open, but proceeded with the task anyway. From observation, we saw that apart from these outliers,
many of the other examples of multi-grasps were two-grasp periods that resulted when subjects moved
the book from the shelf to the table, and released slightly before re-grasping, but did so very quickly
without allowing the exoskeleton to actually open during this period. For these multi-grasps, it was
unclear whether the subjects intended to command the exoskeleton to open or not, but the lack of
exoskeleton motion here did not hinder the task.

Figure 8. Number (a) and duration (b) of multi-grasps in the trials using NA and AC controllers.
Extreme outliers in terms of duration occurred for two subjects during the fourth trial of the
AC controller.
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3.4. Grasp Durations

The distribution of the grasp durations is shown in Figure 9, which pools all of the grasps that were
detected throughout the test trials for the entire experiment. For all three controllers, the distribution of
true positive responses is bimodal, with a cluster at approximately 0.25 s, and another at approximately
2 s. Since this distribution occurs even with the limit switch controller, the short-duration cluster
likely represents inadvertent actuation of the exoskeleton by the subject when briefly pressing up
against the pressure sensor, while the longer-duration cluster likely represents periods when the user is
actually grasping the book. Notably, the NA and AC controllers show that a large number of the false
positives occur for no more than 0.2 s, which represents one to two control cycles for the exoskeleton,
and approximately 5 degrees of movement.

Figure 9. Histogram of positive response times shows that true positives are bimodal and that the
shortest actuation durations are dominated by false positives. Only grasps shorter than 5 s are shown,
but grasps that were longer than 5 s occurred for LS (n = 7), NA (n = 1), and AC (n = 24) controllers.

3.5. Anticipating User Movement

In the non-anticipatory case (the limit switch), actuation occurs as a reactive measure when
the pressure of the user’s thumb crosses a given threshold. Part of the purpose of ILEXOS was to
reduce the movement delay and the need for constant pressure by the user with an anticipatory sEMG
control scheme. Figure 4 was a representative comparison of the exoskeleton sensing and actuation
taken during one subject’s use of the LS and the NA controllers. In the LS case (top), the exoskeleton
movement in black is triggered exactly as the user’s pressure on the palmar sensor crosses the limit
switch threshold. In the NA case (bottom), the shape of the pressure curve still roughly corresponds
to the exoskeleton behavior (higher pressure during grasp, which would always be the case due to
contact with the book), but the actuation for grasp occurs before the pressure threshold is passed.
Similar behavior is seen throughout the NA and AC controller trials.

Figure 10 shows the mean anticipation times of the NA and AC by controller and across trials.
Sign tests for the anticipation times with a predictor of controller type showed a significant difference
of each controller’s anticipation times from a time of zero (W = 70, p < 0.01 for NA; W = 72, p < 0.01 for
AC). The Wilcoxon Rank-Sum test supported a significant difference between the anticipation times
for the two controllers (z = −2.86, p < 0.01).
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Figure 10. Mean and median anticipation time (seconds) of true positive grasps. Anticipation time
for a given grasp is calculated as the time that the grasping pressure exceeds the trigger threshold
minus the time that a grasp was triggered by the EMG controller, as shown by the green arrow on the
inset example.

4. Discussion

The results show that personalized sEMG-based exoskeleton control is possible with machine
learning for this grasping task on a 1-DOF exoskeleton with short training periods. The learning from
demonstration scheme implemented in ILEXOS allowed us to use a traditional limit switch controller
to learn sEMG inputs, and then improve on that performance by anticipating the user by time-shifting
the intent labels collected during the limit switch phase. The learned mappings are robust to both
novice sensor placement and to subdermal muscle shifts. We specifically assessed three elements of
the experiment: the training time of the system, the precision of the EMG intent classification, and the
system’s ability to anticipate the user’s movements.

4.1. Training Time

The training time of our system was based on completing twelve placement motions on six shelf
locations, and took approximately one minute for a novice user to complete. During this training time
the exoskeleton moved in response to the user, but was controlled via a pressure-based limit-switch.
This training time is on par with times used in other upper-extremity sEMG classification experiments,
such as the two minutes used by Chan and Englehart [23] in their in-air gesture-recognition
(non-exoskeleton) study, or the one minute used by Hamaya et al. [17] in their one-DOF elbow
exoskeleton study.

Comparing training times between studies is not straightforward, since many elements of these
studies (in-air vs. object contact, exoskeleton vs. hand gesture, number of classification labels, accuracy,
sensor placement, number of subjects, etc.) are highly variable. However, shorter training time is
certainly operationally desirable, as is robustness to imprecise sensor placement. In an industrial
setting, for example, the ability to quickly don and begin using an augmentative system could translate
to higher rates of adoption and lower user frustration in comparison to systems requiring significant
training time for the classifier (to understand intent) and/or for the user (to precisely place sensors).

4.2. Precision of Prediction

It is promising to see that the duration of responses between true and false positives were
significantly different in each case but that true positive durations in both sEMG-controlled cases were
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not different from the LS case (Figure 7). These results show that as far as grasp duration, the positive
response performance of the three controllers is comparable, which is a necessary result to show in
order to have sEMG-based control be at least as useful as limit switch methods.

On the other hand, although the duration results show that the ILEXOS Thumb is usable under
sEMG-controlled conditions, one potential issue is the relatively large number of false positives. Figure 6
showed that the NA and AC controllers have false positive counts that are comparable to the number
of true positives (though most of these are very short, as shown in Figure 9). One factor driving
the presence of false positives is the specific training procedure and the underlying task selection.
In our task, subjects tap the book’s starting location on the table after putting the book on the shelf.
This interim tapping step was included as a way to provide examples within the time series where
the subjects’ arms were on the right side of the table, but they were not grasping. Our pilot testing
found without such examples, the exoskeleton would begin a grasp whenever the subject had his or
her hand on the right, regardless of whether or not a grasp was intended.

While the tapping motion did remove this confusion from the system, it introduced a signal
that was similar to the sEMG signal of a grasp if the subject was tapping hard. This was observed
in many cases with both sEMG controllers, where tapping the table induced a short actuation by the
exoskeleton, likely resulting in many of the 0.1 and 0.2-s false positives seen in Figure 9. Since subjects
tap the table once for every two grasps that they perform, it is possible that up to half of the false
positive counts recorded in this experiment were the result of these tap-induced motions.

Such false positives might be removed with additional training time or different AC controller
updates assumptions (such as removing short-duration close labels from updates). However, the short
duration of these motions means that they are largely operationally insignificant, though the presence
of such unintended motions may affect the user’s trust in the system. On the other hand, such false
positives could present a proprioceptive feedback to help the user learn the system’s behavior and
adjust their own inputs as a kind of error augmentation, though such false positives would have to be
limited to prevent user frustration or injury.

We also considered the occurrence of multi-grasps—multiple grasps as indicated by pressure
within a single period of exoskeleton close action. These occurrences had elements of true positive, false
positive, and false negative (not opening when it should) responses, and were considered separately.
In some cases, these were simply the result of the participant acting very quickly in letting go of and
re-grasping the book when it was placed on the table, which may be an indication of a change in
grasping strategy. These particular multi-grasps would likely have been reduced or eliminated with
more explicit instructions to the participants. Although these grasps were not observed to be affecting
the performance of the task.

However, we do note two specific cases of the AC treatment where multi-grasps were exceedingly
long, and characterized by a near-complete inability of the user to command the exoskeleton to open
during an entire trial (Figure 8). In these cases, it is likely that the combination of assumptions made by
the AC controller update—that pressure in a given direction indicated intent to move in that direction
and that lack of pressure meant that the label obtained from the sEMG classifier was correct—drove
the classifier to be heavily biased towards a close label. It is unclear why this occurred with these two
subjects, but not with others. That such a phenomenon could happen, at least with two of the subjects
and specifically with the AC controller, points to the need for additional refinements of the AC updates
in order to prevent this particular failure mode (described further in Section 4.3).

A hybrid approach to control using both sEMG and pressure at the same time could significantly
improve prediction performance for an operational use case. This combination avoids the potential
issue of the exoskeleton not moving when the subject is pressed up against one side because of
a mismatch between pressure and sEMG labeling during a particular time, but keep the advantage
of anticipatory signaling by starting exoskeleton movement when the associated sEMG signal is
detected. We did not evaluate the hybrid controller in this study as we were specifically examining if
an sEMG-only controller would enable fluent task performance.
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4.3. Adaptive Controller Updates

The adaptive sEMG controller was intended as a way for the control system to adapt to sEMG
changes over time, particularly those caused by user fatigue [36]. The AC mode had the potential
additional benefit of gathering a larger dataset than the initial training period could provide to enable
an improved model, but had the potential downside of being a changing control mapping that updated
once every few minutes due to our experiment protocol. The changing model with this particular
update rate may have been more difficult for the human to learn when compared to a static model,
or one that continuously updated.

Qualitatively, subjects reported differences in experiences after test trial 1 with the AC controller.
Some users reported improved exoskeleton performance, while two users encountered significant
difficulty with multi-grasps in the later trials. While the design goal was for the system to be easier
to operate as the additional data collected provides an ability to improve the controller, the dynamic
change in the controller could add a challenge for the operator if the system does not change at an
appropriate rate. Finding such an appropriate rate of change would take further work, and may
depend on the task and/or the user. The underlying assumptions within the AC update may also
be more appropriate for some operators than for others. The second assumption regarding the
correctness of sEMG labels when pressure data was lacking may be inappropriate in some cases
because subjects do not necessarily oppose the exoskeleton when it is behaving inappropriately, as may
be seen in the constant near-zero dorsal thumb pressure in Figures 3 and 4. It may indeed be more
likely that the user intends to release when no pressure is applied, since most grasp epochs have
already been directly labeled by palmar-direction pressure, and subjects are even less likely to press
up against the exoskeleton to open their hands as opposed to when they intend to grasp. A potential
improvement to the AC update assumption may be to make use of the task-specific prior distribution
of grasp vs. release epochs (the distribution during training, for example). We could apply a Bayesian
probability-based label to epochs without a clear intent from pressure, using information from both
the classifier confidence as well as the prior distribution.

Additional differences between the NA and AC controllers might be present in the surveys,
motion capture data, and sEMG signals that were not analyzed for this paper, and is ongoing work.
Further adaptation over time may also be examined in future work, as the system can still learn
from the user during the sEMG-controlled phase. The behavior of the operator over time may also
affect how the updates are made. If operators build trust in the system, they may expect specific
exoskeleton behavior within a coordinated motion and pressure may again be minimal as the user
waits for the exoskeleton to move. Since sEMG signals change with fatigue [36], this may also be
a factor to consider for how the exoskeleton behaves over time. How and whether the exoskeleton’s
control system converges to a correct user intent mapping over time may be an additional avenue of
research, particularly in conjunction with changes due to fatigue and adaptation on the part of the user.

4.4. Anticipating the User

To our knowledge, this is the first experiment to utilize anticipatory sEMG signaling to improve
the behavior of an upper-extremity exoskeleton controller. Anticipating the behavior of the upper
extremities is more challenging than doing the same for the lower extremities, which typically see
more regular and periodic motion. While other examples of sEMG-based exoskeleton control exist
for the upper limbs (e.g., [3], [18], [30]), these methods rely on expert sEMG placement and do not
use the sEMG signals to anticipate the human movement. Our results indicate that the trained
sEMG-based classifiers are able to anticipate the user’s intent to grasp and initiate movement prior
to a pressure-based system initiation. This particular part of the experiment built on the results of
Beckers et al. [25] and Siu et al. [24], which showed the existence and usability of anticipatory sEMG
signals in grasp and release. Although the difference in actuation timing is small, it could potentially
reduce feedback control lag and alleviate some of the feeling of “sluggishness” that accompanies
the reactionary control mechanisms used by typical force-based control [2]. Improving human-robot
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fluency in this manner is perhaps most important for augmentative exoskeletons, where the user is
healthy and would have lower tolerance for system lag, as they are more likely to wear the exoskeleton
for extended periods of time to increase strength or reduce injury risk.

4.5. Generalizability

Although we present an instance of the ILEXOS system for a thumb exoskeleton that used
a supervised KNN classifier, the interaction-based learning framework of ILEXOS is agnostic to the
nature of the exoskeleton actuation, as well as to the machine learning method used. To that effect,
there are several generalizable advantages of the ILEXOS framework.

First, the exoskeleton is usable while it is training as long as a simple intent mapping is obtained
(e.g., pressure sensors, switches, inertial measurement, etc.). In contrast to systems that require the
machine learning algorithms to explore the feature space by random perturbation [17,18], our use
of a pressure-based initialization of the sEMG mapping allows us to avoid such perturbations.
This removes additional “fitting” time of the exoskeleton, as well as any potential discomfort or safety
concerns associated with random perturbation, particularly for exoskeletons with many powered
degrees of freedom. While we do not necessarily explore as much of the feature space since we allow
the users to select their own motions rather than have random perturbations, our procedure allows
us to focus more specifically on the usable operating feature space. Additionally, we do not require
a pre-built sEMG mapping as a starting point, as was done in [26], as ILEXOS learns each person’s
mapping during training. This system behaves in the same way that many existing exosystems do
(inferring intent based on pressure) during the period needed to train it, but post-training sEMG control
offers a more coordinated and potentially less fatiguing control method. The latter is able to anticipate
behavior and provide assistance without the additional applied forces required in a reactionary control.

Second, the system allows novice sensor placement. Non-specific placement of sensors is likely
to be the norm with operational systems, and our system is shown to be robust to such placement,
in addition to subdermal muscle shifts that are typical of a pick and place task. Allowing novice sensor
placement is an important difference to note in comparison to the sEMG-controlled systems developed
by Hamaya [17,18] and Kiguchi [26]. Our sensor placement was non-specific and over smaller muscle
groups than the ones used in these two studies, which focused on gross arm movements.

Third, the system has the potential to improve over time, as additional data are collected from
both the pressure and the sEMG sensors during the sEMG-controlled phase. The aforementioned
modifications to the AC update assumptions may be necessary to ensure that times when the
exoskeleton and the user are moving together fluently are labeled correctly, and we are able to
avoid creating the strong bias towards a particular label that was observed in two of the subjects.
The effect of different assumptions and timings for these updates should be considered in future work.

Since we tested ILEXOS using a discrete classifier with two states, our results are limited
to considering operation in those states for the case of the book-placing task. The interactive
learning-from-demonstration framework could be extended to a continuous control system, but that is
not evaluated in the present study.

The system is generally applicable to different numbers of sensors and features. This study used
six sEMG sensors, and fourteen sEMG features, but it does not specifically depend on any of these.
Preliminary experiments have shown that intent recognition accuracy does not seem to suffer when
decreasing the number of sensors and features, so further work could use a smaller set of sensors
and features to reduce cost and computation time. However, it should be noted that as the number
of sensors decreases, the precision with which the sensors must be placed would need to increase,
since less of the forearm will be covered by sensors, presenting a trade-off that must be considered.

We also note that while supervised KNN is a fairly simple algorithm for nonlinear feature
inputs like the present sEMG features, the algorithm has a linear time and space complexity of O(nd)
for n observations with d dimensions, making it inappropriate to use the entire observed history
when the training period is long. Subsampling, “forgetting” observations, using fewer features or
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a different choice of algorithm may yield improvements for long training times or cases of continuous
updating. Additional work may attempt to find a better balance between values of n and d, since
using fewer features could allow a longer observational history within the KNN model. It should be
noted that support vector machine (SVM) approaches are commonly used for sEMG classification
(e.g., [3,19,21,30]) and do not suffer from increasing time complexity with the number of data points.
Runtime for an SVM is linear with respect to the number of support vectors rather than the number
of data points. A KNN method was chosen over SVM for this work due to higher accuracy during
offline pilot testing using the amount of data that would be collected during a relatively short training
period. Replacing the KNN with an SVM, or any other classification method, would not alter the
conceptual adaptation methodology, but would affect the AC controller update process. Future work
could examine the effects of changing the machine learning algorithm on the human-exoskeleton
performance with ILEXOS.

4.6. Implications for Augmentative, Assistive, and Rehabilitative Exoskeletons

We motivated how the robust and anticipatory nature of our method has potential to improve
the fluency for human-exoskeleton interaction in the augmentative case. The effects of the different
controllers on human-exoskeleton fluency measures using motion capture and survey data collected
during this experiment is ongoing work. The desire for improved fluency in the assistive case,
where the exoskeleton aids in the movement of a non-healthy individual but is not doing so in
a rehabilitative context is also of interest. For assistive exoskeletons, the robustness of our method
to sensor placement may mean greater ease of use for at-home use cases. However, additional
complexities arise when considering the assistive and rehabilitative use case.

Progressive robot-assisted therapy, such as those using the wearable MyoPro exoskeleton [37]
or the MIT Manus manipulandum [38] typically use muscle-specific sensors and threshold-based
activation to encourage the association between certain muscle activations and a kinematic response
in an assist-as-needed framework. There are several potential issues with using ILEXOS, and LfD
in general, for a rehabilitative exoskeleton. First, it may be difficult or impossible for patients to
train the system because they are unable to perform the requisite motions. This may be addressed
by allowing subject intentions to be explicitly communicated via a switch, rather than inferred via
pressure, while the patient attempts the action. Supervised labeling of intention may be most applicable
in cases where the underlying sEMG signal is a weaker version of the normal signal, such as in multiple
sclerosis [39]. In contrast, pathologies that produce other abnormal sEMG activations, such as stroke,
may result in significantly lower classification accuracy [40]. The second concern relates to using
an LfD mapping within therapy. While progressive therapy may be possible with the ILEXOS LfD
framework by gradually increasing the confidence threshold needed to activate a particular action,
the use of a personalized classifier may be problematic. The LfD mapping that makes ILEXOS easier for
a healthy person to use may hinder rehabilitation as the users are encouraged to continue expressing
the correctly classified sEMG signals that are nonetheless inappropriate for movement without the
exoskeleton. This concern may be slightly alleviated by placing sEMG sensors on specific muscle
bodies, but the concern remains that a well-mapped LfD system may be actuating with sEMG signals
that are not conducive to rehabilitation. A model of appropriate changes in sEMG over the course of
rehabilitation, or re-learning sEMG models in staged intervals may be necessary for a rehabilitation
context. Further work is required to better understand the behavior of this kind of learning exoskeleton
with patients undergoing rehabilitation, and how it may affect the rehabilitation process.

5. Conclusions

This paper presented a learning from demonstration exoskeleton system that transitions from
a reactive pressure-based limit switch controller that is common in the current state of the art to
an anticipatory sEMG-based controller. We show that this sEMG-based method is robust to novice
sensor placement and subdermal muscle shifts during movement. The exoskeleton controllers show
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similar performance to a limit switch controller in terms of true positive grasp counts and times,
but are able to move in time with the users’ thumbs by anticipating their actions approximately
0.2 to 0.3 s ahead of the pressure trigger. This learning from demonstration method has broader
applicability to increasing the fluency of exoskeleton control by creating personalized sEMG mappings
for individuals, and may also be applied to more complex multi-DOF exoskeletons without the need
for perturbation-based system identification.
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